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Thermal diffuse x-ray scattering in a model columnar liquid crystal

A. Lacombe and A. Caille´
Département de Physique, Universite´ de Montréal, Casier Postal 6128, Succursale Centre-Ville, Montre´al, Québec, Canada H3C 3J7

~Received 3 January 2001; published 11 June 2001!

The fluctuation correlation functions and the density-density correlation functions for a realistic model of a
columnar liquid crystal in its helically ordered phase are derived. The influence of positional and orientational
molecular fluctuations on the thermal diffuse x-ray scattering is studied within a three-dimensional model of
columns inscribed on a triangular lattice. Resulting from quasi-long-range ordering, very anisotropic long-tail
scattered intensities are predicted, giving a nonuniversal signature for the helically ordered columnar liquid
crystal phase. Scattered intensities both near the Bragg maxima at the inverse lattice vectors and at the Bragg
condition due to periodic orientational ordering are treated. The percolation of the long-range behavior for a
screw variable composed of two quantities having only quasi-long-range behavior is predicted.
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I. INTRODUCTION

Molecular systems in their condensed state show a g
diversity of ordered phases involving their positional a
orientational degrees of freedom. Partial positional and
entational orderings are present in mesomorphous sys
such as the liquid crystals. Unique and new fundame
structural properties emerge from the complexity and ri
ness of such ordered phases. One such manifestation i
existence of quasi-long-range positional order in the la
ordering of smectic liquid crystals as revealed by hig
resolution thermal diffuse x-ray scattering measureme
@1–3#.

Among such molecular systems, a number of compou
composed of disk-shaped molecules show columnar liq
crystal phases, all sharing a two-dimensional lattice orde
of columns of stacked molecules in the third direction. T
types of positional and orientational ordering existing,
these cases, along the columns and their intercolumnar
relations are issues of a fundamental nature. O
dimensional liquidlike columns are usually observed, as p
dicted@4# by the divergent behavior of the local fluctuatio
of the intracolumnar positional degrees of freedom for a tw
dimensional lattice of freely sliding columns in the third d
rection. However, there do exist materials@5–7# where a full
or partial ordering of these degrees of freedom sets in
lower temperatures with a simultaneous ordering of the
entational degrees of freedom along the columns.

These last cases reveal a fundamental issue of class
tion: do they belong to the crystal phases or the mesom
phous phases? Up to now, this is still an open question@4,8–
10#. However, the generally accepted understanding@5,6#
calls for a long-range positional ordering inside the colum
accompanied by an incommensurate helical orientationa
dering of the diskotic molecules along the columns. T
model, which is derived from the observed Bragg peak
sitions and intensities@5,6#, is at least inconsistent with th
very large value~at least one-third of the intermolecula
spacing! of the phase-preserving vertical motion of the m
ecules@11# as measured from the Debye-Waller factors. F
lowing these observations, in a previous publication@11#,
one of the authors has advanced the conjecture of quasi-l
1063-651X/2001/64~1!/011701~16!/$20.00 64 0117
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range ordering of the positional and orientational degree
freedom in such columnar liquid crystals. The vanishing
an effective shear elastic constant for strain deformations
companied by a deformation of the orientational degrees
freedom would be at the origin of this behavior in such a s
material having a helically ordered state along the colum
As predicted@1# and observed@2,3# for smectic liquid crys-
tals, thermal diffuse x-ray scattering in the presence of qu
long-range ordering turns the Bragg peaks into Bra
maxima with a nonuniversal long-tail decrease of the sc
tered intensity in reciprocal space. Such behavior was c
jectured in@11# for a particular columnar liquid crystal by
involving only the thermal fluctuations of the positional d
grees of freedom along the columns.

In this paper, using a simplified but realistic model th
captures the essential features of these systems, we calc
the effects of the thermal fluctuations of both the positio
and orientational degrees of freedom along the columns
the thermal diffuse x-ray scattering. Our objective is to ma
specific predictions on the power law behavior for the sc
tered intensity near the Bragg conditions resulting from b
the ordering of the density of the molecules in the colum
direction and the incommensurate helical structure of th
orientations. The three-column superlattice@5# existing for
this frustrated intercolumnar structure is explicitly taken
account.

In Sec. II, the model is presented explicitly with a descr
tion of the core density modulation in three dimensions.
this core density is added an orientational feature that c
tures the gross features of the incommensurate helical s
ture. Section III presents the local root mean square~rms!
fluctuations of the positional and orientational degrees
freedom as a function of the size of the sample in a direct
perpendicular to the direction of columns which are oth
wise of infinite length. In Sec. IV, the correlation function
for the density and orientational features are reported w
their specific behavior in two directions, namely, parallel a
perpendicular to the columns. Section V presents the ca
lations of thermal diffuse x-ray scattering intensities a
their shapes in reciprocal space near the Bragg maxima.
calculations put the emphasis on the long-tail behavior of
intensity of the scattered x rays for fluctuations controlled
©2001 The American Physical Society01-1
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A. LACOMBE AND A. CAILLÉ PHYSICAL REVIEW E 64 011701
quasi-long-range ordering. The classical behavior, with
q22 decrease, for fluctuating variables controlled by lon
range ordering is assumed to exist and to be buried unde
nonclassical behavior due to quasi-long-range behavior.
nally, the last section refers to specific interpretations a
conclusions leading to further measurements of hi
intensity and high-resolution diffuse x-ray scattering fro
these systems.

II. MODEL PRESENTATION

The molecular model for a liquid crystal made of dis
shaped molecules stacked into columns regularly placed
a two-dimensional lattice, a structure known as a disko
has already been investigated in detail@5#. An example of
such a liquid crystal is given by hexa-hexylthiotriphenyle
~HHTT!, one of the triphenylene derivatives whose m
ecules are formed of a rigid core of aromatic cycles and
flexible hydrocarbon chains fixed to the core. This compou
shows two distinct hexagonal columnar phases:Dhd , a dis-
ordered columnar phase (70 °C,T,93 °C), andH, a heli-
cally ordered columnar phase (62 °C,T,70 °C). This last
phase is of great interest since it could reveal, under gi
conditions, quasi-long-range intracolumnar order as p
posed in@11#. In the H phase, the lattice that supports th
columns is reorganized in a superlatticeA33A3R30° which
is spanned by the set of vectors

aW 15
a

2
~3x̂1A3ŷ!, ~1a!

aW 25aA3ŷ, ~1b!

cW15cẑ, ~1c!

wherea is the distance between the centers of the column
the basal plane andc is the distance between the molecul
in the columns if long-range ordering is assumed as ill
trated in Figs. 1~a! and 1~b!. The superlattice conventiona
cell basis has three HHTT molecules located respectivel
rW j with rW050W , rW15 1

3 (aW 11aW 2)1 1
2 cW1, and rW25 2

3 (aW 11aW 2)
1 1

2 cW1 as shown in Fig. 1~a!. The reciprocal lattice vector
associated with this lattice are given byKW i(nW )5n1AW 1

1n2AW 21n3CW 1 wheren1 ,n2, andn3 are integers and

AW 15
4p

3a
x̂, ~2a!

AW 25
2p

a S 1

A3
ŷ2

1

3
x̂D , ~2b!

CW 15
2p

c
ẑ. ~2c!

For quasi-long-range order, this superlattice would hav
meaning in theẑ direction only over a finite but extremel
long distance measured on a molecular scale.
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We choose to represent the density of molecules in
three-dimensional system by a development in a Fourier
ries which captures the essential features of the overall d
sity modulation and which is called here thecore density.
The lower-order components are sufficient for the study
the conversion of the lower-order Bragg peaks into Bra
maxima and the calculations of the thermal diffuse scatter
near those Bragg peaks. The coefficients of the Fourier se
are chosen such that the core density~i! is real and positive
everywhere,~ii ! exhibits invariance with respect to a rotatio
of 2np/6 around the center of the zeroth column of eve
cell, and~iii ! is such that the maxima of the density for th
columns numbered 1 and 2 are shifted byc/2 along the
columnar axis with respect to the maxima of the colum
numbered 0@5#. Consequently, the equilibrium core densi
r0c(rW), for an ordering extending to infinity, is written as

r0c~rW !5b01(
iÞ0

bKW i
cos~KW i•rW !, ~3!

where the specific relations between the real coefficientsbKW i

are given below in order to satisfy the criteria mention

FIG. 1. ~a! Top view of the two-dimensional columnar structur
the full black dots~labeled 1 and 2! being the displaced column
and the open dots~labeled 0! the undisplaced columns.~b! Three-
dimensional side view of the molecular stacks in three differ
columns in their equilibrium configurations if long-range orderi
is assumed.
1-2
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THERMAL DIFFUSE X-RAY SCATTERING IN A MODEL . . . PHYSICAL REVIEW E 64 011701
above. For the purpose of calculating the density-density
relation functions appearing in the expression of the ther
diffuse scattering intensities near the lower-order Bra
peaks, only a finite number of inverse lattice vectors ha
been selected, resulting in a spatial density continuum
stead of a discrete matter distribution. These vectorsKW i are

KW iP$CW 1 ,AW 11CW 1 ,AW 12CW 1 ,AW 21CW 1 ,AW 22CW 1 ,2~AW 11AW 2!

1CW 1 ,2~AW 11AW 2!2CW 1%ø$2AW 11AW 2 ,2AW 1

12AW 2 ,AW 22AW 1%. ~4!

The first subset contains seven vectors describing the su
lattice density and hence gives no information about
inner-cell structure. Only the three vectors in the second s
set of Eq.~4! generate an intracellular density modulati
corresponding to the structure of the basis. The real co
cientsbKW i

associated with the differentKW i ’s must satisfy the
following relations:

b05(
i 51

10

bKW i
, ~5a!

bKW 2
5bKW 3

5bKW 4
5bKW 5

5bKW 6
5bKW 7

, ~5b!

bKW 8
5bKW 9

5bKW 10
, ~5c!

and

bKW 1
52

1

4 S (
i 52

7

bKW i D , ~5d!

where the vectorsKW i are numbered in the order they appe
in Eq. ~4!: KW 15CW 1 , KW 25AW 11CW 1 , KW 35AW 12CW 1, and so on
~note thatKW 050W ). The condition~5a! ensures thatr0c is
positive everywhere;~5b! and~5c! result from the rotationa
invariance constraint~ii ! described above while~5d! follows
from the constraint~iii !. The equilibrium core density con
tinuum is illustrated in Fig. 2. The superlattice structure
the basal plane is easily seen as well as the displaceme
the columnar direction of two-thirds of the columns.

The second feature to capture in the density is the he
modulation appearing as we move along the columnar di
tion. For the purpose of representing this density modulat
a term is added to Eq.~3!. This term accounts for the geom
etry and orientation of HHTT molecules. Effectively, the
disklike molecules in their propeller configuration@6# show a
rotational invariance of 2np/3 around an axis passin
through their center, perpendicularly to their planar cen
core. Thus, around every site along the columnj, a supple-
mentary density modulation proportional to cos 3@u2u0j(z)#
is added on a circle of radiusR0 placed perpendicularly to
the columnar direction and centered on the site as depicte
Fig. 3.R0 is the mean radius of the molecular columns wh
are extending in thez direction. The phaseu0 j (z), represent-
ing the angular shift of the molecules along the columnj in
the equilibrium helical conformation, is written as
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u0 j~z!5H jvz1V j , ~6!

whereH j and V j are, respectively, the helicity (H j561)
and the rigid angular shift of the columnj. v equals 2p/P
whereP is the pitch of the column. In the present model,P
will be taken close to 8c, every molecule being rotated by a
amount close top/4 from its nearest neighboring molecu
inside a given column. Incommensurability between t
pitch and the lattice distance has been assumed for

FIG. 2. The equilibrium core density continuum~a! at z50 in
the basal plane;~b! at z5c/2 in the basal plane;~c! at (x,y)
5(0,0) and (x,y)5(a,0) as a function ofz. In ~a! and~b!, the unit
cell is represented schematically showing the presence of max
at the corners of the cell in~a! and two maxima inside the cell in
~b!. Arbitrary values have been used (a510, c54, and the coeffi-
cientsb2 to b10 were all set to unity!. x andy have the same units a
a, z has the same units asc, andr has the same units asr0 andbKi

.
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A. LACOMBE AND A. CAILLÉ PHYSICAL REVIEW E 64 011701
present work even though this is still an open question@13#.
Also, the rotational invariance constraint~ii ! implies that
H15H2 and V15V2. In the present model, this helicoida
density engraving is called thegroove densityand is written
as

rg0~rW !5r0(
n,m

(
j 50

2

d„rW 2~rW nm1rW j1sW !…

3cos 3~u2H jvz2V j !, ~7!

where cylindrical coordinates have been used.rW5(rW ,z) with
rW 5(r,a'), as illustrated in Fig. 4. The discrete molecul
density modulation has been represented, for simplicity, b
continuous cylindrical surface density modulation. The
density modulation cylinders of radiusR0 are centered on the
lattice points given byrW nm1rW j whererW nm5naW 11maW 2 and

rW j5
j

3
(aW 11aW 2) with j P$0,1,2%. Finally, sW @sW 5(R0 ,u)#

points at a specific location on the surface density mod
tion cylinder ~see Fig. 4!. The constant coefficientr0 in Eq.
~7! is chosen to ensure that the total density remains pos
everywhere. Thus, the total equilibrium density, according
the model developed here for the HHTT diskotic liquid cry
tal in its H phase, is given byr0(rW)5rc0(rW)1rg0(rW). Al-
though this separation of the density modulation into t
terms is not derived from first principles, it has the advanta
of capturing the essential features affecting the diffuse x-
scattering near the lower-order Bragg peaks.

III. LOCAL CORRELATION FUNCTIONS

In this section, the local root mean square fluctuations
the positional and orientational degrees of freedom of

FIG. 3. Groove density modulation@12rg0(z,u)# along a con-
tinuous column of stacked molecules. Arbitrary values have b
used (r051,c54,H j51, andV j50). z has the same units asc.
01170
a
e

-

e
o
-

e
y

f
e

molecules are presented. In the next section, these result
used to establish the behavior of the density-density corr
tion function ^r(rW)r(rW8)& along specific directions in ou
columnar liquid crystal model. The details of the calculatio
are presented in the Appendix.

Among all the possible positional fluctuations of the mo
ecules, only the displacementuz(rW) along the columnar di-
rection has been considered. This limitation will be justifi
later in Sec. VI. The orientational fluctuations of the mo
ecules are described byw(rW), an angular variable specifying
a rotation in the plane perpendicular to the columns w
respect to the helical equilibrium conformation. The plan
positional fluctuationsuq'

(rW) have not been considered i
the density fluctuations since they are known to have lo
range behavior in this phase@4#. The fluctuating density is
written asr(rW)5r0@rW2uz(rW) ẑ# wherer0 represents the den
sity of the system atT50 K @12#. Takingrc0(rW)1rg0(rW) as
the equilibrium densityr0, the fluctuations are introduced i
both rc0(rW) andrg0(rW) according to

rc~rW !5b01(
iÞ0

bKW i
cos$Ki'r cos~a'2a i !1Kiz~z2uz@rW !#%

~8!

for the fluctuating core density and to

rg~rW !5rg0(
n,m

(
j 50

2

d„rW 2~rW nm1rW j1sW !…

3cos 3$u2H jv@z2uz~rW !#2@V j2w~rW !#% ~9!

for the fluctuating groove density.a i is the angle betweenKW i

and x̂.
A derivation of the total elastic energy, based on the o

entational and positional elastic energy densities, was car
out by one of the authors in@11#. The diagonalized form of

n

FIG. 4. Representation of the vectorsrW, rW , andsW used to locate
a point on the surface of molecular cylinders.
1-4
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THERMAL DIFFUSE X-RAY SCATTERING IN A MODEL . . . PHYSICAL REVIEW E 64 011701
this total elastic energy, expressed in Fourier space u
cylindrical coordinates, is given by

E5
1

2

1

~2p!3E d3qH Fg12
g2

4g2
G uuz~qW !u21g2uuq'

8 ~qW !u2

1F1

4
C5qz

21C3q'
2 G uuu~qW !u21 f uC~qW !u2J ~10!

where the functionsg1(qW ), g2(qW ), g(qW ), f (qW ), a(qW ), and
b(qW ) are defined in@11#. The quantitiesAi , Bi , Ci , andKi
appearing here or in the following equations are the ela
constants introduced in@11#. In the process of diagonaliza
tion, two successive changes of variables are introdu
leading to

w~qW !5C~qW !2
b

2 f
uz~qW !2

a

2 f
uq'

~qW ! ~11!

and

uq'
~qW !5uq'

8 ~qW !2
g

2g2
uz~qW !. ~12!

From Eq.~10!, the theorem of equipartition yields

^uuz~qW !u2&T5
kBT

g12
g2

4g2

, ~13a!

^uuq'
8 ~qW !u2&T5

kBT

g2
, ~13b!

^uuu~qW !u2&T5
kBT

1

4
C5qz

21C3q'
2

, ~13c!

and

^uC~qW !u2&T5
kBT

f
~13d!

for the rms fluctuations expressed in Fourier space. The
gular brackets with the subscriptT denote an average over a
the thermal states.

In the long-wavelength limit, the denominator of E
~13a! has the following power expansion forq'!qz :

g12
g2

4g2
5C1qz

21Gq'
2 , ~14!

whereG5C5/42(C41 1
2 C5)2/2C5. Equation~14! is typical

of a denominator for long-range ordering where the local r
fluctuation of the vertical displacement would have a mic
scopic value proportional to a molecular length, a value
dependent of the size of the system.

For qz!q' , the long-wavelength limit expression for th
denominator becomes
01170
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g12
g2

4g2
5C1qz

21Kq'
4 , ~15!

whereK5B2
2(K11K2)/8A1

2, provided that the hypothesis o
an effective free sliding of ordered columns on each othe
realized@11#.

The thermal and space average^uz
2(rW)& is given by

^uz
2~rW !&5

1

V

1

~2p!3E d3q^uuz~qW !u2&T , ~16!

whereV is the volume of the system. The integral in Eq.~16!
is dominated by a size dependent term arising from the in
grand in the long-wavelength limit andqz!q' . The rest of
the integral adds only size independent terms of microsco
magnitude. The size dependent term is easily shown to
given by

^uz
2~rW !&5

kBT

4pAKC1

lnS L'

a D , ~17!

an expression involving only the sizeL' of the system in a
direction perpendicular to the columns with otherwise in
nite length. This expression, which increases progressiv
but slowly with the lengthL' , is typical of quasi-long-range
order @11#.

The calculation of̂ uz(rW)w(rW)& is carried out in Sec 1 of
the Appendix using the residue theorem in the complex pl
and yields

^uz~rW !w~rW !&5
2kBT

4pAKC1

B2

8A1
lnS L'

a D ~18!

under the same approximations as above. Again, this re
involves only the size of the sample in the direction perp
dicular to the columns.

The third local rms fluctuation correlation functio

^w2(rW)&, involves three separate integrations over the Fou
space since the diagonalized form ofw(rW) is the sum of three
independent fluctuating quantities according to Eqs.~11! and
~12!. The final result is given by

^w2~rW !&5
kBT

4pA~K11K2!A2

ln~K81AK8211!

1
kBT

4pAKC1

B2
2

16A1
2

lnS L'

a D1C8
kBT

a

~B11B2!2

A2
2C5

,

~19!

where K8 and C8 are constants defined in Sec. 1 of th
Appendix. A striking feature of the first and third terms
Eq. ~19! is that they are independent of the size of t
sample. These terms arise, respectively, from the integra
of ^uC(qW )u2&T and (a2/4f 2)^uuq'

8 (qW )u2&T over the Fourier

space, indicating that these quantities have behaviors typ
of long-range ordering.
1-5
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IV. FLUCTUATION CORRELATION FUNCTIONS AND
DENSITY-DENSITY CORRELATION FUNCTIONS

The density-density correlation functions involve not on
the local fluctuation correlation functions but also the flu
tuation correlation functions.̂uz(rW)uz(rW8)&, ^uz(rW)w(rW8)&,
^uz(rW8)w(rW)&, and ^w(rW)w(rW 8)& are obtained in the nex
subsection. The density-density correlation functions
then calculated using these results and those of Sec. III.

A. Fluctuation correlation functions in the columnar direction

In this subsection, only the results are presented,
reader being referred to Sec. 2 of the Appendix for furth
mathematical details. The first correlation function of inter
is ^uz(rW)uz(rW8)&. Assuming overall translational invarianc
it is given by

^uz~rW !uz~rW8!&5E d3q

~2p!3
^uuz~qW !u2&Te2 iqW •(rW2rW8). ~20!

Let us start with the correlation for large separation along
columns, i.e.,uz2z8u@c andur2r8u of the order ofa. As a
result, the integral~20! is dominated by the smallqz contri-
butions whereq' extends from its lower limit 2p/L' to
2p/a. Consequently,̂uuz(qW )u2& is governed by the denomi
nator~15!. As shown in the Appendix,̂uz(rW)uz(rW8)& is then
given by

^uz~rW !uz~rW8!&5
2kBT

8pAKC1
F2g1E1S ~r2r8!2

4buz2z8u
D

1 lnS p2~r2r8!2

L'
2 D G . ~21!

It has been assumed in the calculation of Eq.~21! that rW is
parallel torW 8 since only quantities dependent onrW 2rW 8 will
be needed in the subsequent calculations. The fluctua
correlation function̂ uz(rW)w(rW8)&, under similar conditions
is given by

^uz~rW !w~rW8!&5
kBT

8pAKC1

B2

4A1
F2g1E1S ~r2r8!2

4buz2z8u
D

1 lnS p2~r2r8!2

L'
2 D G . ~22!

The fluctuation correlation function̂w(rW)w(rW8)& involves
three separate integrations, as in Eq.~A9!. Assuming again
that rW is parallel torW 8, this quantity, under the same cond
tions as above, is given by
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^w~rW !w~rW8!&5
kBT

8p (
i 51

4
j i

Ak i~z2z8!21~r2r8!2

2
kBT

8pAKC1

B2
2

16A1
2 F2g1E1S ~r2r8!2

4buz2z8u
D

1 lnS p2~r2r8!2

L'
2 D G , ~23!

where the constant coefficientsj i and k i are defined in the
Appendix.

B. Fluctuation correlation functions in the direction
perpendicular to the columns

As shown in Sec. 3 of the Appendix, the fluctuation co
relation functions at large separation in the plane perpend
lar to the columns for a separation along the columns o
molecular size (uz2z8u;c andur2r8u@a) follow a behav-
ior typical of long-range ordering. Effectively, under the
conditions, the integral~20! is dominated by the smallq'

contributions whereqz extends from2` to `, the denomi-
nator in action being given by Eq.~14!.

C. Density-density correlation functions in the columnar
direction

In this subsection, the behavior of the density-density c
relation functionG(rW2rW8)5^r(rW)r(rW8)& is presented for the
columnar direction. According to the present model, t
function is given by

G~rW2rW8!5^r~rW !r~rW8!&

5^@rc~rW !1rg~rW !#@rc~rW8!1rg~rW8!#&

5^rc~rW !rc~rW8!&1^rc~rW !rg~rW8!&

1^rg~rW !rc~rW8!&1^rg~rW !rg~rW8!&, ~24!

where the angular brackets denote spatial and thermal a
ages, andr(rW) and r(rW8) are given by Eqs.~8! and ~9!.
These calculations are performed by using the fact that
fluctuating quantitiesxi subject to a Gaussian distribution th
relation

^exp@a ixi #&T5exp@a iak^xixk&T/2#, ~25!

where thea i are constants, always holds@12#. It is found, as
detailed in Sec. 4 of the Appendix, that only the term

^rc(rW)rc(rW8)& and ^rg(rW)rg(rW8)& contribute toG(rW2rW8).
Effectively, the mixed terms ^rc(rW)rg(rW8)& and

^rg(rW)rc(rW8)& vanish in the averaging process over therm
states unlessKiz563(H jv6B2/4A1), or Kiz563(H j 8v
6B2/4A1), conditions that are too restrictive.

The behavior of the first term ofG(rW2rW8) along the co-
lumnar direction~for uz2z8u@c andur2r8u.a) is given by
1-6
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^rc~rW !rc~rW8!&;(
i

bKW i

2 cosKW i•~rW2rW8!

3S a2

4p2buz2z8u
D X(Kiz)

, ~26!

with

X~Kiz!5Kiz
2 kbT

8pAKC1

. ~27!

The behavior of the last term is given by

^rg~rW !rg~rW8!&;(
n,m

(
n8,m8

(
j 50

2

(
j 850

2

F2S a2

4p2buz2z8u
D Xj8

~28!

within the same limit as in Eq.~26!, with

F25d~rW 2„rW nm1rW j1sW !…d~rW 82~rW n8m81rW j 81sW 8!!

3cos 3@u2H jvz2V j2~u82H j 8vz82V j 8!#

~29!

and

Xj85
9kbT

8pAKC1
S B2

4A1
2H jv D 2

. ~30!

This last exponent involves explicitly the value of the hel
ity of the j th column.

D. Density-density correlation function in a direction
perpendicular to the columns

In parallel with the results reported in Sec. IV B, th
density-density correlation functions at large separation
the plane perpendicular to the columns (uz2z8u;c and ur
2r8u@a) are, under the above conditions, typical of lon
range ordering. As a result, they are periodic functions w
the periods of the columns in the two-dimensional ba
plane.

V. X-RAY SCATTERED INTENSITIES

In this section, the scattered intensities for both the n
fluctuating and the fluctuating equilibrium conformations
our model are presented. The general expressions foun
the density-density correlation functions derived above
used.

A. The Bragg conditions of the model

The x-ray scattering intensity for a momentum transferQW

is obtained directly from the Fourier transforms ofrc(rW)
according to

I ~QW !}E d3r E d3r 8r~rW !r~rW8!eiQW •(rW2rW8), ~31!
01170
n

h
l

-
f
for
e

where proportionality constants are omitted. The scatter
intensity is decomposed into three terms according to

I ~QW !5I cc~QW !1I cg~QW !1I gg~QW !. ~32!

The indices refer to the different combinations of core de
sity and groove density in the decomposition of the to
densityr(rW). It is easily shown that the mixed termI cg does
not contribute and thatI cc is the only term contributing to the
scattering near the inverse lattice vectors, and conver
only the termI gg contributes for scattering near the Brag
condition due to the periodic orientational density. In t
absence of thermal fluctuations, the result is

I ~QW !}(
i

bKW i

2 dQW ,6KW i
1rg0

2 J3
2~Q'R0!

3F114 sin2S 2

3
QW '•~aW 11aW 2! D GdQz ,63vdQW ' ,KW hk

,

~33!

whereKW hk5pAW 11kAW 2 andJ3 is the third order Bessel func
tion. The first term in Eq.~33! is proportional to the Fourier
transform ofrc(rW)rc(rW8), while the second term is propor
tional to the Fourier transform ofrg(rW)rg(rW8). The scalar
product in this latter term could be rewritten as

2

3
QW '•~aW 11aW 2!5

4p

3
~p1k! ~34!

sinceQW '5pAW 11kAW 2.

B. The thermal diffuse x-ray scattering near the reciprocal
lattice vectors

The scattered intensity of x rays for a momentum trans
QW when the thermal fluctuations are included is given by

I ~QW !5E d3r E d3r 8^r~rW !r~rW8!&eiQW •(rW2rW8), ~35!

where^r(rW)r(rW8)& is the density-density correlation functio
averaged over the thermal fluctuations. We now conside
momentum transferQW close to the reciprocal lattice vector
KW i such thatQW 5KW i1qW'1qzẑ where qW' and qz are very
small on the scale of the inverse of their respective interm
lecular distances.

Within our model, the scattering intensity near the rec
rocal lattice vectors is limited to the basal planeKiz50 and
the planesKW iz56CW 1. The shapes of the Bragg peaks in t
basal planeKiz50 are easily predicted. Indeed, only th
thermal fluctuations of the perpendicular componentuW' de-
termine the diffuse scattering of the x rays for a zero value
Kiz . Since this quantity reflects the long-range ordering
the basal plane, the Bragg peaks in this plane maintain t
character with an intensity controlled by a Debye-Waller fa
1-7
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tor and a decrease in reciprocal space that is inversely
portional to the square of the wave-number departure fr
the Bragg positions.

For the planes atKW iz56CW 1, the thermal fluctuations ofuz
turn the Bragg peaks into Bragg maxima with a nonuniver
behavior of the power law decrease of the scattered inten
in reciprocal space. Near the Bragg conditions for the latt
the scattered intensity is written as

I cc~qz ,qW'!}E d3reiqzzeiqW'•rW@eiKW i•rW^rc~rW !rc~0!&#.

~36!

For qz.0 andq'@qz , the integral~36! is dominated by a
cone surrounding thez axis and extending to infinity. The
correlation function of the fluctuating displacements in t
cone is then given by expression~21!. As a result,
I cc(qz ,qW') is easily shown to become

I cc~QW !}bKW i

2 E
2`

`

dzE
0

`

r drJ0~q'r!

3expH iqzz2X~Ki !F2g1E1S r2

4buzu D G J S a

pr D 2X(Ki )

~37!

where a first integration over the angular part in the basaxy
plane has been performed. The changes of variablew
5r2/4buzu andz85qzz yield

I cc~QW !}(
i

bKW i

2 1

qz
22X(Ki )

E
0

`

dz8 z812X(Ki )

3exp~ iz8!3E
0

`

dw w2X(Ki )

3exp@2X~Ki !E1~w!#J0S 2q'Abz8w

qz
D .

~38!
01170
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Using scaling techniques, the two integrals in Eq.~38! can
easily be shown to be proportional to (qz /q'

2 )22X(Ki ), thus
yielding

I cc~QW !}(
i

bKW i

2 1

q
'

422X(Ki )
for qz50. ~39!

The calculation ofI cc(QW ) when q'.0 and qz@q' is not
explicitly given. The scattering intensity is typical of a cry
talline structure@4#. Indeed, under this condition, the syste
exhibits long-range order behavior, as discussed in the t
section of the Appendix. The result is

I cc~QW !;
1

qz
2

for q'50. ~40!

C. Thermal diffuse scattering near the Bragg condition due to
the periodic orientation density

The thermal diffuse scattering of x rays under these c
ditions is calculated fromI gg(QW ), with a momentum transfe
QW 5KW hk1qW'13v ẑ1qzẑ, whereqW' andqz are very small on
the scale of the inverse of their respective intermolecu
dimension.

It is found that the thermal fluctuations ofw anduz turn
the Bragg peaks atQz563v into Bragg maxima with a
universal behavior of the power law decrease of the scatte
intensity in reciprocal space. Effectively, near these Bra
conditions, the scattered intensity is written as

I gg~qz ,qW'!}E d3reiqzzeiqW'•rWE d3r 8e2 iQW •rW8

3@eiKW hk•rWei3vz^rg~rW !rg~rW8!&#. ~41!

whererW85rW j 81sW 8 ~i.e., rW n8m850W andz850).
As discussed in Sec V B, forqz.0 andq'@qz , the in-

tegral~41! is dominated by a cone surrounding thez axis and
extending to infinity. The correlation functions of the fluct
ating quantities are then given by Eqs.~21! and ~23!. As
shown in Sec. 5 of the Appendix,I gg(qz ,qW') becomes
I gg~QW !}
J3

2~KhkR0!

q
z

22X08
E

0

`

dz8 exp@ iz8#z812X08E
0

`

dw w2X08 exp@2X08E1~w!#

3J0S 2q'Awbz8

3qz
D)

i 51

4

exp@2j i~t iz821t8vuz8u!21/2#

1
2J3

2~KhkR0!$11cos@qW'•~rW 22rW 1!#%

q
z

22X18
E

0

`

dz8 exp@ iz8#z812X18E
0

`

dw w2X18 exp@2X18E1~w!#

3J0S 2q'Awbz8

3qz
D)

i 51

4

exp@2j i~t iz821t8vuz8u!21/2#, ~42!
1-8
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where t i5k i /9qz
2 and t854b/3uqzu. Using scaling tech-

niques, the two integrals in the first term of Eq.~42! are

found to be proportional toq
z

22X08/Aq', while the two inte-
grals in the second term of Eq.~42! are found to be propor

tional to q
z

22X18/Aq', leading to

I gg~QW !}
J3

2~KhkR0!

Aq'

$312 cos@qW'•~rW 22rW 1!#% for qz50.

~43!

As for I cc , the calculation ofI gg(QW ) when q'.0 with qz
@q' is not explicitly given. The scattering intensity is typ
cal of a crystalline structure@4#. The result is

I gg~QW !;
1

qz
2

for q'50. ~44!

VI. DISCUSSION AND CONCLUSION

It is important to recall that our calculations are based
a model admitting the orderings of the positional and ori
tational degrees of freedom of the diskotic molecules alo
the columns, as is generally admitted@5,6,11#. In particular,
it is based on the existence of an incommensurate helic
ordered density wave along the columnar direction. T
density wave results from the ordering of the orientatio
degrees of freedom. Our model differs from those in
literature only in the range of the ordering, quasi-long-ran
being speculated in our case.

The separation of the total densityr(rW) into a core density
term rc(rW) and a groove density termrg(rW) is not derived
from first principles. In addition, it is clear also that the
two quantities are coupled since a core density fluctua
along the columns would break the periodic orientatio
modulation locally. However, these two quantities refer
independent degrees of freedom to first order: the displa
ments of the centers of mass of the molecules in the col
nar direction and the orientation of the molecules in a pla
perpendicular to this direction. This separation captures
two essential features of the density, exactly those feat
that separately, to lowest order, determine the Bragg co
tions for the inverse lattice vectors and the periodic orien
tional density. Our work is not intended to calculate the
tensities of the Bragg maxima but to predict the power l
behavior followed by the thermal diffuse x-ray scattering
tensities near the Bragg conditions. For such a calculat
we argue that the above separation is justified.

The origin of all the results presented above is the beh
ior of the denominator of Eq.~13a! governing the rms fluc-
tuations^uuz(qW )u2&T . The quadratic form in Eq.~14! reflects
the fact that a fluctuationuz(qW ) with a wavelength in the
plane perpendicular to the columns very large compare
the length scale of the modulation along the columns,
other words, neighboring columns moving in phase in
columnar direction, is unaffected by the free sliding of t
rotating neighboring columns. However, the free sliding
01170
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the rotating columns on each other is reflected in theq'
4

behavior for a fluctuationuz(qW ) with a wavelength in the
plane perpendicular to the columns very small compared
the length scale of the modulation along the columns. I
this last property that gives rise to the quasi-long-range
havior. Indeed,̂ uz

2(rW)& shows a quasi-long-range behavi

as reflected in Eq.~17!. On the contrary,̂ uq'

2 (rW)& shows a

long-range behavior as reported in Eq.~19!. This last behav-
ior justifies the neglect of̂uq'

2 &T in the calculation of the

long-tail behavior of the scattered intensities.
The negative sign of the local fluctuation functio

^uz(rW)w(rW)& points to the fact that the independent fluctu
ing quantityC(qW ) is the sum of a rotationw(qW ) and a dis-
placementuz(qW ) in the columnar direction, operating in op
posite directions in the long-wavelength limit forqz!q' , in
other words, when neighboring columns are moving more
less rigidly in the columnar direction. Notice that the com
posite rotation angleC(rW) shows a long-range behavior pe
colating through the quasi-long-range behaviors ofuz(rW) and
w(rW).

The fluctuation correlation functions show a very anis
tropic behavior. Indeed, these quantities in the columnar
rection have only a quasi-long-range behavior while in
direction perpendicular to the columnar direction a lon
range ordering behavior is predicted. As indicated abo
these reflect the wave-number dependence of^uz

2(rW)&. As a
result, the core density–core density correlation function
the columnar direction shows power law behavior with
series of exponents determined by the elastic constants.
groove density–groove density correlation function in t
columnar direction shows a similar power law behavior w
exponents related to the helicities of the columns. The c
relation functions in the basal plane show long-range beh
ior.

As mentioned above, our simplified model is not suitab
for calculating the relative intensities of the different Bra
peaks. However, it is reasonably justified to calculate
effect of thermal fluctuations on the shape of the Bra
maxima. The first result of interest is that the Bragg peaks
the basal planeKiz50 retain a behavior typical of long
range ordering. We have not explicitly calculated the eff
of the thermal diffuse x-ray scattering and the shape of
intensity contours in this case. This calculation is straightf
ward and would involve taking in account the effects of t
fluctuations uq'

(qW ). The results would be classical an
should show anisotropic intensity contours resulting from
anisotropy of the elastic constants. Such behavior has b
studied@14# for freely suspended strands of a diskotic liqu
crystal in the intracolumnar disordered phase. It is to
noted that in this last case the Bragg peaks are limited to
Kiz50 plane. Similar behavior has been predicted and
served@15# for the x-ray diffuse scattering in flow-aligne
samples of a lyotropic liquid-crystalline hexagonal phase

The Bragg peaks in the two planesKiz56C1 are turned
into Bragg maxima by the thermal fluctuations of the d
placementuz in the columnar direction. In the calculations o
1-9
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A. LACOMBE AND A. CAILLÉ PHYSICAL REVIEW E 64 011701
the thermal diffuse x-ray scattering intensities, we have om
ted the effect of the thermal fluctuations of the displaceme
in the plane perpendicular to the columns,uq'

(qW ). This is
justified since this last quantity has long-range behavior
would give a contribution only close to the Bragg peaks a
not contribute to the long-tail behavior of the scattered int
sities. Along the same lines, we have not considered the
fuse scattering from the internal degrees of freedom of
diskotic molecules, i.e., the aliphatic chains for HHTT. W
have assumed that such diffuse scattering would not hide
intensity contours predicted here since these degrees of
dom are severely reduced in the ordered columnar ph
@5,6#. With the above restrictions, the scattering intensit
near the Bragg maxima are shown to have a very anisotr
behavior in reciprocal space, with a nonuniversal behav
typical of quasi-long range ordering in the direction of t
columns and a long-range behavior in the basal plane.

Near the Bragg condition for the periodic orientation
density, the intensity of the x-ray scattering is predicted
have a very anisotropic power law. In the basal plane,
intensity would decrease with a universal power lawq'

21/2

for qz50. The intensity is modulated by the Bessel functi
of order 3 as expected for an orientationally ordered stat
the columnar direction@16#. This last result washes out th
Bragg maxima forKhk50. In the columnar direction, this
decrease would showqz

22 for q'50.
These behaviors near the Bragg maxima lead us to

gest that high-intensity and high-resolution x-ray scatter
measurements should be conducted in order to verify
quasi-long-range behavior in orientationally ordered colu
nar liquid crystals.
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APPENDIX: CALCULATION DETAILS

1. Local correlation functions

As explained in Sec. III, aside from terms whose mag
tudes scale with a molecular dimension, the local rms va
of the fluctuating variableuz(rW) is given by

^uz
2~rW !&5

kBT

4pAKC1

lnS L'

a D , ~A1!

an expression increasing with the average sizeL' of the
system in a direction perpendicular to the columns with o
erwise infinite length.

From Eqs.~11! and ~12! and using the fact thatC(qW ),
uz(qW ), and uq'

8 (qW ) are independent fluctuating quantitie

^uz(rW)w(rW)& is written as
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^uz~rW !w~rW !&5E d3q

~2p!3 S ag

4 f g2
2

b

2 f D ^uuz~qW !u2&T .

~A2!

The expression in parentheses appearing in the numerat
the integrand of Eq.~A2! has the following long-wavelength
power expansion:

ag

4 f g2
2

b

2 f
5

q'
2 ~Aqz

22Bq'
2 !

Cqz
41Dqz

21E
, ~A3!

whereA andB are constants andC,D, andE are polynomials
with only even powers ofq' . Looking for the size depen
dent term, the power expansion~15! is used for^uuz(qW )u2&,
the factor~A3! appearing in the numerator being negati
under these conditions,qz!q' . As a result, we find that the
integrand in Eq.~A3! has six simple poles in the complexqz
plane. The three poles located in the upper half plane ar

qz5
i

A2C
~D6AD224CE!1/2 ~A4a!

and

qz5 iAKq'
4

C1
. ~A4b!

The first two poles, in the long-wavelength limit, are at

qz5 ia6q' , ~A5!

wherea65(D06AD0
224CE0)1/2/A2C with D0 andE0 be-

ing two constants depending only on the constants of e
ticity Ai ,Bi ,Ci , andKi . It is found that only the residue a
qz5 iAKq'

4 /C1 contributes a term depending on the size
the system. The full integration in the complex space th
gives

^uz~rW !w~rW !&52
kBT

4pAKC1

B

Ca1
2 a2

2
lnS L'

a D ~A6!

and, sinceB/Ca1
2 a2

2 5B2/4A1, we finally obtain

^uz~rW !w~rW !&52
kBT

4pAKC1

B2

4A1
lnS L'

a D . ~A7!

It has been assumed in the previous calculation that the
efficient of q'

2 in

D58C5~K11K2!q'
4 1$@16A2~C21C3!18C5A1#

2~2B11B2!2%q'
2 ~A8!

is positive. It can be easily shown that a negative value
this coefficient would lead to a divergence of the integral
Eq. ~A2! and therefore to an instability, a possibility that w
have rejected from the beginning in the formulation of t
model.
1-10
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Finally, the third local fluctuation correlation function t
evaluate is

^w2~rW !&5E d3q

~2p!3 F ^uC~qW !u2&T1S ag

4 f g2
2

b

2 f D
2

^uuz~qW !u2&T

1
a2

4 f 2
^uuq'

8 ~qW !u2&TG . ~A9!

Each term in the integrand of Eq.~A9! is treated separately
The integration of the first term is straightforward and giv

E d3q

~2p!3
^uC~qW !u2&T5

kBT

4pA~K11K2!A2

ln~K81AK8211!

~A10!

whereK85(2p/a)A(K11K2)/A1. An interesting feature of
this result is that it is independent of the size of the syste
a result typical of long-range ordering. The second term
the integrand of Eq.~A9! is evaluated by following a proce
dure similar to the one used for Eq.~A2!, except that the
poles~A4a! are now double poles. The result is found to

E d3q

~2p!3 S ag

4 f g2
2

b

2 f D
2

^uuz~qW !u2&T

5
kBT

4pAKC1

B2
2

16A1
2

lnS L'

a D . ~A11!

As for Eq. ~A2!, we have assumed here that the elastic
constants are such that no singularity will appear in the in
grand. Finally, the third term in Eq.~A9! is also treated with
the help of the residue theorem. Writing

E d3q

~2p!3

a2

4 f 2
^uuq'

8 ~qW !u2&T5kBTE d3q

~2p!3

a2

f ~4 f g2!

~A12!

with the help of Eq.~15!, we see upon comparison with E
~A2! that the locations of the first two poles in the upper h
plane are the same as those given in Eq.~A5!. The location
of the third one, however, is given by the conditionf 50, or

qz5 iq'AA11~K11K2!q'
2

A2
. iq'AA1

A2
~A13!

for small values ofq' . The three residues contribute equa
to the integral overq' , leading to

E d3q

~2p!3

a2

4 f 2
^uuq'

8 ~qW !u2&T5
kBT

a

~B11B2!2

A2
2C5

C8,

~A14!

where
01170
s

,
n

y
-

f

C85
a1

~a1
2 1a2

2 !~a1
2 2A1 /A2!

1
a2

~a2
2 1a1

2 !~a2
2 2A1 /A2!

1
AA1 /A2

~A1 /A21a2
2 !~A1 /A22a1

2 !
. ~A15!

Again, as in the case of the first term@see Eq.~A10!#, the
result does not depend on the size of the sample. Fina
putting together Eqs.~A10!, ~A11!, and~A14!, we get

^w2~rW !&5
kBT

4pA~K11K2!A2

ln~K81AK8211!

1
kBT

4pAKC1

B2
2

16A1
2

lnS L'

a D1C8
kBT

a

~B11B2!2

A2
2C5

~A16!

as presented in Eq.~19!.

2. Correlation functions along the columns

The correlation function̂uz(rW)uz(rW8)& at large distances
along the columns~i.e., uz2z8u@c and ur2r8u of the order
of a), after an integration of the angular part in theq' plane,
is given by

^uz~rW !uz~rW8!&5
kBT

~2p!2C1
E

2p/L'

2p/a

dq'q'J0„q'~r2r8!…

3E
2`

`

dqz

e2 iqz(z2z8)

qz
21b2q'

4
, ~A17!

whereJ0 is the Bessel function of order 0 andb5AK/C1 (rW

andrW 8 have both been taken parallel toq̂x for convenience!.
The integral overqz can be performed using the residu
theorem, keeping only the simple pole located atqz5 ibq'

2 ,
leading to

^uz~rW !uz~rW8!&5
kBT

4paC1
E

2p/L'

2p/a

dq'

3
J0„q'~r2r8!…

q'

e2bq'
2 uz2z8u. ~A18!

This integral is easily performed to give

^uz~rW !uz~rW8!&5
2kBT

8pAKC1
F2g1E1S ~r2r8!2

4buz2z8u
D

1 lnS p2~r2r8!2

L'
2 D G , ~A19!

whereg is the Euler constant (g50.577 21 . . . ) andE1(x) is
the exponential integral functionE1(x)5*x

`(e2t/t)dt.
1-11
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The second expression of interest to evaluate

^uz(rW)w(rW8)&. Using again the same technique applied in E
~A2!, we have

^uz~rW !w~rW8!&5E d3q

~2p!3 S ag

4 f g2
2

b

2 f D
3^uuz~qW !u2&Te2 iqW •(rW2rW8). ~A20!

The procedure used to evaluate the integral~A20! is almost
the same as the one used for^uz(rW)uz(rW8)&, except that we
now have three poles when integrating overqz : qz52 i (D
6AD224CE)1/2/A2C, andqz52 iAKq'

4 /C1. As in the cal-

culation of ^uz(rW)w(rW)&, the only significant contribution to
the integral comes from the residue atqz52 iAKq'

4 /C1, and
we have to evaluate

^uz~rW !w~rW8!&52
kBT

4paC1

B

Ca1
2 a2

2 E2p/L'

2p/a

dq'

3
J0„q'~r2r8!…

q'

e2bq'
2 uz2z8u, ~A21!

an integral that is identical to the one in Eq.~A18!. The final
result is then

^uz~rW !w~rW8!&5
kBT

8pAKC1

B2

4A1
F2g1E1S ~r2r8!2

4buz2z8u
D

1 lnS p2~r2r8!2

L'
2 D G . ~A22!

The last expression to evaluate is^w(rW)w(rW8)& which is writ-
ten as

^w~rW !w~rW8!&5I 11I 21I 3 , ~A23!

where

I 15E d3q

~2p!3
^uC~qW !u2&Te2 iqW •(rW2rW8), ~A24a!

I 25E d3q

~2p!3 S ag

4 f g2
2

b

2 f D
2

^uuz~qW !u2&Te2 iqW •(rW2rW8),

~A24b!

and

I 35E d3q

~2p!3

a2

4 f 2
^uuq'

8 ~qW !u2&Te2 iqW •(rW2rW8). ~A24c!

After a first integration of the angular part in theq' plane,I 1
becomes
01170
is
. I 15

kBT

~2p!2A2
E

2p/L'

2p/a

dq'q'J0„q'~r2r8!…

3E
2`

`

dqz

e2 iqz(z2z8)

qz
21h1q'

2 1h2q'
4

, ~A25!

whereh15A1 /A2 andh25(K11K2)/A2. Keeping only the
simple pole atqz52 iAh1q' ~since again the integrand i
dominated by small values ofq'), we obtain

I 15
kBT

4pA2Ah1
E

2p/L'

2p/a

dq'q'J0„q'~r2r8!…e2Ah1q'uz2z8u.

~A26!

After performing a change of variabley5Ah1uz2z8uq' ,
using the power seriesJ0(x)5(k50

` (21)k(x/2)2k/k!G(k
11) and the functionG(n)5(n21)!5*0

`tn21e2tdt ~for n
.0), we have

I 15
kBT

4pA2Ah1

1

uz2z8uAh1
(
k50

`
~2k!!

~k! !2 S 2~r2r8!2

4h1~z2z8!2D k

.

~A27!

Finally, since (k50
` (2x)k(2k)!/(k!) 251/A114x, we ob-

tain

I 15
kBT

8p

j1

Ak1~z2z8!21~r2r8!2
~A28!

with j152/AA1A2 andk15h15A1 /A2.
The calculation of I 2 is similar to the one for

^uz(rW)w(rW8)&. Since the integrand now has two double po
at qz52 i (D6AD224CE)1/2/A2C, the only significant
contribution originates from the residue atqz5

2 iAKq'
4 /C1. Thus we easily find, upon comparison wi

Eq. ~A20!, that

I 252
kBT

8pAKC1
S B2

4A1
D 2F2g1E1S ~r2r8!2

4buz2z8u
D

1 lnS p2~r2r8!2

L'
2 D G . ~A29!

Finally, after an integration over the angular contribution
the q' plane,I 3 yields

I 35
kBT

~2p!2

S B11
1

2
B2D 2

4 E
2p/L'

2p/a

dq'q'
3 J0„q'~r2r8!…

3E
2`

`

dqzqz
2 e2 iqz(z2z8)

~Cqz
41Dqz

21E! f
, ~A30!

whereC, D, andE are the same functions as those defined
Eq. ~A3!. As found previously in the development of th
1-12
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third term in the integrand of Eq.~A9!, the integrand ofI 3
has four simple poles atqz56 ia6q' and the conditionf
50 yields two more simple poles atqz56 iAA1 /A2q' . We
finally find, after an integration overq' ,

I 35
kBT

8p (
i 52

4
j i

Ak i~z2z8!21~r2r8!2
~A31!

with the following definitions:

j25

2S B11
1

2
B2D 2

a1

~a1
2 2a2

2 !~a1
2 2A1 /A2!

, ~A32a!

j35

2S B11
1

2
B2D 2

a2

~a2
2 2a1

2 !~a2
2 2A1 /A2!

, ~A32b!

and

j45

2S B11
1

2
B2D 2

AA1 /A2

~A1 /A22a2
2 !~A1 /A22a1

2 !
. ~A32c!

andk25a1
2 , k35a2

2 , andk45A1 /A2. It is found numeri-
cally that the value ofI 3 is positive for uz2z8u@c and ur
2r8u.a, which is precisely the limit used for the prese
calculations.

Thus, combining Eqs.~A28!, ~A29!, and~A31!, we obtain

^w~rW !w~rW8!&5
kBT

8p (
i 51

4
j i

Ak i~z2z8!21~r2r8!2

2
kBT

8pAKC1

B2
2

16A1
2 F2g1E1S ~r2r8!2

4buz2z8u
D

1 lnS p2~r2r8!2

L'
2 D G ~A33!

as presented in Eq.~23!.

3. Correlation functions in the plane perpendicular to the
columnar direction

The correlations at large distances in the plane perp
dicular to the columnar direction, i.e.,uz2z8u!c and ur
2r8u@a, are easily obtained. Indeed, referring to Eq.~20!,
they are dominated by small values ofq' and an integration
over all values ofqz . The limit qz@q' is then justified.
From the denominator expression~14!, the correlation func-
tions are anticipated to have a behavior typical of long-ra
ordering. Expressions having a structure similar to Eq.~A28!
are then obtained as expected for random fluctuations
long-range ordering.

For example, the value of̂uz(rW)uz(rW8)& is explicitly
given by
01170
n-

e

or

^uz~rW !uz~rW8!&5
kbT

C1~2p!2E2p/L'

2p/a

q'J0~q'r!dq'

3E
2`

`

dqz

e2 iqzz

qz
21b2q'

2
, ~A34!

whereb5AG/C1. The integrations are easily performed a
yield

^uz~rW !uz~rW8!&5
kBT

4pAKC1

1

Aa2~z2z8!21~r2r8!2
,

~A35!

an expression having a structure similar to Eq.~A28!. The
results for̂ uz(rW)w(rW8)& and^w(rW)w(rW8)& give similar struc-
tures.

4. Density-density correlation function in the columnar
direction

In this section, we present the calculations performed
evaluate explicitly the function

G~rW2rW8!5^rc~rW !rc~rW8!&1^rc~rW !rg~rW8!&1^rg~rW !rc~rW8!&

1^rg~rW !rg~rW8!&. ~A36!

The first term in Eq.~A36! is explicitly given by

^rc~rW !rc~rW8!&5(
i

(
i 8

bKW i
bKW i 8

^cos$Ki'r cosa

1Kiz@z2uz~rW !#%cos$Ki 8'r8 cosa

1Ki 8z@z82uz~rW8!#%&. ~A37!

rW and rW 8 have been taken parallel. Using the prope
^exp@aixi#&T5exp@aiak^xixk&T/2#, Eq. ~A37! becomes

^rc~rW !rc~rW8!&5
1

4 (
i

(
i 8

„F1 exp$2@~Kiz
2 1Ki 8z

2
!^uz

2~rW !&

12KizKi 8z^uz~rW !uz~rW8!&#%

1F2exp$2@~Kiz
2 1Ki 8z

2
!^uz

2~rW !&

22KizKi 8z^uz~rW !uz~rW8!&#%…, ~A38!

where F152bKW i
bKW i 8

cos(KW i•rW1KW i8•r
W8) and F2

52bKW i
bKW i 8

cos(KW i•rW2KW i8•r
W8). After substitution of Eqs.~17!

and~A19! in Eq. ~A38!, we find that̂ rc(rW)rc(rW8)& depends
only on urW2rW8u ~and consequently is independent ofL') if
and only if KW i52KW i 8 @for the first term in Eq.~A38!# or
KW i5KW i 8 ~for the second term in Eq.~A38!#. This condition is
required by the overall translational invariance of the syste
Consequently, we find
1-13
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^rc~rW !rc~rW8!&5
1

2 (
i

(
i 8

bKW i
bKW i 8

@cos~KW i•rW1KW i 8•rW8!

3dKW i ,2KW i 8
1cos~KW i•rW2KW i 8•rW 8!dKW i ,KW i 8

#

3expH 2X~Kiz!F2g1E1S ~r2r8!2

4buz2z8u
D G J

3S a

pur2r8u
D 2X(Kiz)

, ~A39!

or, using the developmentE1(x).2g2 ln(x) for x!1,

^rc~rW !rc~rW8!&;(
i

bKW i

2 cosKW i•~rW2rW8!

3S a2

4p2buz2z8u
D X(Kiz)

, ~A40!

whereX(Kiz)5Kiz
2 (kBT/8pAKC1).

The second term in Eq.~24! is given by

^rc~rW !rg~rW8!&5
rg0

4 (
i

(
n8,m8

(
j 850

2

bKW i
d„rW 82~rW n8m81rW j 8

1sW 8!…^cos$Ki'r cos~a'2a i !

1Kiz@z2uz~rW !#%

3cos 3$u82H j 8v@z82uz~rW8!#

2@V j 82w~rW8!#%&. ~A41!

It can be written, with the help of Eq.~25!, as

^rc~rW !rg~rW8!&5rg0(
i

(
n8,m8

(
j 850

2 FF1 expS 2
1

2
U1D

1F2expS 2
1

2
U2D G , ~A42!

where

U15~Kiz
2 19v2!^uz

2~rW !&19^w2~rW !&

26KizH j 8v^uz~rW !uz~rW8!&26Kiz^uz~rW !w~rW8!&

118H j 8v^uz~rW8!w~rW8!&, ~A43a!

U25~Kiz
2 19v2!^uz

2~rW !&19^w2~rW !&

16KizH j 8v^uz~rW !uz~rW8!&16Kiz^uz~rW !w~rW8!&

118H j 8v^uz~rW8!w~rW8!&, ~A43b!
01170
F152bKW i
d„rW 82~rW n8m81rW j 81sW 8!…

3cos@KW i•rW23~2u81H j 8vz81V j 8!#,

~A44a!

F252bKW i
d„rW 82~rW n8m81rW j 81sW 8!…

3cos@KW i•rW13~2u81H j 8vz81V j 8!#.

~A44b!

Substituting Eqs.~17!, ~A7!, ~A16!, ~A19!, and ~A22! into
Eq. ~A43!, we find that Eq.~A42! depends onurW2rW8u if and
only if

Kiz563S H jv2
B2

4A1
D . ~A45!

Rewriting Eq.~A16! as

^w2~rW !&5F01
kBT

4pAKC1

B2
2

16A1
2

lnS L'

a D , ~A46!

where

F05
kBT

4pA~K11K2!A2

ln~K81AK8211!S L'

a D
2C8

kBT

a

~B11B2!2

A2
2C5

, ~A47!

we finally find

^rg~rW !rc~rW8!&5
rg0

4 (
i

(
n8,m8

(
j 850

2

~F11F2!

3expH 2Xj 8
8 F2g1E1S ~r2r8!2

4buz2z8u
D G

2
9

2
F0J S a

pur2r8u
D X

j 8
8

3dKiz ,63(H jv2B2/4A1) , ~A48!

where

Xj 8
8 5

9kBT

8pAKC1
FH jv2S B2

4A1
D G2

. ~A49!

The third term in Eq.~24!, ^rg(rW)rc(rW8)&, is obtained exactly
like the second one, and the result is identical to Eq.~A48!,
with the changesi→ i 8, n8→n, m8→m, and j 8→ j . Finally,
the fourth term in Eq.~24! can be explicitly written as
1-14
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^rg~rW !rg~rW8!&

5rg0
2 (

n,m
(

n8,m8
(
j 50

2

(
j 850

2

d„rW 2~rW nm1rW j1sW !…

3d„rW 82~rW n8m81rW j 81sW 8!…

3^cos3$u2H jv@z2uz~rW !#2@V j2w~rW !#%

3cos 3$u82H j 8v@z82uz~rW8!#2@V j 82w~rW8!#%&.

~A50!

Using the property~25!, we find

^rg~rW !rg~rW8!&5
rg0

2

4 (
n,m

(
n8,m8

(
j 50

2

(
j 850

2 FF1 expS 2
1

2
U1D

1F2 expS 2
1

2
U2D G , ~A51!

where

U1518$v2^uz
2~rW !&1^w2~rW !&1H jH j 8v

2^uz~rW !uz~rW8!&

1H jv@^uz~rW !w~rW8!&1^uz~rW !w~rW !&#

1H j 8v@^w~rW !uz~rW 8!&1^w~rW8!uz~rW8!&#

1^w~rW !w~rW8!&%, ~A52a!

U2518$v2^uz
2~rW !&1^w2~rW !&2H jH j 8v

2^uz~rW !uz~rW8!&

1H jv@2^uz~rW !w~rW8!&1^uz~rW !w~rW !&#

1H j 8v@2^w~rW !uz~rW8!&1^w~rW8!uz~rW8!&#

2^w~rW !w~rW8!&%, ~A52b!

F15d„rW 2~rW nm1rW j1sW !…d~rW 82„rW n8m81rW j 81sW 8!…

3cos 3@u2H jvz2V j1~u82H j 8vz82V j 8!#,

~A53a!

and

F25d„rW 2~rW nm1rW j1sW !…d„rW 82~rW n8m81rW j 81sW 8!…

3cos 3@u2H jvz2V j2~u82H j 8vz82V j 8!#.

~A53b!

As before, we substitute Eqs.~17!, ~A7!, ~A16!, ~A19!,
~A22!, and ~A33! into Eqs. ~A52!. Then we evaluate, fo
both casesH j5H j 8 and H j52H j 8 , the conditions under
which U1 andU2 will depend onurW2rW8u. It is found thatU1
meets this requirement whenH j5H j 851 andv5B2/4A1, a
condition that is too restrictive. However,U2 meets this re-
quirement providedH j5H j 8 . Effectively, under this last
condition, we have
01170
U252Xj8F2g1E1S ~r2r8!2

4buz2z8u
D 1 lnS p2~r2r8!2

a2 D G
29F~rW2rW8!, ~A54!

where

F~rW2rW8!5
kBT

8p (
i 51

4
j i

Ak i~z2z8!21~r2r8!2
1F0

~A55!

andXj8 is given by Eq.~A49!. The final result for the fourth
term of Eq.~24! is

^rg~rW !rg~rW8!&5
rg0

2

4 (
n,m

(
n8,m8

(
j 50

2

(
j 850

2

F2 expS 2
1

2
U2D ,

~A56!

with the functionU2 given in Eq.~A54! or, using again the
developmentE1(x).2g2 ln(x) for x!1 and the fact that
F(rW2rW8).F0 for large distances,

^rg~rW !rg~rW8!&;(
j 50

2

F2S a2

4p2buz2z8u
D Xj8

. ~A57!

5. Scattered intensity calculations

This section presents the calculations pertaining to
thermal diffuse scattering near the Bragg condition due to
periodic orientation density forqz.0 andq'@qz . As men-
tioned in the text, the effect of the thermal diffuse scatter
near these Bragg conditions is calculated fromI gg(QW ), which
is evaluated by takingrW85rW j 81sW 8 ~i.e., rW n8m850W and z8

50) for a momentum transferQW 5KW hk1qW'13v ẑ1qzẑ,
with qW' andqz very small on the scale of the inverse of the
respective intermolecular dimensions. Forqz50 and q'

@qz , the integralI gg(rW) is dominated by a cone surroundin
the z axis. After a first integration over the basalxy plane,
we obtain

I gg~QW !} (
$ j , j 8%

(
nm

E
2`

`

dzE
0

2p

duE
0

2p

du8~exp@ i3F#

1exp@2 i3F#! expH 2Xj8F2g1E1S rnm j
2

4buzu D G J
3S a

prnm j
D 2Xj8

expF2
9

2 S F01(
i 51

4

j i~k iz
2

1rnm j
2 !21/2D G exp@ i ~KW hk1qW'!~rW nm j1sW 2rW j 8

2sW 8!# exp@ i ~3v1qz!z#, ~A58!
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whereF5u2u82@u0 j (z)2u0 j 8(0)#, rW nm j5rW nm1rW j , and $ j , j 8% represents the pairs of indices (j , j 8) that are such tha
H j5H j 8 . Integration over the angular contribution within the columns and summation over the six given couples (j , j 8) yields

I gg~QW !}E
0

`

r drE
2`

`

dz J3
2~KhkR0!exp@ i3qzz#expF2

9

2 S F01(
i 51

4

j i~k iz
21r2!21/2D G

3expH 2X08F2g1E1S r2

4buzu D G J S a

pr D 2X08

J0~q'r!1E
0

`

r drE
2`

`

dz J3
2~KhkR0!exp@ i3qzz#

3expF2
9

2 S F01(
i 51

4

j i~k iz
21r2!21/2D G

32 expH 2X18F2g1E1S r2

4buzu D G J S a

pr D 2X18

$11cos@qW'•~rW 22rW 1!#%J0~q'r!, ~A59!

where we have neglectedurW j u in front of urW nmu and extended the infinite sum overrnm to an integral over the continuou
variabler. With the changes of variablesw5r2/4buzu andz853qzz, Eq. ~A59! can be rewritten as

I gg~GW !}
J3

2~KhkR0!

q
z

22X08
E

0

`

dz8 exp@~ iz8!z812X08#E
0

`

dw w2X08 exp@2X08E1~w!#

3J0S 2q'Awbz8

3qz
D)

i 51

4

exp@2j i~t iz821t8vuz8u!21/2#

1
2J3

2~KhkR0!$11cos@qW'•~rW 22rW 1!#%

q
z

22X18
E

0

`

dz8 exp@~ iz8!z812X18#E
0

`

dw w2X18exp@2X18E1~w!#

3J0S 2q'Awbz8

3qz
D)

i 51

4

exp@2j i~t iz821t8vuz8u!21/2#, ~A60!

wheret i5k i /9qz
2 andt854b/3uqzu, as presented in Eq.~42!. Using scaling techniques, the two integrals in the first term

Eq. ~A60! are found to be proportional toq
z

22X08/Aq', while the two integrals in the second term of Eq.~A60! are found to be

proportional toq
z

22X18/Aq', leading to

I gg~QW !}
J3

2~KhkR0!

Aq'

$312 cos@qW'•~rW 22rW 1!#%. ~A61!
nd
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