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Diffusive growth of polydisperse hard-sphere crystals
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Unlike atoms, colloidal particles are not identical, but can only be synthesised within a finite size tolerance.
Colloids are therefore polydisperse, i.e., mixtures of infinitely many components with sizes drawn from a
continuous distribution. We model the crystallization of hard-sphere col{witdls/without attractionsfrom an
initially amorphous phase. Although the polydisperse hard-sphere phase diagram has been widely studied, it is
not straightforwardly applicable to real colloidal crystals, since they are inevitably out of equilibrium. The
process by which colloidal crystals form determines the size distribution of the particles that comprise them.
Once frozen into the crystal lattice, the particles are caged so that the composition cannot subsequently relax
to the equilibrium optimum. We predict that the mean size of colloidal particles incorporated into a crystal is
smaller than anticipated by equilibrium calculations. This is because small particles diffuse fastest and there-
fore arrive at the crystal in disproportionate abundance.
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[. INTRODUCTION periment]5] finding regions of fluid, pure crystals, and crys-

How many ways are there to pack balls into a box? Thealline alloys of theA andB type patrticles in the ratio8 B,
answer, of course, is infinitely many, since each ball can béB,, or evenAB,; depending on the size ratio. In the “poly-
placed in a continuum of different positions. However, if onedisperse” hard-sphere phase diagram, for systems such as
tried to count the different arrangements, one would noticgeal colloids, in which each particle is slightly different from
that many of them are very similar. The predominant packevery other, an infinite number of axes is needed to span the
ing arrangements for a given concentratiprithe fraction of  space of all possible compositions. A small corner of this
the total volume occupied by the ballare summarized by phase diagram has been charted by experini@itsimula-
the hard-sphere equilibrium phase diagram, which is weltions[7], and theories based on phenomenological free ener-
known when all spheres are of equal sigH. A face- gies[8], integral equation§9], cell theory[10], and pertur-
centered-cubicfcc) crystal phase exists for any concentra- bation about a monodisperse systédil,12. When the
tion from close packing atp= /18 [2] down to ¢ overall concentration of particles is low, an amorphous fluid
=0.545. For$<0.494 a fluid phase exists in which configu- phase inevitably results. At higher concentrations, it is ex-
rations are amorphous, and between these two concentratiopscted that crystals of quite monodispe(sanilarly sized
statistical weight is dominated by systems partitioned intoparticles can form, even when the overall size distribution is
fluid and crystalline regions. On the other hand, when differbroad[7], in which case, particles of the wrong size to be
ently sized balls are considered, the full phase diagram is notcluded in the crystal remain in a coexisting fluid phase.
known. It may seem at first surprising that such a straightMany predictions exist for the equilibrium distribution of
forward question is still a field of active research. particle sizes in a polydisperse crystal at coexistence with a

The subject is not merely of idle interest. Many real sub-fluid.
stances, particularly colloids, are composed of spherical par- We shall argue that such equilibrium states are not as
ticles with negligible energetic interactions except for a hardstraightforwardly applicable to colloidal systems as might be
repulsion at contact. For a further, very large class of subexpected, and shall calculate an alternative distribution of
stances, the hard-sphere model is a useful starting point fgrarticle sizes, which we expect to comprise the crystallites
more accurate theorid8]. Studying their configurations is observed in real suspensions. The size distribution of par-
of central importance to our understanding of matter, and haticles incorporated into colloidal crystals is determined by
implications for the development of new materials. the kinetics of their formation and, as we shall explain, never

It is often assumed that the configurations observed in aelaxes to the equilibrium distribution, remaining instead as a
real material, such as a hard-sphere colloid, are those oélic of that process. Despite the fact that the state of the
highest entropylowest free energy for non-hard-sphere in- system evolves while the crystals are growing, we shall show
teractions, i.e., those that dominate the counting of all pos-that a large temporal regime exists during which the distri-
sible arrangements. On this equilibrium assumption, manyution of species incorporated into a growing crystal is in-
efforts have been devoted to exploring the elaborate phaseriant with time. Hence, during this regime, there exists a
diagram of hard-sphere mixtures. Since the particles nevarnique solution for the distribution constituting the crystal.
exchange potential energy, temperature does not influend&’e expect this kinetically mediated distribution to be
their configurations, only their speeds. So the phase diagramapped within colloidal crystallites in laboratory samples
has only as many axes as there are different sizes of spheretimat are quiescent and therefapearto have reached equi-
the mixture, each axis representing the concentration of onkbrium. We shall find that the particles buried deep within a
type of particle. When just two species of balls are mixedcrystallite are on averagemaller than would be expected
the diagram is already complicated, with thep#f and ex-  from an equilibrium calculation. If attractions exist between
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the hard particles, the effect can be so marked as to swangne for each species, which supply the extra constraints
the thermodynamic driving force that favdesger than av- needed to fix coexisting points, and to fix the volume of the
erage particles in the equilibrium crystal phase. crystal phase.

The rest of the article is organized as follows. In the next In the case of am-component system, there are-1
section we shall discuss the formal procedure for obtainingonstraints arising from equality of pressure anchemical
the equilibrium phase diagram of amcomponent hard- potentials. The problem of finding two coexisting points in
sphere system. We then go on to discuss the evidence thiite n-dimensional space of the phase diagram is a
experimental hard-sphere systems are not at equilibrium. I&n-dimensional problem, leaving us with
Sec. IV we construct the most general equations of motiorfn— 1)-dimensional phase boundaries. There are néaver
for diffusive growth of a polydisperse hard-sphere crystalrules, one for each species, allowing us to fix coexisting
and show that there exists a time regime during which thepoints on the phase boundaries, as well as the ratio of phase
distribution of particles dynamically incorporated into the volumes. We note that, in the continuously polydisperse
crystal has a time-invariant solution. It will transpire that thecase, the equations remain closed despite the infinite number
crystalline distribution is one that appears on the phasef thermodynamic variables. Therefore, in principle at least,
boundary in theequilibrium phase diagram, but is not lo- we know how to calculate the equilibrium phase behavior of
cated on the expected tie line, due to temporary violation okny hard-sphere system. The practicalities of phase separa-
the lever rule. Using a low-concentration approximation fortion in real systems are a different matter, which we now
the diffusion coefficients in the fluid phase, we shall derive,proceed to discuss.
in Sec. V, a simple replacement for the lever rule, which
yields the appropriate distributions for this nonequilibrium
situation. In Sec. VI we derive the conditions for local me- IIl. COLLOIDAL SYSTEMS

chanical and chemical balance at the crystal-fluid interface |, 5 polydisperse hard-sphere system each particle has a
(equivalent to finding binodals in the equilibrium phase dia‘slightly different size. In a given sample, then, there will be

gram using, for convenience, a perturbative approximation, thermodynamically large number of species present, and
that is valid for narrow dlstrlputlons. Section VII contains s the free energy is a function of the same number of
our results, and we conclude in Sec. VIII. concentration variables. As such a system tends toward equi-
librium, it must minimize its free energy with respect to
Il. EQUILIBRIUM PHASE DIAGRAMS these variables. The minimization in this case is obviously

As explained above, the phase diagram of single sizeSn“Ch more complicated than in the monodisperse situation,

(monodispersehard spheres is well known. The phase be-Where there is only one relevant parameter.

havior may be calculated via a theoretical treatment in the To reaph the equilibrium state f.rom some initial state that
following way. First, an expression for the Helmholtz free an experimenter prepares by mixing and homogenizing, the

energy of the fluid and crystalline phases must be foundSystem must separate itself into distinct regions of coexisting
From this, one has knowledge of all thermodynamic quan,[iphases. Even in the relatively simple case of monodisperse

ties. The phase boundaries are then determined by finding;lr:ase separa:_lon, there aruelgm?n;;hpath\;vzys by which the
the values ofp for which the pressure and chemical potential ase separation may ocdr3]. In the poly ISperse case,
are equal in two phases, signaling mechanical and chemicgﬂe situation is complicated further, as the densities of indi-
equilibrium between the' phases. The volumes of the tWandual species need not relax at the same rate as the overall

coexisting phases may be found by application of the IeVe'jensity. One could conceive a situation whereby phase equi-
rule ibrium is approached by a two-stage process, as has been

suggested previously for polymeric systefid]. In such a
BNt DiVi= ¢V ) scenario, the polydisperse system initially lowers its free en-

ergy by a quick and expedient demixing of material to form
in terms of the system volumé=V_+V;. The subscript  the separate phase regions. Subsequently, the distributions of
refers to a quantity in the crystal phaseefers to the fluid species within the phases are further optimized to attain the
phase, ang to the overall, oparent composition. The lever absolute minimum of free energy, which requires particles to
rule follows from conservation of material in the system. be exchanged between the separate regions. Alternatively, it

The situation is immediately complicated if we consider awould be possible for the system to separate into the two

system containing differently sized particles, although thephases with the optimum particle distribution right from the
formal procedure is wholly analogous. We illustrate this firststart. Perhaps more realistically, the separation could proceed
by a glance at a system of binary hard spheres. The phasdong a path somewhere between these two extremes.
diagram is now two dimensional, so the task of finding co- A clue to how the separation does occur is found in ex-
existing phases is a problem in four variables, because ongeriments on colloids of attractive particles. Colloidal sys-
must determine the concentrations of two species for each aéms may, given a sufficiently long ranged interparticle at-
the two phases. Coexisting phases must have equal presaction, exhibit two fluid phases, analogous to the liquid and
sures, as well as equal chemical potentials for each speciegas phases of atomic systems. Observations of the fluid-fluid
These three constraints on four unknowns lead to a locus gfhase separation reveal that the process is approximately as
fluid (crysta) states in the phase diagram that can coexisswift in the polydisperse case as in ttreea) monodisperse
with a crystal(fluid) phase. We now have two lever rules, [6]. Given that minimization of the polydisperse free energy
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the surrounding fluid. Let us characterize each particle spe-

~
= 1 - cies by its radiusa. The number density(a,r,t)da is a
crystal amorphous fluid function of position and time, as is the diffusive flux
‘6 = O O ~ O1W) < j(a,r,t)da, for particles with sizes in the interva—a
O @) O +da. We begin with an expression of continuity,
net flux
Gamx ~ On O 0o
dp(a) .
O O O 0 O OOQ — ==V, 2)
8 O O OOO
AOX congentraiion gradiefit ©) and a generalization of Fick’s law to polydisperse particles,

FIG. 1. Schematic illustration of the crystal growth mechanism.t0 describe the diffusive dynamics of the fluid phase,

must be carried out with respect to many more variables, it j(a,r,t)=—j D(a,a’,[p(a)])Vp(a',r,t)da’, (3
might be expected that the additional “sorting” required
would result in a slower relaxation to equilibrium. This sug- which tells us that the flux of a particular species depends on
gests that the initial phase separation is not the end of théhe concentration gradients afl species. The diffusion co-
story—the systems are relaxing to equilibrium by a two-efficient D(a,a’,[p(a)]) is a functional of the composition
stage process, with an initial fast separation of material, folp(a). Later, we will introduce a particular form fdp, but
lowed by particle exchange to absolutely minimize the freefor now we continue with the general case.
energy. We must also describe the physics of the interface be-
Such an optimization stage is feasible between two fluidween the fluid and crystalline regions. First, we demand
phases as, given sufficient time, particles can diffuse betweegbnservation of material. H, is the position of the interface,
phases. In a hard-sphere fluid-crystal phase separation, oyt time the interface advances a distangein this time,

ever, the system has a problem. The caging of particles anit ; f the crvstal surf “swall N ur
their neighbors suppresses diffusion within the crystal to a area ot the crystal surface “swaflows up™ a volumg

very low rate, mediated only by lattice defects. Optimizing©f the fluid, requiring an additionaioAp particles, where

the population of particles in the crystal, by exchanging a3p is thg(posmve) difference in densities across the inter-

macroscopic amount of material with the adjacent fluid reface. Sor is related to the flux across the interface by

gion, is therefore unachievable on experimental time scales. N

Hence we expect the crystalline population to be arrested in j(@)=—nroAp(a), (4)

a nonequilibrium state, so that the footprint of the initial, ~

expedient stage of phase separation remains observable \ieren is a unit normal to the interface.

late times. Various empirical approximations exist for the flux across
Therefore, if we wish to make predictions as to the phaséhe interface between nonequilibrium phases. In the follow-

behavior of hard-sphere colloids, we need to move awayng, the details of the approximation will turn out to be un-

from equilibrium predictions and model the process of crysdmportant. We choose the standard Wilson-Frenkel @]

tal growth. We now develop such a model, with a view towhich, for a monodisperse system, is given by

predicting the size distribution that forms within a polydis-

perse hard-sphere crystal. - (expAu)—1

j:_nV s A )

V. CRYSTAL GROWTH PROCESS wherev is a constantDy is a short-time self-diffusion coef-

In this section, we outline the treatment of the kineticficient, Ax is the chemical potential difference across the
process during crystal-fluid phase separation. We begin bipterface(with units such thakgT=1), andA is the inter-
considering a size-polydisperse sample of colloidal particle$acial width. We generalize it for our polydisperse system to
suspended in solvent, prepared with a composition lying in
the fluid-crystal coexistence region of the phase diagram.
The sample is assumed to be initially homogeneous. Eventu-
ally, a crystal will randomly nucleate somewhere in the fluid,
creating a concentration gradient in the fluid, as the immediwherel'(a,a’,[p(a)]) is a mobility for particles of radiua
ate vicinity of the growing crystal is depleted of particles. due to a chemical potential difference in particles of radius
Particles will diffuse down this gradient toward the crystal,a’. The mobility is a functional of the whole set of concen-
with the smaller particles diffusing more quickly. The situa- trations present.
tion is illustrated in Fig. 1. It should be noted that the latent We now search for a solution to our equations. For sim-
heat released during the crystal formation does not hindeplicity, let us assume that the crystal grows with spherical
crystallization. This is because the solvent acts as a heat batsymmetry, neglecting the possibilities of faceting or den-
keeping the temperature of the system constant. dritic growth. We try a solution in which lengths scalet3$

We wish to find the composition of the crystal, for which the validity of which will be examinea posteriori We may
we require the time- and position-dependent composition ofhen replacer —RtY2. With this assumption, we can write

-~ [ T@a’ [o@expsu(an-1dar,
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the density of particles of radiwsasp(a,r,t)=p(a,R). Ata
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tion of the supersaturated fluid has been depléted while

given value ofR, the density remains constant in time; the condensation nuclei grow as if isolajefut after the crystal-

diffusive flux, however, will fall off ast~ /2, as it is propor-
tional to density gradients. We write the flux gs,r,t)

=t~'2)(a,R). Let us use these variables to rewrite the rel-
evant equations. The generalized Wilson-Frenkel law be-

comes

epr,u(a’)—l}

J(a,R):_ﬁf F(a,a,,[P(a)])| At,l/z

Note thatA, the width of the interface, is the only length that

does not scale ad’>. Since the fluxJ is now independent of
t; the right-hand sidéRHS) must also be time independent,
so we have

expAu(a)—1=g(a)t—*?
with some(unknown) functiong(a), which gives

Ap(a)—g(a)t 2-0 (6)

fluid interface has locally equilibrated following the initial
transients of nucleation.
V. A MODIFIED LEVER RULE

In order that an analytic solution is possible, we now
make the simplest possible choice of the diffusion coefficient
present in Fick's law, and write

D(a,a’)=Dgy(a)d(a—a’)=

S(a—a’), (10

k
2dm7na
whereDy(a) is the monodisperse diffusion coefficient of a
particle of sizea, taken to be of Stokes-Einstein form. In
making this approximation, our generalized Fick's law re-
duces to the ordinary form for each species independently.
This neglects the flux of a given species due to density gra-
dients of all other species. This becomes correct in the low-
density limit[15], but will be incorrect at the large densities

at late times, confirming our expectation that the interfaceequired for coexistence in a hard-sphere system. Here, the
tends to local equilibrium. The Wilson-Frenkel law has dem-generalized Fick's law has been discarded, but a more so-
onstrated the relevant physics, that lengths controlling subphisticated treatment could utilize it along with a more accu-
interfacial dynamics remain microscopic and therefore berate approximation to the diffusion coefficient, such as the

come irrelevant.

expression given in Refl15] to second order in concentra-

The equation of continuity may also be written in terms oftion. The consequences of our low-density approximation
the scaled variables. As spherical symmetry is assumed, wand the. likely effects of the neglected interactions are dis-
transform tod-dimensional spherical coordinates. Hence Eq.cussed in Sec. VIII.

(2) becomes

dp(a,R) 2( Jg d-1
IR = ﬁ O_)—R+ T J(a,R) (7)
Similarly, we write Fick’s law[Eqg. (3)] as
dp(a’,R
JaR)= —f D(a,a’,[p(a)])p(;—R)da’. ®)
From Eq.(4), we obtain
1
J(@,Ro)=~5Rolpc(a) —p(aRo) ], 9

wherep.(a) is the density distribution in the crystal aij
is the value oRR at the interface. Note that,(a) is indepen-

dent of position and time. Our scaling solution yields a

unigue answeli(although not the equilibrium oneor the
crystalline compositior{for a given system and parenin
other words, the crystal grows uniformly.

We now wish to solve our system of equations. We begin
with Eq. (8),

dp(a,R)
IR

—J(a,R)=Dy(a) . (11)

Substituting in Eq(7), and with a little work, we find

(1-d)
T ex
2\Dy(a) [{

with Jy(a) appropriately defined. Now using the expression
of continuity of particles at the interfad®), we fix Jyo(a),
leaving us with

R2

J(a,R)=Jp(a) ~ 4Dy(a)

JaR=-3Rdp(@-pr@ly  exd 5

(12)

We now have a closed pair of time-independent equationg here the density distribution in the fluid at the interface has

[Egs.(7,8)], with the boundary condition &= R, given by
Eq. (9) and, from Eq.(6), local thermodynamic equilibrium
across the interface. The boundary conditionRat>oo is
p(a,R)—pp(a) since theparentdistributionp,(a) exists in

the bulk. The fact that this asymptote remains time indepen-
dent is a consequence of our scaling solution, for which all
lengths vary as?. We see, then, that this scaling solution

describes the regime of growtieforethe distant composi-

been written ag¢(a). Integrating Eq(11), and applying the
boundary condition aR— o, we obtain forp(a,R)

=J(a,R")

p(a,R)=pp(a)+ jR md R'.

On substitution from Eq(12), we obtain
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d-1 4R(2)—R/2)dR,
ex —4Do(a) .

13

po(@)—p(aR) _ Ro M@
pc(@)—pi(a) 2Do(a) Jr | R’

This yields a closed form expression fpfa,R). For our
present purposes, we evaluate Ef3) at R=R,. With a
change of variables to=R’/R,, we find

pp(d) —ps(a) Ro

= = , 14
x(@) p(@)—pi(a) | 2yDy(a) 19
where
2 . [=exp—u?)
fd(x)EZe" de Tdu
x u

Jmxe< erfex for d=1 s

- 2x2(1— mxe erfcx) for d=3.
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VI. LOCAL EQUILIBRIUM

In order to solve Eq(6) for the locally coexisting density
distributions that ensure chemio@nd mechanicalbalance
across the crystal-fluid interface, we need a technique by
which to calculate phase equilibria in a polydisperse system.
This is a difficult task, even in the simplest case of an equi-
librium system for which the free energy is known, since the
free energy is a functidal) of an infinity of concentration
variables. Several different approaches have been developed
to tackle the problerfil7], most relying on a numerical stage
to the solution. In pursuit of a concise result, we adopt a
perturbative approach that yields analytic answers in a closed
form. The method has previously been applied to equilibrium
problems[11,12. We shall adapt the mathematics to deal
with the nonequilibrium aspects of the system, by replacing
the lever rule with our nonequilibrium equivalent.

We take a monodisperse system as a reference state, and
treat the polydispersity as a perturbation. This permits us to
deal with systems in which the degree of polydispersity is, in
some sense, small, and will be applicable only if the poly-
disperse system behaves similarly to the monodisperse limit.
In particular, we expect to find coexistences corresponding to
those present in the monodisperse system, with binodal con-

This is an important result in our treatment of the kinetiCS.CentrationS and other properties altered a little by the p0|y_

Recall that, in a systerat equilibrium conservation of ma-
terial is expressed by the lever rdlEqg. (1)], which may be
reexpressed as

pp(@)—pg(a) V¢
@) —pra) V" (19

dispersity. For details of the method, the reader is directed to
Ref.[12].

Let us briefly explain the notation used. For a species of
particle of radiusa, we define a small, dimensionless number
e=(a—ap)/ay, to quantify its deviation from the radiieg,
of particles in the monodisperse reference system. We denote
the number density of particles of “size¢ asp(e)de. Nor-
malized distributions are denotgx{e), and subscripts label

whereV andV, are the overall system volume and the vol- ihe relevant population of particles, be it that of the crystal
ume of the crystglllne phf_:lse, respeqtlvely. The den3|t|es hav&), fluid (f), or parent p). Angular brackets denote aver-
the same meanings as in EQ4), with the exception that = 56 over the relevant distribution. We choose the reference

herep¢(a) refers to the equilibrium fluid, which will be the sizea, to be the mean of our parent distribution so that, by
same throughout that phase, while in the nonequilibrium casgefinition (€), is identically zero.

the subscripf refers only to the fluid at the interface. We o, approach is as follows. We wish to find the condi-
stress that the lever rule domst hold in the situation under {jng for equality of pressure and chemical potentials across
consideration. Rather, on comparing EGE) and (14), we  hq interface between crystal and fluid. The pressure of a
note that Eq.(14) may be considered an alternative to the hjaqe s a functional of the whole distribution of densities
lever rule in our nonequilibrium system. Obviously we mustyyithin it Likewise, the chemical potential of a species is a
conserve matter in the nonequilibrium system as a whole, buf,ctional of the density distribution, and is also a function
here we are only considering a certain region, into whichyt ihe particular species in question, characterized by its size

there is a flux of material. deviatione. So we need to solve the infinitplus one of
In the same way as the lever rule closes the set of eq“%‘quations

tions governing equilibrium phase behavidand fixes

V./V), Eq. (14) closes the same set of equations in the non- Plpi(€)]=P[pc(€)], (17)
equilibrium case(and fixesRy). As we are not conserving
material in this case, the tie lines predicted in the nonequi- w(e[pi(e)D=u(e,[pc€)]) Ve, (18

librium phase diagram, using E¢L4), need not be straight.
In summary, the crystal formed has a composition that liethe latter of which is the late-time limit of Eq6). These
on the equilibrium phase boundary, since it coexists with aelations betweem;(e) and p.(e) define the phase bound-
local region of fluid, but this composition appears at the endaries of an equilibrium phase diagramyfe) space. Simul-
of the “wrong” tie line. taneously applying the modified lever rulgg. (14)] then

So now we have an alternative to the lever rule for ourfixes uniquely the coexisting distributions. To solve Egs.
nonequilibrium system. Using this, along with conditions of (17,18, we expand their slowly varying parts i At zeroth
local equilibrium at the crystal fluid interface, we shall pre- order, this yields the conditions for local equilibrium in the
dict the phase behavior of our polydisperse system. monodisperse system, for which solutions are known. A
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problem exists in expanding EL8). In the reference sys- Pe (pe—pt)

tem, species for whick# 0 are unpopulated, so their chemi- Ps(€)=pp(€){ 1+ xo—[Alp]f—x1 e+ 0(62))-

cal potential is negative infinity. This singularity is logarith- Pr P (25)
mic in the density, as is the case for an ideal ga$(e)

=Inp(e). To circumvent the problem, we shall subtract off Note that Eq(17) for equality of pressure was not required.
this singular part, and work with the excess chemical potenk affects the results only at higher order dén

tial u®=u— u', in terms of which Eq(18) becomes In order to employ these equations, we need expressions
for xo, x1 [which depend oDy(€) and the unknowrR],
pi(e)expuii(e,[pi(€)])=pcle)expuc(e,[pcl€)]), and the densities of each phase in the nonequilibrium poly-
(19 disperse system. Consider the behavioRgf the scaled po-

sition of the interface. This controls the rate of growth, via

which may be substituted into E¢l4), the modified lever ro=RotY2 Physically.R, must depend on the composition

rule, to yield of the system, i.e., on the density distributipp(€), so Ry
(o) =Ro(pp.(€)p.(€?p, ...). Assuming thatR, can be
pol€)= Po (20 smoothly expanded about its monodisperse value thus:

x(€)+[1—x(e)lexdu(e,[p(e)D]f

where the notatiofix]f denotes the difference in quantiy
between the phases, i.8,—X;, and we have writtery(e)
for x((1+ €)ap) as defined in Eq(14).

If we now express each density distributip(e) in terms
of its normalizatiorp and moments(e),(€?), ...} then the
excess chemical potential, appearing on the RHS of(Hg).
can be expanded §%2]

Ro=Rm(pp) + Ri(pp){€)pT Ris(pp){€)5+Ralpp){€”)p
4+ ...

we find that, to first order, it is unchanged from the mono-
disperse value, sincge),=0. We may therefore use the
monodisperse value oR, in our first order calculation.
Hence, we can takeg, to be the monodisperse value of
f4(Ro/2yDy(€)), given by Eq.(14). That is,

A(p)
pelp(OD=pg(pfe) +——etO(e) (21 po—p! -
X0~ m’
Pc ™ Pt
in terms of its valueug" for the mean species in the phase ¢
(which differs a little[12] from the overall mean a&¢=0) i.e., xo is the distance of the quench from the monodisperse

and the functiomA(p) that parametrizes the variation of ex- phase boundary, as a fraction of the width of the coexistence
cess chemical potential with size. Note tha(p) region. The unknown crystal growth rafg is then given, in
=pdu®/de, with the derivative evaluated in the limit of a terms of the inverse of the functioiy, by
narrow distribution. . ,
Expanding the exponential in E¢R0), and writing x( ) Ro=2Dof4 " (x0) + O((€?)p) (27
= xo+ €x1+ O(€?), we obtain _ .
with Dy evaluated ate=0. Taylor expansion of Eq(14)
e)(é+1 E+(1—xo)[Alp]f then gives
pc(e)zpp( )(£+1) 1- X xo)l p]f+0(62) ,
1+ x0é 1+ x0é ,
(22) _d)((e) _ RoDy _,

X1= de 4Dg/2 d

Ro

whereé=exp(—[ug1f) — 1, with p¢(€) given, from Eq(14), 2\Do
by (pp—pcx)/(1—x). The overall density in either phase is whereDj=dD,/de is evaluated at=0.
then given by integration over all sizes. This allows one to By integration of Eq.(22), one finds thatto first ordey
obtain an expression farormalizedsize distributions. The  he gverall densities of each phase are unchanged from the
difference in this distribution between phases is thus found tenonodisperse values. Hence, on the RHS of Ea4d) and
obey an expression that is independent of kinetic parametergs) we may use the monodisperse, equilibrium values of

these quantities.

[P(e)1§=—Ppp(e){e[ Alp]§+O(e?)}. (23
Combining this result with the modified lever rdlgq. (14)] VII. RESULTS
recovers expressions for the normalized size distributions on Tpe formal expressions obtained are now applied to the
either side of the crystal-fluid interface, case study of nonattracting polydisperse hard spheres, for
(pe—p¢) which the value of the paramet€A/p]{ has been deter-
pe(€)=pyle)| 1+ (Xo—l)ﬂ[A/P]?—Xl Pe” Pt € mined previouslyf12,7] as —3.55 in units ofkT.
Pp p Equationg13), (24), and(25) allow calculation of density
profiles in our system. An example is plotted in Fig. 2, which
+O(ez)) , (24)  shows density profiles calculated for a nonattractive hard-

sphere system id=3 spatial dimensions. One can see that
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kinetic equilib.

PO / pE) - pE)
ag p(g) 4 -10.004
| —— 2
1 | 1 .
-0.1 0 0.1
1.00q<c=*°°°""" . .
-0.1 0.1 €
0.964
-0.004 7
0.924
FIG. 4. The difference in normalized size distributions in the
crystal between that calculated using the present kinetic model, and

0.88 that of the equilibrium theoryfor the parent used in Fig.)2

. . o made available by removing the larger particles to the crystal
_ FI_G. 2. Density profiles for three of the |_nf|n|te number of_spe- phase. What then is the effect of the growth process on the
cies in the hard-sphere system: the mean sized specte8,(solid  gjze distributions? The effect can be seen by plotting the
line), a large speciese(=0.01, dashedl and a small speciese( gitfarence between size distributions in the crystal as pre-
=—0.01, dottegl The normalized parent distribution is Gaussian gjcteq py the kinetic and equilibrium calculations. This is
(insep, with standard deviatior/{ €?)=0.05; the parent concentra- shown in Fig. 4.
tion is ¢p=0.52. We see the effect of kinetics is to bias the distribution in
e i the crystal toward smaller sizes. We take the first moment of
the diffusion process transports small particles to the crystaIEq (24) to find the mean sizée), in the crystal, which is a
. . . . . . C [}
fluid interface in relatively greater abundance than it doegnction of the overall concentration in the system. It is plot-
large particlegrelative to the numbers in the parent distribu- 104 in Fig. 5 as a function of the relative supersaturajign
tion). Thus, when thermodynamic effedtsf local equilib- beyond the fluid phase boundary.
rium at the crystal-fluid interfagedecide which particles are At xo=0, the system is at equilibrium, at its cloud point
incorporated into the crystal, the choice is made from a bi; e the fluid is not supersaturated, and the crystal phase at
ased version of the parent. The result of this is that the CrySsqeyistence occupies an infinitesimal volume. As a result,
tal is made up of particles that are, on average, smaller thafe orowth rater, vanishes, and the mean size deviation in
WOE|d b? thezzaSﬁ in eqU"Lb”UT- late the size distribution 1€ CTYStal attains its equilibrium valye).=3.55€%),. As
. thqua 'OT(l )_a OWS Uus fo ca cuaet isme IStri ul 10N the supersaturation of the initial fluid state increases, the
In the crystal, given any narrow parent. AS an examplé We,q 5, particle size in the crystal becomes smaller, in an al-
use a Gaussian parent. For comparison the resulting d'smbmost (although not quitglinear fashion. In the limit where
tions in the fluid and crystal, for a system that has reache e initial state is so dense that crystallization induces no

thermodynamic equilibriungas predicted by the equilibrium itv ch h ize in th | Is that in th
perturbation theorf12]) are displayed in Fig. 3. We note cgjg?;tty(ce;a:ng)e,t & mean size In the crystal equals thatin the

that the crystal has a preference for larger particles, telling u
that entropy is maximized if the particles are partitioned in (€)
this way. Heuristically, this is because the particles’ posi- 5
tional entropy in the fluid phase is increased if more space is (€ >p

3.

0 0.2 0.4 0.6 0.8 TXo

01 &
FIG. 5. The mean size deviation of particles in the crystal, in

FIG. 3. Theequilibrium size distribution in the crystalsolid units of the overall variancée}cl<52>p, as a function of relative
line) and fluid (dotted. supersaturation of the initial fluid phagg.
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Note that, in the hard-sphere system, although the effealepleted regions do significantly overlap, the supersaturation
of kinetics is to reduce the mean particle size in the crystal, ibf the fluid phase is soon exhausted. The remaining mix of
remains larger than the overall parental mean, {€,=0.  predominantly large particles, which have remained in the
Hence, in a sense, the thermodynamic effects of crystal-fluifluid, will eventually coat each crystallite, and growth will
partitioning win over the kinetics. We find that this is a con- cease when no concentration gradient remains in the fluid.
sequence of the small density change at the hard-sphefgence, in laboratory samples, we expect the inert colloidal
crystal-fluid phase transitiorp(/p;—1~10%). In a second  ¢rystallites to have an unknown core of a few particles that
case studynot presented herewe have substituted into Eq. collected together during the early nucleation stage, a signifi-
(24) parameters appropriate to a system of hard spheres Wil pyik of the uniform composition we have calculated,
attractive interactiongl2] (in particular, the “depletion” in- o4 = honuniform coating of larger particles. Happily, equi-

teraction arising in colloid-polymer mixturgd.8]). In that librium phase diagrams, that have previously been calculated

case, the coexistence region can become much broader singg, redundant, as the uniform composition from the scal-
with strong attractions, even a very dilute gas of hard spheres

; ) ihg regime of crystal growth does lie on the equilibrium
can crystallize. Then we find a range of values ygf for hase boundary, although not on the tie line specified by the
which crystals form from particlesmalleron average than P Y 9 P y

the mean composition of the system, if),<0, signaling usual lever rule. For our calculation to be useful, the core
the dominance of the kinetic effects bresénted here. region of each crystallite, whose composition we do not

know, must be small compared with the whole crystallite,
which requires a low concentration of condensation nuclei to
VIIl. CONCLUSION appear in the system.

The above scenario should hold, no matter how the diffu-
ion matrix (which determines the flux of each species in-
uced by concentration gradients of any other spgoi@ses

We have argued that colloidal hard-sphere system¥"ith c_oncentr.ation. Although col_lective .moti.ons and many-
(which are inevitably polydisperseform crystals whose body mterachons lead to a npnlmear diffusion equation for
composition is not at equilibrium, i.e., does not maximize thethe fluid[15], this affects details of the shape of the concen-
entropy of the two-phase ensemble. Instead, particles afgation profiles in Fig. 2, but does not alter theé” growth
caged in the Crysta”ine structure. In practice’ some Sma”l.aW or the conditions of local interfacial equilibrium, Ieading
scale rearrangements within the crystal can take place in tH@ a uniform crystalline composition. Also, the qualitative
presence of lattice defects, but the rate of particle diffusion igrinciple remains, that small particles diffuse most quickly.
negligible (particularly with interparticle attractionscom- To find quantitative solutions, however, we were com-
pared to that in the fluid phase. As a result, the distribution opelled to make two approximations. The first, in order to
particle sizes frozen into a colloidal crystal remains as a relidiagonalize the diffusion matrix, was a low-concentration
of its growth mechanism. approximation which, although it has a regime of validity

The establishment of chemical equilibrium requires anear the fluid phase boundary of attractive systems, is other-
significant fraction of each chemical species to be exchangegise quantitatively poor. In its favor, it yields qualitatively
many times between the crystal and fluid phases. Asignificant results. The trend in Fig. 5, for instance, is cor-
hypothetical system in which this occurs, so that phasgect, tending as it does from an equilibrium result at the fluid
space is fully e_xplored _a_nd distributions are _optlml_zed,phase boundaryzero supersaturationy,=0) to a total ab-
would preferentially partition more _Iarge pample_-s mto_ ence of demixing at the crystal boundary,€1). More
Lhz;e\/ecrr}:]Sc:?eI: gggig’ izowtr?iia F;grtgﬁ; 'SO;TEOEgF)gﬁRg%yﬂul':;ccurate analysis reveals complex physics. The diffusion co-

e ; " . efficient for smaller particles may be attenuated nidfsg or
contrast, the diffusive growth process biases the crystallin N
composition toward small particles, since they can travefess[.zo] than for_larger ones as concentratloq Increases, de-
pending on details of the mixture. However, in experiments

most quickly from the distant bulk of the ambient fluid. . . . e )
While the mean particle size at the crystal-fluid interface®" binary colloids{21], the long-time self-diffusion coeffi-

must be larger in the crystal side than in the adjacent fluidCients of the small/large particles were found to remain in
the largest, most sluggish particles remain predominantly iifPProximately the same ratio over a wide range in concen-
the fluid bulk. tration. This, together with intuition based on effective me-
The regime for which we were able to find analytical dium theory, leads us to believe that the small particles will
solutions of the equations of motion was at intermediatedlways tend to diffuse more quickly.
times, when all relevant lengths scale with timetH#$ That Our second approximation holds true for many experi-
is, after transients associated with the initial random nuclemental systems. Hard-sphere colloids can be synthesised
ation event have passed so that, on the scale of the interfaci@2] with a narrow distribution of particle size@ypically
width (a few particle diameteysthe phases are at local equi- 2—10 % tolerance in the ragliifor which perturbation about
librium, but before the fluid zone of depleted concentrationa monodisperse reference state, to first order in size devia-
around each condensation nucleus begins to overlap with itsons, has been shown to yield accurate results for two-phase
neighbors, so that the distant fluid composition still asymp-equilibrium[11,12), which is local in this case. The pertur-
totes to that of the initial“parent”) mixture. Once these bation expansion holds, given that the perturbation, the

The kinetics of polydisperse systems are sufficiently com-
plex that few analytical or even numerical studies have beeﬁ
attempted. Exceptions are Refé&4] and[19].
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width of the distribution is sufficiently small. With increas- gation at interfaces, leading to different physics from the
ing polydispersity, the system is expected to exhibit singuladiffusion-limited regime calculated here.

behavior, partitioning its particles into several coexisting

crystal phases of more uniformly sized particlg3], or ACKNOWLEDGMENTS
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