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Thermal diffuse x-ray scattering in a model columnar liquid crystal
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The fluctuation correlation functions and the density-density correlation functions for a realistic model of a
columnar liquid crystal in its helically ordered phase are derived. The influence of positional and orientational
molecular fluctuations on the thermal diffuse x-ray scattering is studied within a three-dimensional model of
columns inscribed on a triangular lattice. Resulting from quasi-long-range ordering, very anisotropic long-tail
scattered intensities are predicted, giving a nonuniversal signature for the helically ordered columnar liquid
crystal phase. Scattered intensities both near the Bragg maxima at the inverse lattice vectors and at the Bragg
condition due to periodic orientational ordering are treated. The percolation of the long-range behavior for a
screw variable composed of two quantities having only quasi-long-range behavior is predicted.
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[. INTRODUCTION range ordering of the positional and orientational degrees of
freedom in such columnar liquid crystals. The vanishing of
Molecular systems in their condensed state show a greain effective shear elastic constant for strain deformations ac-
diversity of ordered phases involving their positional andcompanied by a deformation of the orientational degrees of
orientational degrees of freedom. Partial positional and orifreedom would be at the origin of this behavior in such a soft
entational orderings are present in mesomorphous systemsaterial having a helically ordered state along the columns.
such as the liquid crystals. Unique and new fundamentals predicted 1] and observed2,3] for smectic liquid crys-
structural properties emerge from the complexity and richtals, thermal diffuse x-ray scattering in the presence of quasi-
ness of such ordered phases. One such manifestation is tlmng-range ordering turns the Bragg peaks into Bragg
existence of quasi-long-range positional order in the layemaxima with a nonuniversal long-tail decrease of the scat-
ordering of smectic liquid crystals as revealed by high-tered intensity in reciprocal space. Such behavior was con-
resolution thermal diffuse x-ray scattering measurementgectured in[11] for a particular columnar liquid crystal by
[1-3]. involving only the thermal fluctuations of the positional de-
Among such molecular systems, a number of compoundgrees of freedom along the columns.
composed of disk-shaped molecules show columnar liquid In this paper, using a simplified but realistic model that
crystal phases, all sharing a two-dimensional lattice orderingaptures the essential features of these systems, we calculate
of columns of stacked molecules in the third direction. Thethe effects of the thermal fluctuations of both the positional
types of positional and orientational ordering existing, inand orientational degrees of freedom along the columns on
these cases, along the columns and their intercolumnar cothe thermal diffuse x-ray scattering. Our objective is to make
relations are issues of a fundamental nature. Onespecific predictions on the power law behavior for the scat-
dimensional liquidlike columns are usually observed, as pretered intensity near the Bragg conditions resulting from both
dicted[4] by the divergent behavior of the local fluctuations the ordering of the density of the molecules in the columnar
of the intracolumnar positional degrees of freedom for a two-direction and the incommensurate helical structure of their
dimensional lattice of freely sliding columns in the third di- orientations. The three-column superlattiéd existing for
rection. However, there do exist materifls-7] where a full  this frustrated intercolumnar structure is explicitly taken in
or partial ordering of these degrees of freedom sets in atccount.
lower temperatures with a simultaneous ordering of the ori- In Sec. I, the model is presented explicitly with a descrip-
entational degrees of freedom along the columns. tion of the core density modulation in three dimensions. To
These last cases reveal a fundamental issue of classifictiis core density is added an orientational feature that cap-
tion: do they belong to the crystal phases or the mesomortures the gross features of the incommensurate helical struc-
phous phases? Up to now, this is still an open questigB—  ture. Section Il presents the local root mean squanes)
10]. However, the generally accepted understandid@]  fluctuations of the positional and orientational degrees of
calls for a long-range positional ordering inside the columngreedom as a function of the size of the sample in a direction
accompanied by an incommensurate helical orientational operpendicular to the direction of columns which are other-
dering of the diskotic molecules along the columns. Thiswise of infinite length. In Sec. 1V, the correlation functions
model, which is derived from the observed Bragg peak pofor the density and orientational features are reported with
sitions and intensitief5,6], is at least inconsistent with the their specific behavior in two directions, namely, parallel and
very large value(at least one-third of the intermolecular perpendicular to the columns. Section V presents the calcu-
spacing of the phase-preserving vertical motion of the mol- lations of thermal diffuse x-ray scattering intensities and
eculeg 11] as measured from the Debye-Waller factors. Fol-their shapes in reciprocal space near the Bragg maxima. The
lowing these observations, in a previous publicatjdd], calculations put the emphasis on the long-tail behavior of the
one of the authors has advanced the conjecture of quasi-longitensity of the scattered x rays for fluctuations controlled by
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guasi-long-range ordering. The classical behavior, with a
g2 decrease, for fluctuating variables controlled by long-
range ordering is assumed to exist and to be buried under the
nonclassical behavior due to quasi-long-range behavior. Fi-
nally, the last section refers to specific interpretations and
conclusions leading to further measurements of high-
intensity and high-resolution diffuse x-ray scattering from
these systems.

IIl. MODEL PRESENTATION

The molecular model for a liquid crystal made of disk-
shaped molecules stacked into columns regularly placed onto
a two-dimensional lattice, a structure known as a diskotic,
has already been investigated in def&i]. An example of
such a liquid crystal is given by hexa-hexylthiotriphenylene
(HHTT), one of the triphenylene derivatives whose mol-
ecules are formed of a rigid core of aromatic cycles and six
flexible hydrocarbon chains fixed to the core. This compound
shows two distinct hexagonal columnar phadeg;, a dis-
ordered columnar phase (7020 <93°C), andH, a heli-
cally ordered columnar phase (620 <70°C). This last
phase is of great interest since it could reveal, under given
conditions, quasi-long-range intracolumnar order as pro-
posed in[11]. In the H phase, the lattice that supports the
columns is reorganized in a superlatti¢®x y3R30° which
is spanned by the set of vectors

51:2(3§<+ V3y), (1a)

0 2 1

FIG. 1. (a) Top view of the two-dimensional columnar structure,
the full black dots(labeled 1 and Pbeing the displaced columns
R R and the open dotdabeled 0 the undisplaced columngb) Three-
C1=Cz (10 dimensional side view of the molecular stacks in three different

. ] _columns in their equilibrium configurations if long-range ordering
wherea is the distance between the centers of the columns iy assumed.

the basal plane andis the distance between the molecules
in the columns if long-range ordering is assumed as illus- We choose to represent the density of molecules in the
trated in Figs. (a) and 1b). The superlattice conventional three-dimensional system by a development in a Fourier se-
cell basis has three HHTT molecules located respectively dies which captures the essential features of the overall den-
fj with ro=0, Fi=1(a,+a,)+ ¢, and ro=2(a,+ay,) sity modulation and which is called h_e_re ticere density
The lower-order components are sufficient for the study of
) ) ) ) : Sl 9 the conversion of the lower-order Bragg peaks into Bragg
associated with this lattice are given bg¢i(n)=niA;  maxima and the calculations of the thermal diffuse scattering

a,=a\3y, (1b)

+1c, as shown in Fig. (). The reciprocal lattice vectors

+n,A,+n5C; wheren, ,n,, andn; are integers and near those Bragg peaks. The coefficients of the Fourier series
are chosen such that the core denéijyis real and positive
i :4_77;( (2a) everywhere(ii) exhibits invariance with respect to a rotation
17 3a™ of 2n/6 around the center of the zeroth column of every

cell, and(iii) is such that the maxima of the density for the

_ 277( 1. L) columns numbered 1 and 2 are shifted @ along the
= , (2b) columnar axis with respect to the maxima of the columns
numbered (5]. Consequently, the equilibrium core density

pOC(F), for an ordering extending to infinity, is written as
Ci=—2z. (20) i

poc(r) =bo+ 2 by, cosK;-r), (3)
For quasi-long-range order, this superlattice would have a

meaning in thez direction only over a finite but extremely Where the specific relations between the real coefficibpaits
long distance measured on a molecular scale. are given below in order to satisfy the criteria mentioned
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above. For the purpose of calculating the density-density cor- (@)
relation functions appearing in the expression of the thermal
diffuse scattering intensities near the lower-order Bragg
peaks, only a finite number of inverse lattice vectors have
been selected, resulting in a spatial density continuum in-

stead of a discrete matter distribution. These vedqrare
Kie{C1,A;+C1,A;—C1,A+Cq,A—Cq,— (A +A,)
+Cy1,— (Aj+A)—ClU{2A +A,,— Ay
+2A,,A,— Ay}, (4)

The first subset contains seven vectors describing the supe
lattice density and hence gives no information about the (®)
inner-cell structure. Only the three vectors in the second sub

set of Eq.(4) generate an intracellular density modulation
corresponding to the structure of the basis. The real coeffi-

cientsb,zi associated with the differerlﬁi’s must satisfy the
following relations:

bo= >, bk, (58

bk, =bk,=bk,=bg =bg,=bx,. (Sb)

, (50

and (©) yed

7 } \ 14 \
1 I { \ i i
b@1=——(2 b@i), (50) YRV R VY VA

R ao-oolll Y 1 T A |
where the vector&; are numbered in the order they appear
in Eq. (4): K;,=C,, K,=A;+C;, Kg=A;—C4, and so on
(note thatK,=0). The condition(5a) ensures thapy. is A
positive everywhere(5b) and(5¢) result from the rotational / by
invariance constrainti) described above whiléd) follows ! y | \ \
s o : / Y \ vy
from the constraintiii). The equilibrium core density con-
tinuum is illustrated in Fig. 2. The superlattice structure in
the basal plane is easily seen as well as the displacement in FIG. 2. The equilibrium core density continuu@ at z=0 in
the columnar direction of two-thirds of the columns. the basal plane(b) at z=c/2 in the basal plane(c) at (x,y)

The second feature to capture in the density is the helicaf (0,0) and &,y)=(a,0) as a function ot In (a) and(b), the unit
modulation appearing as we move along the columnar direccell is represented schematically showing the presence of maxima
tion. For the purpose of representing this density modulationat the corners of the cell ife) and two maxima inside the cell _in
a term is added to Eq3). This term accounts for the geom- (b). Arbitrary values have been used< 10, c=4, and the coeffi-
etry and orientation of HHTT molecules. Effectively, these Ci€Ntsbs tobyowere all set to unity x andy have the same units as
disklike molecules in their propeller configuratifsi showa 2 Zhas the same units asandp has the same units ag andby.
rotational invariance of 2#/3 around an axis passing
through their center, perpendicularly to their planar central 0pj(z) =Hjoz+Q;, (6)
core. Thus, around every site along the colua supple-
mentary density modulation proportional to c¢836y(2)]  whereH; and(}; are, respectively, the helicityHj=*1)
is added on a circle of radiu’, placed perpendicularly to and the rigid angular shift of the colunjnw equals 2r/P
the columnar direction and centered on the site as depicted imhereP is the pitch of the column. In the present model,

Fig. 3.Ry is the mean radius of the molecular columns whichwill be taken close to 8, every molecule being rotated by an
are extending in the direction. The phaséy;(z), represent- amount close tar/4 from its nearest neighboring molecule
ing the angular shift of the molecules along the coluymm  inside a given column. Incommensurability between the
the equilibrium helical conformation, is written as pitch and the lattice distance has been assumed for the

(5.9)- (@0) o ]

N
-10 -5 0 5 10
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FIG. 4. Representation of the vectarsp, ando used to locate
a point on the surface of molecular cylinders.

~ FIG. 3. Groove density modulatidri — pg(z,6)] along a con-  molecules are presented. In the next section, these results are
tinuous column of stacked molecules. Arbitrary values. have beepsed to establish the behavior of the density-density correla-
used po=1c=4H;=1, andQ;=0). z has the same units &s . . S, e . .

tion function {p(r)p(r’)) along specific directions in our
present work even though this is still an open quesfitg].  columnar liquid crystal model. The details of the calculations
Also, the rotational invariance constraitit) implies that ~are presented in the Appendix. _
H,=H, and Q;=Q,. In the present model, this helicoidal ~ Among all the possible positional fluctuations of the mol-
density engraving is called trgroove densityand is written  ecules, only the displacemenj(r) along the columnar di-

as rection has been considered. This limitation will be justified
5 later in Sec. VI. The orientational fluctuations of the mol-

> > > - - ecules are described kqg(F) an angular variable specifying

ry= S(p— +pi+ o= ’ : 4
Pyolr) pOnE,r:n j§=:0 (p=(pmt P+ ) a rotation in the plane perpendicular to the columns with

respect to the helical equilibrium conformation. The planar
positional quctuationsqu(r*) have not been considered in

where cylindrical coordinates have been used(p,z) with ~ the density fluctuations since they are known to have long-
p=(p.a,), as illustrated in Fig. 4. The discrete molecular range behavior in this phagd]. The fluctuating density is

density modulation has been represented, for simplicity, by #/itten asp(r) =po[r —u,(r)z] wherep, represents the den-
continuous cylindrical surface density modulation. Thesesity of the system af=0 K[12]. Takingpco(r)+ pgo(r) as
density modulation cylinders of radil®;, are centered on the the equilibrium density, the fluctuations are introduced in

lattice points given byp,m+ 5]- wherep,,=na;+ma, and  both peo(r) andpgo(F) according to

X cos 3 —Hjwz—Q)), (7)

- ) - - L . - -

pi==(a;+ay) with je{0,1,2. Finally, o [oc=(Rg,0)] - -
3 o , pe(r)=by+ >, bg cogK;, pcoga, —a)+K(z—ufr)]}
points at a specific location on the surface density modula- i#0

tion cylinder (see Fig. 4. The constant coefficient, in Eq. 8
(7) is chosen to ensure that the total density remains positiv

everywhere. Thus, the total equilibrium density, according to?or the fluctuating core density and to

the model developed here for the HHTT diskotic liquid crys- R 2 o o

tal in its H phase, is given by(r)=peo(r) + pgo(r). Al- po(N=pgo Z p—(pnm*pj+ o))

though this separation of the density modulation into two nm =0

terms is not derived from first principles, it has the advantage X cos X 6—H,w[z—u (F)]—[Q»— QD(F)]} 9)
J z J

of capturing the essential features affecting the diffuse x-ray
scattering near the lower-order Bragg peaks. for the fluctuating groove density; is the angle betweelﬁi

andx.
I1l. LOCAL CORRELATION FUNCTIONS S . .
A derivation of the total elastic energy, based on the ori-

In this section, the local root mean square fluctuations ofntational and positional elastic energy densities, was carried
the positional and orientational degrees of freedom of theut by one of the authors ifl11]. The diagonalized form of
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this total elastic energy, expressed in Fourier space using 2
cylindrical coordinates, is given by 91— 4g,

.11 J' o whereK =B2(K,+K2)/8A2, provided that the hypothesis of

2 (2m)3 an effective free sliding of ordered columns on each other is
| 2 ez cy?

4 5qZ 3ql

7= =C107+Kal, (15

S N
a0, |u(@)|?+g5lug (a)]?

01—
realized[11].
|Ua(a)|2+f|‘1’(ﬁ)|2] (10) The thermal and space avera@g(r)) is given by

where the functionsg;(q), g.(q), ¥(q), f(q), a(q), and (U(r))= f R (16)
b(q) are defined if11]. The quantitiesA;, B, C;, andK;
appearing here or in the following equations are the elastiguhereV is the volume of the system. The integral in Ebp)

constants introduced ifL1]. In the process of diagonaliza- s dominated by a size dependent term arising from the inte-

tion, two successive changes of variables are introduce@rand in the long-wavelength limit arg,<q, . The rest of

2)3

leading to the integral adds only size independent terms of microscopic
b a magnitude. The size dependent term is easily shown to be
N WA — —11(a) — — : given by
¢(q)=W(q)~ 57 u(q) ~ 57 Uq () 1D
- kgT L,
and ui(r))= ——In| —|, 1
qu(ﬁ)zu (q)— Z(q) (12 an expression involving only the sizg of the system in a
direction perpendicular to the columns with otherwise infi-
From Eq.(10), the theorem of equipartition yields nite length. This expression, which increases progressively
S but slowly with the lengti_, , is typical of quasi-long-range
) keT order[11].
<|Uz(Q)|2)T=—yz-. (13a The calculation of u,(r)¢(r)) is carried out in Sec 1 of
91— — the Appendix using the residue theorem in the complex plane
49> and yields
- keT ~kgT B, (L
(lug (@) r=—", (13b U o(T = BT B2 | [h 18
L 9 () e() = — e BA; (18)
(U2 kgT (139 under the same approximations as above. Again, this result
0 q L] . involves only the size of the sample in the direction perpen-
—quz+ Csal dicular to the columns.
The third local rms fluctuation correlation function
and (goz(F)), involves three separate integrations over the Fourier
T space since the diagonalized forme(r) is the sum of three
<|‘1’(5)|2>T=i (130 independent fluctuating quantities according to E#j%) and
f (12). The final result is given by
for the rms fluctuations expressed in Fourier space. The an- KeT
gular brackets with the subscriptdenote an average over all  (?(r))= —————In(K'+JK'?+1)
the thermal states. 4\ (K1+Kz)Az
In the long-wavelength limit, the denominator of Eq. 2 )
(13 has the following power expansion for <q,: N keT B3 inl == kgT (B1+By)
2 47\KC, 16A% | @ a A
91— 49, —=C,092+Gq?, (14 (19

where K’ and C’ are constants defined in Sec. 1 of the

ppendix. A striking feature of the first and third terms of

g. (19 is that they are independent of the size of the
sample These terms arise, respectively, from the integration

whereG=Cg/4— (C,+ 3Cs)%/2Cs. Equation(14) is typical

of a denominator for long-range ordering where the local rm
fluctuation of the vertical displacement would have a micro-
scopic value proportional to a molecular length, a value in-

dependent of the size of the system. of (|W(a)|?)r and @/4f?)(|ug (q)|?)7 over the Fourier
Forg,<q, , the long-wavelength limit expression for the space, indicating that these quantltles have behaviors typical
denominator becomes of long-range ordering.
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IV. FLUCTUATION CORRELATION FUNCTIONS AND

4
. kgT i
DENSITY-DENSITY CORRELATION FUNCTIONS <(p(r)<p(l")>= B £

87 24 Iz D

(p—p')?
2 -
v El(wlz—z'l)

The density-density correlation functions involve not only
the local fluctuation correlation functions but also the fluc- kgT B%
tuati9n cqrrelation furlctioqs(.uz(r)uz(r’», (uy(r)e(r'))y, - WK_Q 1682
(U (r)e(r)), and{e(r)e(r ")) are obtained in the next

subsection. The density-density correlation functions are w2 (p—p')?
then calculated using these results and those of Sec. IIl. +In 0z | (23
1
A. Fluctuation correlation functions in the columnar direction where the constant coefficienfs and «; are defined in the
In this subsection, only the results are presented, théppendlx.
reader being referred to Sec. 2 of the Appendix for further
mathematical details. The first correlation function of interest B. Fluctuation correlation functions in the direction
is (u,(r)u,(r')). Assuming overall translational invariance, perpendicular to the columns
it is given by As shown in Sec. 3 of the Appendix, the fluctuation cor-

o relation functions at large separation in the plane perpendicu-
UL >0y g (1" lar to the columns for a separation along the columns of a
{uAnuy(r )>_j( )3(|uz(q)| yre (7. (20 molecular size|g—z'|~c and|p—p'|>a) follow a behav-
ior typical of long-range ordering. Effectively, under these
conditions, the integra(20) is dominated by the smalf,
Let us start with the correlation for large separation along theontributions wherej, extends from— to o, the denomi-
columns, i.e.]z—z'|>c and|p—p’| of the order ofa. As a  nator in action being given by E¢14).
result, the integra(20) is dominated by the smat|, contri-

butions whereq, extends from its lower limit Z/L, to C. Density-density correlation functions in the columnar

2m/a. Consequently(|u,(q)|?) is governed by the denomi- direction

nator (15). As shown in the Appendixu,(r)u,(r’)) is then In this subsection, the behavior of the density-density cor-

given by relation functionG(r —r’)=(p(r)p(r')) is presented for the
columnar direction. According to the present model, this

o function is given by
<u (F)u (F’)):i M > > >, -
oo 8m\KC, T aB|z—2'| G(r=r")=(p(r)p(r"))
m2(p—p')? =([pe(N)+pg(NLpe(r") +pg(r")])
+in| ———| |- (21 .. ..
LT :<Pc(r)Pc(r,)>+<pc(r)pg(r,)>

i +{pg(Npe(r )+ {pg(Npg(r')), (24
It has been assumed in the calculation of E{) thatp is
parallel toﬁ ' since only quantities dependentﬁﬁﬁf will where the angular brackets denote spatial and thermal aver-
be needed in the subsequent calculations. The fluctuationges, andp(r) and p(r’) are given by Eqgs(8) and (9).

correlation function(u,(r)e(r’)), under similar conditions, These calculations are performed by using the fact that for
is given by fluctuating quantities; subject to a Gaussian distribution the
relation

(U Ne(r))=

kT B ¢ ( (p—p')? (exd ;1)1 =exil a; (XX, /2], (25
8mKC, 4A1 Y\ 48|z- 2| _
where theq; are constants, always holfis2]. It is found, as
w2 (p—p')? detailed in Sec. 4 of the Appendix, that only the terms
+In —Lf : (22) (pe(r)pc(r’))y and (py(r)pg(r’)) contribu}e toﬁG(r—r’).
Effectively, the mixed terms (p.(r)pg(r')) and
o (pg(Npc(r')) vanish in the averaging process over thermal
The fluctuation correlation functiofe(r)e(r’)) involves — states unless;,= =3(Hjo*B,/4A,), or K;,=*=3(Hj w
three separate integrations, as in E49). Assuming again = B,/4A,), conditions that are too restrictive.
thatﬁ is parallel top’, this quantity, under the same condi-  The behavior of the first term aB(r — F’) along the co-
tions as above, is given by lumnar direction(for |z—z'|>c and|p—p'|=a) is given by
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(pe(N)pelr)) = 25 by cosK;-(r—r")

X( a2 X(Kiz) -
Am?Blz—7'| ’
with

ko T
8m\JKC,

The behavior of the last term is given by

X(Kip) =K% 27)

a? %]
4772,8|z—z’|)
(28

2 2
il -Z, £ 5, 3 7o
nmp' m 1= =0

within the same limit as in Eq26), with

Fo=38(p— (pnm+ p;+0)8(p" = (prrm +pjr+07))
xc0s3 0—Hjwz—Qj—(0'—Hj wz' - Q)]

(29
and
x/ =Kol (82 H )2 (30)
I TgrJKC, | 4A; 1)

This last exponent involves explicitly the value of the helic-

ity of the jth column.

D. Density-density correlation function in a direction
perpendicular to the columns

In parallel with the results reported in Sec. IVB, the
density-density correlation functions at large separation in

the plane perpendicular to the columng-z'|~c and|p

—p’|>a) are, under the above conditions, typical of long-
range ordering. As a result, they are periodic functions with
the periods of the columns in the two-dimensional basal

plane.

V. X-RAY SCATTERED INTENSITIES

PHYSICAL REVIEW E 64 011701

where proportionality constants are omitted. The scattering
intensity is decomposed into three terms according to

1(Q)=1¢o(Q) +1g(Q) +144(Q). (32
The indices refer to the different combinations of core den-
sity and groove density in the decomposition of the total

densityp(F). It is easily shown that the mixed terlg, does

not contribute and thdt.. is the only term contributing to the
scattering near the inverse lattice vectors, and conversely
only the terml gy, contributes for scattering near the Bragg
condition due to the periodic orientational density. In the
absence of thermal fluctuations, the result is

1(Q)= 2 by 86, -k, + PgoI5( QL Ro)

X 0Q, +309Q, Ky

2. . .
1+4S|r?<§QL-(a1+a2)

(33

whereK .= pA; + kA, andJs is the third order Bessel func-
tion. The first term in Eq(33) is proportional to the Fourier

transform ofp.(r)pc(r'), while the second term is propor-

tional to the Fourier transform qﬁg(F)pg(F’). The scalar
product in this latter term could be rewritten as

>

N - 4
gQi-(alJraz)—?(erk) (34

sinceQ, = pA; +kA,.

B. The thermal diffuse x-ray scattering near the reciprocal
lattice vectors

The scattered intensity of x rays for a momentum transfer
Q when the thermal fluctuations are included is given by

(@)= [ @ [ @ripp e, @

where(p(r)p(r')) is the density-density correlation function
averaged over the thermal fluctuations. We now consider a

fluctuating and the fluctuating equilibrium conformations of >
our model are presented. The general expressions found fgrn

. such thatQ=K,+q, +q,z whereq, andq, are very
all on the scale of the inverse of their respective intermo-

the density-density correlation functions derived above are.cular distances

used.

A. The Bragg conditions of the model

The x-ray scattering intensity for a momentum tran&jer

is obtained directly from the Fourier transforms pf(r)
according to

l(é)ocfd%fd3r'p(r*>p(r*')e“5'<f—?’>, (31)

Within our model, the scattering intensity near the recip-
rocal lattice vectors is limited to the basal platg=0 and

the pIanesKiZ= iél. The shapes of the Bragg peaks in the
basal planeK;,=0 are easily predicted. Indeed, only the

thermal fluctuations of the perpendicular comporléptde-
termine the diffuse scattering of the x rays for a zero value of
K;,. Since this quantity reflects the long-range ordering in
the basal plane, the Bragg peaks in this plane maintain their
character with an intensity controlled by a Debye-Waller fac-
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tor and a decrease in reciprocal space that is inversely prdJsing scaling techniques, the two integrals in E8g) can
portional to the square of the wave-number departure froneasily be shown to be proportional tqz(/qf)Z*X(Ki), thus
the Bragg positions. yielding

For the planes &;,= =+ C,, the thermal fluctuations af,
turn the Bragg peaks into Bragg maxima with a nonuniversal 1.(O) 2 2 - 1 for d.=0 (39)
behavior of the power law decrease of the scattered intensity ce . K 4 g4 XK 4z=0
in reciprocal space. Near the Bragg conditions for the lattice,
the scattered intensity is written as The calculation ofl .((Q) wheng,=0 andq,>q, is not
explicitly given. The scattering intensity is typical of a crys-
- o Lz - talline structurd4]. Indeed, under this condition, the system
3 . K" 1 ]
Icc(qz,ql)“f d re'dz%e' 4 P[e™i  (p (1) pc(0))]. exhibits long-range order behavior, as discussed in the third
(36) section of the Appendix. The result is

For g,=0 andq, >q,, the integral(36) is dominated by a .1
cone surrounding the axis and extending to infinity. The lee(Q)~— for q,=0. (40)
correlation function of the fluctuating displacements in this 9z

cone is then given by expressiol). As a result,

-~ . . C. Thermal diffuse scattering near the Bragg condition due to
l.c(q,,9,) is easily shown to become

the periodic orientation density

. , [ % The thermal diffuse scattering of x rays under these con-
lec(Q) by f_ dzfo pdpJo(d.p) ditions is calculated fromh 4o(Q), with a momentum transfer

0= th+ qL +3wz+ qzz whereql andq, are very small on
2X(Ki)  the scale of the inverse of their respective intermolecular

dimension.

It is found that the thermal fluctuations ¢f andu, turn
(37)  the Bragg peaks a@,= +3w into Bragg maxima with a

universal behavior of the power law decrease of the scattered
intensity in reciprocal space. Effectively, near these Bragg
conditions, the scattered intensity is written as

a

=

where a first integration over the angular part in the bagal
plane has been performed. The changes of variables
=p?/4p|z| andz’ =q,z yield

2’y+ El

p?
xexp{iqzz—X(Ki) W)

L Igg(qzaaﬂ“J d3reiqzzeiqf”f d3re Q"
le( Q) 2 b 2 X(K)f dz’ 7/ 1-X()

X[eKncreionpy(F)pg()].  (41)

xexp(iz') X f dw w XK wherer’=p;,+ ¢’ (i.e., pyrpy =0 andz’ =0).
0 As discussed in Sec VB, fay,~0 andq, >q,, the in-
7 tegral(41) is dominated by a cone surrounding thaxis and
Bz'w . P . .
Xexd — X(K)Ey(w)]Jol 29, extending to infinity. The correlation functions of the fluctu-
z

ating quantities are then given by Eg21) and (23). As
(38 shown in Sec. 5 of the Appendikgg(qz,ﬁl) becomes

. JAKnR - ,
Igg(Q)M%J‘ dz’ exdiz']z't" XOL dw w0 exg — X,E1(w)]

z

~ 4
wBz
X Jo| 20, L)H exd — &(nz' %+ 7' w|2']) M
3qz =1
2J KnRo) {1+ co —p = e ,
S(KnRo){ 40, - (p2=p) 1} 47 exgfiz' 127+ | dww % exg — XJE4(w)]
q2 Xy 0 0
z

7\ 4
o 20\ e )Hl extl— &(n2 %+ 7' w|2) 2, @2
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where 7,=«;/9q% and 7' =4p/3|q,|. Using scaling tech-
niques, the two integrals in the first term of E@2) are

found to be proportional to> /g, , while the two inte-
grals in the second term of E2) are found to be propor-

PHYSICAL REVIEW E 64 011701

the rotating columns on each other is reflected in dfe

behavior for a ﬂuctuatioruz(ﬁ) with a wavelength in the
plane perpendicular to the columns very small compared to
the length scale of the modulation along the columns. It is

this last property that gives rise to the quasi-long-range be-

. 2-X; : -
tional tog, /g, leading to havior. Indeed(u(r)) shows a quasi-long-range behavior

J2(KneRo) as reflected in Eq(17). On the contrary(ufh(r*» shows a
l4g(Q) e ?{3+2 cogq, -(p2—p1)]} for g,=0.  |ong-range behavior as reported in E4j9). This last behav-
a. 43) ior justifies the neglect o{ui)T in the calculation of the

long-tail behavior of the scattered intensities.
The negative sign of the local fluctuation function

(u,(r) e(r)) points to the fact that the independent fluctuat-
ing quantityW(q) is the sum of a rotatiorp(q) and a dis-

1 pIacemenuZ(ﬁ) in the columnar direction, operating in op-
Igg(Q)N = for g, =0. (44) posite directions in thg Iong-_wavelength limit fq;<<_qL , in

a; other words, when neighboring columns are moving more or
less rigidly in the columnar direction. Notice that the com-
posite rotation angléf(F) shows a long-range behavior per-
colating through the quasi-long-range behaviorsztﬁf) and

It is important to recall that our calculations are based onp(r).

a model admitting the orderings of the positional and orien- The fluctuation correlation functions show a very aniso-
tational degrees of freedom of the diskotic molecules alongropic behavior. Indeed, these quantities in the columnar di-
the columns, as is generally admittg®}6,11. In particular,  rection have only a quasi-long-range behavior while in the
it is based on the existence of an incommensurate helicallgirection perpendicular to the columnar direction a long-
ordered density wave along the columnar direction. Thigange ordering behavior is predicted. As indicated above,

density wave results from the ordering of the orientationakhege reflect the wave-number dependencéudfr)). As a
degrees of freedom. Our model differs from those in theggyt, the core density—core density correlation function in
literature only in the range of the ordering, quasi-long-ranggne columnar direction shows power law behavior with a
being speculated in our case. ) series of exponents determined by the elastic constants. The
The separation of the total densjiyr) into a core density groove density—groove density correlation function in the
term p.(r) and a groove density termy(r) is not derived  columnar direction shows a similar power law behavior with
from first principles. In addition, it is clear also that theseexponents related to the helicities of the columns. The cor-
two quantities are coupled since a core density fluctuatiomelation functions in the basal plane show long-range behav-
along the columns would break the periodic orientationalior.
modulation locally. However, these two quantities refer to As mentioned above, our simplified model is not suitable
independent degrees of freedom to first order: the displacdor calculating the relative intensities of the different Bragg
ments of the centers of mass of the molecules in the columpeaks. However, it is reasonably justified to calculate the
nar direction and the orientation of the molecules in a planeffect of thermal fluctuations on the shape of the Bragg
perpendicular to this direction. This separation captures thenaxima. The first result of interest is that the Bragg peaks in
two essential features of the density, exactly those featurethe basal plané<;,=0 retain a behavior typical of long-
that separately, to lowest order, determine the Bragg condirange ordering. We have not explicitly calculated the effect
tions for the inverse lattice vectors and the periodic orientaof the thermal diffuse x-ray scattering and the shape of the
tional density. Our work is not intended to calculate the in-intensity contours in this case. This calculation is straightfor-
tensities of the Bragg maxima but to predict the power lawward and would involve taking in account the effects of the

behavior followed by the thermal diffuse x-ray scattering in-flyctuations ”qi(a)' The results would be classical and

tensities near the Bragg conditions. For such a calculationgp g4 show anisotropic intensity contours resulting from the

we argue that the above separation is justified. anisotropy of the elastic constants. Such behavior has been
_ The origin of all the results presented above is the behavgy,died[14] for freely suspended strands of a diskotic liquid
ior of the denominator of Eq.133a governing the rms fluc-

: o _ _ crystal in the intracolumnar disordered phase. It is to be
tuations(|u,(q)|?)r. The quadratic form in Eq14) reflects  noted that in this last case the Bragg peaks are limited to the

the fact that a fluctuatiom,(q) with a wavelength in the K;,=0 plane. Similar behavior has been predicted and ob-
plane perpendicular to the columns very large compared teerved[15] for the x-ray diffuse scattering in flow-aligned
the length scale of the modulation along the columns, irsamples of a lyotropic liquid-crystalline hexagonal phase.
other words, neighboring columns moving in phase in the The Bragg peaks in the two planks,= +C; are turned
columnar direction, is unaffected by the free sliding of theinto Bragg maxima by the thermal fluctuations of the dis-
rotating neighboring columns. However, the free sliding ofplacements, in the columnar direction. In the calculations of

As for |, the calculation of gg((3) whenq, =0 with g,
>(, is not explicitly given. The scattering intensity is typi-
cal of a crystalline structurg4]. The result is

VI. DISCUSSION AND CONCLUSION
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the thermal diffuse x-ray scattering intensities, we have omit- o d3q [ ay b )
ted the effect of the thermal fluctuations of the displacements  (u,(r)e(r))= f —(— - —) {luq)|?)7.
(2m)3\4fg,  2f

in the plane perpendicular to the columm:a,l(ﬁ). This is

justified since this last quantity has long-range behavior and
would give a contribution only close to the Bragg peaks andlrhe expression in parentheses appearing in the numerator of
not contribute to the long-tail behavior of the scattered intenthe integrand of Eq(A2) has the following long-wavelength
sities. Along the same lines, we have not considered the difpower expansion:

fuse scattering from the internal degrees of freedom of the

diskotic molecules, i.e., the aliphatic chains for HHTT. We ay b g*(Ag?-Bg?)
have assumed that such diffuse scattering would not hide the 4fg, 2f Cq+DP+E’
intensity contours predicted here since these degrees of free- z z

dom are severely reduced in the ordered columnar phasgnereA andB are constants an@d,D, andE are polynomials

[5,6]. With the above restrictions, the scattering intensitiesith only even powers ofj, . Looking for the size depen-
near the Bragg maxima are shown to have a very anisotropi ent term, the power expansiéts) is used for(|u (»)|2>
behavior in reciprocal space, with a nonuniversal behaviot5 ' P P A7),

: . P o he factor(A3) appearing in the numerator being negative
typical of quasi-long range ordering in the direction of the L .
c)gTumns a%d a Iong?—rang% behavio?in the basal plane. _under these cond|t|onqz<_qi " Asa result,_ we find that the
Near the Bragg condition for the periodic orientational'me(‘:Jrand in EQ(A3) has six simple poles in the compley

density, the intensity of the x-ray scattering is predicted toplane. The three poles located in the upper half plane are at

have a very anisotropic power law. In the basal plane, the i

intensity would decrease with a universal power lgi 2 q,=——(D=*D?-4CE)? (A4a)

for g,=0. The intensity is modulated by the Bessel function V2c

of order 3 as expected for an orientationally ordered state in

the columnar directio16]. This last result washes out the @"

Bragg maxima forKy,=0. In the columnar direction, this 7

decrease would showyz_2 for q, =0. q,=1 /KQL
These behaviors near the Bragg maxima lead us to sug- ‘ c

gest that high-intensity and high-resolution x-ray scatterin

measurements should be conducted in order to verify th

guasi-long-range behavior in orientationally ordered colum-

(A2)

(A3)

. (Adb)
1

he first two poles, in the long-wavelength limit, are at

iqui =ia.q,, A5
nar liquid crystals. 0=l (AS5)
wherea.. = (Do* \JD5—4CEy) Y% 2C with D, andE, be-
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u,(r)e(r)y=— n|—
‘ 47\JKC; Ca’a? | @
APPENDIX: CALCULATION DETAILS
1. Local correlation functions and, sinceB/Ca? aZ =B,/4A,, we finally obtain
As explained in Sec. lll, aside from terms whose magni- .. keT B, L, A7)
tudes scale with a molecular dimension, the local rms value U re(r))=————-7"Inl —|. A7
(v ) 4m\JKC, 4A1 | a

of the fluctuating variabIeJZ(F) is given by
It has been assumed in the previous calculation that the co-

(U3(F))= keT n L. , (a1  efficient of g2 in
47 JKC, \ @
D=8Cs(K;+Ky)q} +{[16A,(C,+Cz)+8CsA]
an expression increasing with the average dizeof the —(2B;+ Bz)z}qf (A8)
system in a direction perpendicular to the columns with oth-
erwise infinite length. is positive. It can be easily shown that a negative value for

From Egs.(11) and (12) and using the fact tha¥(q), this coefficient would lead to a divergence of the integral in

- , = . . ... Eq.(A2) and therefore to an instability, a possibility that we
U,(q), and uql(q) are independent fluctuating quantities, have rejected from the beginning in the formulation of the

(u,(N)e(r)) is written as model.

011701-10



THERMAL DIFFUSE X-RAY SCATTERING IN A MODH. . .. PHYSICAL REVIEW E 64 011701

Finally, the third local fluctuation correlation function to

! o7 o_
evaluate is C'= +
(a?+a?) (@2 —ALIAy) (% +a?)(a® —ALIA))
R d3q R ay b\? . N TAL
<<P2(r)>:f 3 <|‘I’(Q)|2>T+(W_E) (Ju a)|?)r + AxlAz _ (A15)
(2m) 2 (AL 1A+ a2 ) (AL 1A~ a%)

2
+ a—<|u’ (@31 (A9)  Again, as in the case of the first teiisee Eq.(A10)], the
4f2 result does not depend on the size of the sample. Finally,

putting together Eq9A10), (A11), and(A14), we get

Each term in the integrand of EGA9) is treated separately.

The integration of the first term is straightforward and gives . kaT
(Q2(1))=——————In(K' + JK'?+1)
3 47T\(K1+K2)A2
f T (@=L ik + KT T)
"t S - 5
(2m)° T 4 (K + KA, L_keT B (L) keT (Bi+By)’
(A10) ke 1eaz M\ a T e T aze.
4’77 KCl 16A1 A2C5
whereK' = (2w/a)/(K;+K,)/A;. An interesting feature of (A16)
this result is that it is independent of the size of the system, ]
a result typical of long-range ordering. The second term irS Presented in Eq19).
the integrand of Eq(A9) is evaluated by following a proce-
dure similar to the one used for EGA2), except that the 2. Correlation functions along the columns

oles(A4a) are now double poles. The result is found to be . . - - .
P (Ad3) P The correlation functioqu,(r)u,(r’)) at large distances

along the columngi.e., |z—2z'|>c and|p—p’| of the order

3 2
f d_q ar 3) (u a)|?)y of a), after an integration of the angular part in e plane,
(2m)3\4fg,  2f z is given by
keT B3 (L, . ksT fZ'n'/a
BT - U (Nuy(r')y=——— d J o
amiKe. 16Aim - (A11) (uAr)uy(r')) 2mC, ) oo, 40 0@ (p—p")
o —i z( - ’)
As for Eq. (A2), we have assumed here that the elasticity Xf aq g iay(z-2 At
constants are such that no singularity will appear in the inte- L,z q§+,32qi ’

grand. Finally, the third term in EA9) is also treated with

the help of the residue theorem. Writing wherelJ, is the Bessel function of order 0 a= VK/C (p
3 ) 3 andﬁ’ have both been taken paraIIeI&Q for convenience
J' d*q a_<|u, (a)|2> —k Tf d°q a The integral overq, can be performed using the residue
(2m)3 42" % TR (2m)3 f(41gy) theorem, keeping only the simple pole locatedati83q? ,
(A12) leading to

2

with the help of Eq(15), we see upon comparison with Eq. - e keT (27l
(A2) that the locations of the first two poles in the upper half (UANU(r)) = 47aCy)amt dq,
K . . Lk
plane are the same as those given in &d&). The location
of the third one, however, is given by the conditiba 0, or ><Jo(ql(p—p ))e*ﬁ(ﬁ\z*ﬂ_ (A18)

a.
| \/A1+<K1+K2>qf A
q:=19, A, =10, A, (A13)  This integral is easily performed to give

. . . R _k T _1\2
Igrtﬁrg?rlllt;/glrglez\?ga . 'I'Igzt;trnrgeeioresmues contribute equally (U(F)u,(F")) = B 29+ El( (p—p )’ )
L 8m\KC; 48|z—2'|
3 2 2 71_2 _1\2
f aa e g2y, — el (BatBa o, +In(%) , (A19)
(2m)3 4f2> U a A LT
(A14)
wherevy is the Euler constant(=0.5772L...) andE(x) is
where the exponential integral functioB, (x) = [ (e~ /t)dt.
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The second expression of interest to evaluate
(A2), we have

b
- 2f

ay
4f92

(UANe(r))= f(z € )

X(|u (@274~ (A20)
The procedure used to evaluate the integfalO) is almost

the same as the one used for,(r)u,(r')), except that we
now have three poles when integrating oger q,= —i(D
+/D?—4CE)¥%2C, andq,=—iKq?/C,. As in the cal-
culation of (u,(r)¢(r)), the only significant contribution to
the integral comes from the residuecgt —i \/qu‘/cl, and
we have to evaluate

( ) (Q,)> kgT B sz/ad

u,(r r =—

2 47aCy Ca a? Jom, a@
XJO(qL(p_p ))e_qulz_Z/" (A21)

aq.

an integral that is identical to the one in E&.18). The final
result is then

(Ul )= —2— AP +E1(M
‘ \/KC 4A; 48|z—7'|
2/ 1\2
|(M) | n22)
LL

The last expression to evaluate/is(r) ¢(r')) which is writ-
ten as

(e(Ne(r))=11+1,+13, (A23)
where
3
1= GoaH@Re T, (a2aa
|2:f% %—%)2<|uz(6)|2>re‘“i‘(’-‘r"),
(A24b)
and
dBq a2 o
I3=fWﬁdu@g&)lzhe"‘*(f-“). (A240)

After a first integration of the angular part in the plane,l;
becomes

is
(u,(N)e(r")). Using again the same technique applied in Eq.

PHYSICAL REVIEW E64 011701
kgT

fZﬂ'/a
d
(27)2A, ) 2w,

Xfm d °
q
— Zq2

2+ 0l + !

l,= 4.9, Jo(@, (p—p"))

i0,(z=2")

(A25)

wheren;=A; /A, and ,= (K, +K,)/A,. Keeping only the
simple pole atq,=—i\/%,q, (since again the integrand is
dominated by small values af, ), we obtain

2mla

1 / / q.LLO L

7]1‘h‘272’|_
(A26)

After performing a change of variable=\7;|z—2'|q, ,
using the power seriedy(x)==_(—1)*(x/2)%/KIT (k

+1) and the functiod’(n)=(n—1)!=[3t" te~'dt (for n
>0), we have
L keT 2 2k>' ( ~(p—p")?
" amAn s 22 IJ_ = any(z-27')?
(A27)

Finally, sinceEffzo(—x)k(Zk)!/(k!)zz1/\/1+4x, we ob-
tain

keT &1
87 \iy(z—=2")+(p—p')?

with &;=2/JA1A, and k1= n1=A/A,.

The calculation of I, is similar to the one for
(u,(N) e(r")). Since the integrand now has two double poles
at q,=—i(D=+D?—4CE)Y¥2C, the only significant
contribution originates from the residue ag,=
—i\/qulcl. Thus we easily find, upon comparison with
Eq. (A20), that

| = (A28)

. k_T(B_) E(M)
2 8mJKC, |4A Y\ 48|z-2'|
2/ _ I1\2
+In M) . (A29)
LL

Finally, after an integration over the angular contribution in
theq, plane,l; yields

1 2
.l BHEBZ) Fwadqlq?’J @.(p=p"))
(2)? 4 2/l Lo
RS O
| st e 30

whereC, D, andE are the same functions as those defined in
Eq. (A3). As found previously in the development of the
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third term in the integrand of EqA9), the integrand of 5 ,T omla
has four simple poles aj,= *i«.q, and the conditionf (uz(r)uz(r ))——f qLJO(qu)dql
—0 vi i — i Cy(27)?

=0 yields two more simple poles gt= *=iA;/A,q, . We 1

finally find, after an integration ovef, ,

© e iazz
xf do, 55—, (A34)
keT < & = o+l
I3:§i 2 Jki(z—2')%+( "2 (A31)
= Ki(Z— - . . .
: p=p whereB=G/C;. The integrations are easily performed and
with the following definitions: yield
558 (U0} = y
| B1T 5b2| ay u(Nuy(r )
2 z z 2 _1\2
52: 5 5 5 , (A323) 4w \/KCl \/a (Z z ) (P P )(A35)
(a2 —a?) (a2 —A/A,)
1 2 an expression having a structure similar to E&28). The
—|B1t 552> a_ results for(u,(r)e(r’)) and(e(r)e(r’)) give similar struc-
= , A32b tures.
& (a2 —a)(a? —ALlA,) (A3zb)
and 4. Density-density correlation function in the columnar
direction
1 \2 In this section, we present the calculations performed to
Byt 2 BZ) VALIA; evaluate explicitly the function
S AIA a3 o - > 2 > r WP
(ArfAp=aZ)(A/Ap— o) G(r=r")=(pe(Npc(r") +{pc(Npg(F)) +{pg(Npe(r"))
andk,=a? , k3=a? , andk,=A;/A,. It is found numeri- +<pg(F)pg(F')>. (A36)

cally that the value of; is positive for|z—z'|>c and|p
—p'|=a, which is precisely the limit used for the present The first term in Eq(A36) is explicitly given by
calculations.
Thus, combining EqQgA28), (A29), and(A31), we obtain - -,
(pe(Npelr')) =2 2 by by (codK;, p cosa
l!

4

kgT &
(Ne(r'))= - ,
) g 2 T +Kig[ 2= uy(r)]}cogK;r, p’ cosa
keT B2 (p—p")? +Kir 2 = u(r)1}). (A37)
gk, 1682 Bl a2 T
7 ! 1 Alz=7 p and p ' have been taken parallel. Using the property
(p—p')? (exg aixyr=exd e (XX)+/2], Eq. (A37) becomes
+In| ——— (A33)
LL

{pe(N)pe(T E E (Frexp{—[(KE+KF )(u2(r)
as presented in Eq23).

_ . _ + 2K Ki (U u(r)) 1}
3. Correlation functions in the plane perpendicular to the

columnar direction +Foexp— [ (K2, +KI Z)(uz(r)>
The correlations at large distances in the plane perpen- .-
dicular to the columnar direction, i.ejz—z'|<c and |p ~ 2KiKir{un(r)u(r)) 1), (A38)
—p'|>a, are easily obtained. Indeed, referring to E20), 5o o
they are dominated by small values@f and an integration Where — F;=2bg by, cosK;-r+K; -r’) and  F;
over all values ofg,. The limit g,>q, is then justified. =2by by, cosK;-r—K; -r'). After substitution of Eqs(17)

From the denominator expressi@i), the correlation func- . , > -,
tions are anticipated to have a behavior typical of long- rang@nd(Alg)a'naEq' (A38), we find that('pc'(r)pc(r ) depen.ds
ordering. Expressions having a structure similar to@@8) ~ only on|r—r’| (and consequently is independentlof) if
are then obtained as expected for random fluctuations faand only if K =—K; [for the first term in Eq.(A38)] or

long-range ordering. o K=K, (for the second term in EGA38)]. This condition is
For example, the value ofu,(r)u,(r')) is explicitty  required by the overall translational invariance of the system.
given by Consequently, we find
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>

- R 1 I
</oc(r)pc(r’)>=52i > b bg, [cog KT +Kjr")
I/
X 8, —k, FcodKi-T=Ki/-r )8g ]

o H

2X(K;p)
: (A39)

(p=p")?

2y+E
7 14,6‘|z—z’|

(Wlp—p’l

or, using the developmeit;(x)=—y—In(x) for x<1,

(peNpel(r)~ 2 by cos;-(r=r)

a2

X(Kiz)
x| — = . (A40)
4m2B|z—7' |>

whereX(K;,) =K% (kg T/8mKC;).
The second term in Eq24) is given by

(D7 N="2 S 3 2 bk 85" — (P +

' n",m" j'=0
+0"))(cogK;, pcoda, — )
+Kiz—u ()]}

Xcos3 6’

o(rH ).

—Hj [z’ —uyLr")]
—[Q) - (A41)
It can be written, with the help of Eq25), as
2 1
(pepg(T)=pgo2 2 2 Flexp( - zul)
n,m j'=

1
+Foexp — EUQ ,

(A42)

where

Uy =(KZ+902)(uZ(r))+9(¢%(r))
—6KiHj (U (Nuy(r')) — 6K (u(Ne(r"))

+18H w(uy(r)e(r")), (A43a)

Up=(KZ+90?)(uZ(r))+9(¢*(r))
(1)) +6Ki(ur)e(r"))
(A43b)

+6KiHj (U, r)

+18H w(uLr ) e(r"),

PHYSICAL REVIEW E64 011701

F1=2bg 8(p" = (porm +pjr+ 7))

XcogK;-r—3(—6'+H; wz' +Q;)],
(Ad4a)

Fa=2bg 8(p" = (prm +pjr+ "))

XCOiKi'F+3(_ 9’+Hj,w2’+Qj,)].
(A44b)

Substituting Eqs(17), (A7), (A16), (A19), and (A22) into
Eq. (A43), we find that Eq(A42) depends ofr —r’| if and
only if

B2
Kio==3[ Hjo— 75 . (A45)
Rewriting Eqg.(A16) as
() =For —2L i EWES (A46)
r))= ,
¢ ot 47JKC, 16A2 | @

where

keT
— ' w2
Fo 4K+ KA, In(K"+vK™+1 )( )

keT (B;+B,)?
_C,i(l 2)

(A47)
& ACs
we finally find
o 2
- =, 0
(pg(Npclr)) =" 2 2 2 (F1+Fy)
I n'm j'=0
_1\2
xXexpy —X/,| 2y+E; lo=p )"
’ aplz-7
~SFoj| ——
2 mlp—p’|
XK, = 3(H 0 —B,l4A) (A48)
where
' 9kgT [ (Bz)r (A49)
" 8mKC, '

The third term in Eq(24), {pg(r)pc(r')), is obtained exactly
like the second one, and the result is identical to @¢.8),
with the changes—i’, n’—n, m’—m, andj’—j. Finally,
the fourth term in Eq(24) can be explicitly written as
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F F/ _1\2 2/ 1\2
(pg(Npg(r") Up=2X| 29+ E; Gp=p)7) [T p=p)"
2 2 48|z—7'| a?
— 2 S (o (pymtpi+ ) I
ngn’m e = o p Pnm pJ —9F(r—r’), (A54)
X5(5 ,_(f;n'm’—"_;]/—’_&,)) Whel‘e
X (cosF 0 Hjw[z—u )]~ [Q)— ()]} o ¢
- - B i
. L >0 L >, F(r—r')= — +F
XcosJ ' —Hj o[z —ur')]-[Q) —o(r")]}). ( )= 8x S Vk(z—=2)2+(p—p)2
(A50) (AS5)
Using the property25), we find andX/ is given by Eq.(A49). The final result for the fourth

2 2
(pgNpg(N=23 T 3 3

n,m n’,m’ ]=0 J'l

1
Fqex _Eul

0

N N 2 1
(peNpgTN="23 3 5 S erXp(__uz),

term of Eq.(24) is

2 2
9

1 nmn ' 1=0 =0 2
+Foexp —5Us |, (A51) (A56)
h with the functionU, given in Eq.(A54) or, using again the
where developmentE;(x)=— y—In(x) for x<1 and the fact that
- - s F(r—r’)=F, for large distances,
Us=18{0(U3(1)) + (@2(1) + HjH XU Fu ) (r=r)=F, forfarg

+Hjo[(UANe(r))+(u N e(n))]

+Hj o[{@(NuLr))+(e(r ur' )]

.. 2 a? X
(pg(r)pg(r’)>~j§O Fz(—) . (A57)

Am’Blz—7'|
+(e(Ne(r))}, (A523)
5. Scattered intensity calculations
Up=18[w*(UZ(r)) +(*(r) —HjHj 0*(ur)uyr’)) This section presents the calculations pertaining to the

+Hjol = (U (N () +{uy(r) ()]

thermal diffuse scattering near the Bragg condition due to the
periodic orientation density fay,=0 andq, >q,. As men-

+Hjr ol —(@(NU(r))+{e(ru,(r))] tioned in the text, the gffect gf the thermal diffuse scallttering
near these Bragg conditions is calculated fig{Q), which
—(@(Ne(r"))H}, (A52b) s evaluated by taking’ =p; +o" (i.e., ppym=0 and z’
L L R ; L =0) for a momentum transfeQ=K,+q, +3wz+q,z,
F1=38(p—(pnmtpjt0))d(p' = (pm +pj +0')) with g, andq, very small on the scale of the inverse of their
xc0sq 0—H wz—Q,+(0'—H; 0z —Q;)], respective intermolecular dimensions. Fgy=0 and g,

>q,, the integralgg(F) is dominated by a cone surrounding
(A538)  the z axis. After a first integration over the basay plane,

we obtain
and
- - - - - - - s, . oo 2m 2
F2:5(P_(an+l)j+o'))5(l) _(Pn’m’+Pj'+0' ) |gg(Q)oc 2, ;n Jloodzjo ng'O do' (exdi3d®]
xcos 3 0—Hjwz—Q;— (0’ —Hj 0z’ —Q;)]. ERN
2
(A53b) . ! Pnmij
+exd —i3P]) ex Xj|2y+E; e
As before, we substitute Eqgl7), (A7), (A16), (A19), X! 4
(A22), and (A33) into Egs. (A52). Then we evaluate, for y a i 9 ForS )
both casesH;=H;, and H;=—H;,, the conditions under TPami ex 2\ 0T~ §i(Kiz

which U; andU,, will depend onjr —r”|. It is found thatU,
meets this requirement wheéh =H;, =1 andw=B,/4A,, a
condition that is too restrictive. Howevdd,, meets this re-
quirement providedH;=H;, . Effectively, under this last
condition, we have
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exdi(Knet+d.)(pnmj+o—pj

+pﬁmj)_1/2)

— o) exfdi(3w+q,)z], (A58)
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where ® = 6— 6" —[ 65(2) — 6p;:(0)], ﬁnmjzﬁner ;3,-, and{j,j’} represents the pairs of indiceg,’) that are such that
H;=Hj . Integration over the angular contribution within the columns and summation over the six given cquiglegiélds

L ([ - 9 :
Igg(Q)“fo p dpf_wdz ‘E(thRO)eXF[i?’qZZ]eXF{_ > Fo+§1 fi(KiZZ‘FPZ)_l/ZH

X exp{ -Xp
» 9
exp —5

XZexp[—Xi

a | 2%o o o
2yve gl || 2] snaort [ oan [ a2 Burpetisaz)

P

:

4/3|Z|)
4

Fo+_21 & (K22 + Pz)m”

i |

where we have neglectéﬁjl in front of |5nm| and extended the infinite sum ovpy,,, to an integral over the continuous
variablep. With the changes of variables= p?/44|z| andz’ =3q,z, Eq. (A59) can be rewritten as

!
2X]

a .. -
{1+codd, - (p2—p1)]}do(Arp), (A59)

2’y+El ’7T_p

. JE(KnRo) [
99(C) 2-X
z

dz' exp[(iz')z'l—xé]f dw wXoexd — X,E1(W)]
0 0

4
wpBz

2q, 31[; )H exf — &(nz' 2+ 7' w|2'|) "1
z

i=1

x Jo

N 235(KnRo){1+cogq,
2-X;

4,

7\ 4
20, \ g )iﬂl exd — &(n2'2+ 7' 0|2) 2, (A60)

wherer;= Ki/9q§ and 7' =4/3|q,|, as presented in E¢42). Using scaling techniques, the two integrals in the first term of

~(p2—p1)]}f°°dz, eXﬂ:(iZ,)Z'lixi]fxdW W*Xiexp[—XiEl(w)]
0 0

xJo

Eq. (A60) are found to be proportional tq)i_x(”/ Vg, , while the two integrals in the second term of £460) are found to be
proportional toqifxi/\/i, leading to

. J5(KniRo) .
Igg(QwT{swco:{ql-(pz—pl)]}. (AB1)
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