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Diffusive growth of polydisperse hard-sphere crystals
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Unlike atoms, colloidal particles are not identical, but can only be synthesised within a finite size tole
Colloids are therefore polydisperse, i.e., mixtures of infinitely many components with sizes drawn fr
continuous distribution. We model the crystallization of hard-sphere colloids~with/without attractions! from an
initially amorphous phase. Although the polydisperse hard-sphere phase diagram has been widely stud
not straightforwardly applicable to real colloidal crystals, since they are inevitably out of equilibrium.
process by which colloidal crystals form determines the size distribution of the particles that comprise
Once frozen into the crystal lattice, the particles are caged so that the composition cannot subsequen
to the equilibrium optimum. We predict that the mean size of colloidal particles incorporated into a crys
smaller than anticipated by equilibrium calculations. This is because small particles diffuse fastest and
fore arrive at the crystal in disproportionate abundance.

DOI: 10.1103/PhysRevE.64.011404 PACS number~s!: 64.75.1g, 81.10.Aj, 82.70.Dd
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I. INTRODUCTION

How many ways are there to pack balls into a box? T
answer, of course, is infinitely many, since each ball can
placed in a continuum of different positions. However, if o
tried to count the different arrangements, one would no
that many of them are very similar. The predominant pa
ing arrangements for a given concentrationf ~the fraction of
the total volume occupied by the balls! are summarized by
the hard-sphere equilibrium phase diagram, which is w
known when all spheres are of equal size@1#. A face-
centered-cubic~fcc! crystal phase exists for any concentr
tion from close packing atf5p/A18 @2# down to f
50.545. Forf,0.494 a fluid phase exists in which config
rations are amorphous, and between these two concentra
statistical weight is dominated by systems partitioned i
fluid and crystalline regions. On the other hand, when diff
ently sized balls are considered, the full phase diagram is
known. It may seem at first surprising that such a straig
forward question is still a field of active research.

The subject is not merely of idle interest. Many real su
stances, particularly colloids, are composed of spherical
ticles with negligible energetic interactions except for a h
repulsion at contact. For a further, very large class of s
stances, the hard-sphere model is a useful starting poin
more accurate theories@3#. Studying their configurations is
of central importance to our understanding of matter, and
implications for the development of new materials.

It is often assumed that the configurations observed
real material, such as a hard-sphere colloid, are thos
highest entropy~lowest free energy for non-hard-sphere i
teractions!, i.e., those that dominate the counting of all po
sible arrangements. On this equilibrium assumption, m
efforts have been devoted to exploring the elaborate ph
diagram of hard-sphere mixtures. Since the particles ne
exchange potential energy, temperature does not influe
their configurations, only their speeds. So the phase diag
has only as many axes as there are different sizes of sphe
the mixture, each axis representing the concentration of
type of particle. When just two species of balls are mix
the diagram is already complicated, with theory@4# and ex-
001/64~1!/011404~9!/$20.00 64 0114
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periment@5# finding regions of fluid, pure crystals, and cry
talline alloys of theA andB type particles in the ratiosAB,
AB2, or evenAB13 depending on the size ratio. In the ‘‘poly
disperse’’ hard-sphere phase diagram, for systems suc
real colloids, in which each particle is slightly different from
every other, an infinite number of axes is needed to span
space of all possible compositions. A small corner of t
phase diagram has been charted by experiments@6#, simula-
tions @7#, and theories based on phenomenological free e
gies @8#, integral equations@9#, cell theory@10#, and pertur-
bation about a monodisperse system@11,12#. When the
overall concentration of particles is low, an amorphous flu
phase inevitably results. At higher concentrations, it is
pected that crystals of quite monodisperse~similarly sized!
particles can form, even when the overall size distribution
broad @7#, in which case, particles of the wrong size to
included in the crystal remain in a coexisting fluid phas
Many predictions exist for the equilibrium distribution o
particle sizes in a polydisperse crystal at coexistence wi
fluid.

We shall argue that such equilibrium states are not
straightforwardly applicable to colloidal systems as might
expected, and shall calculate an alternative distribution
particle sizes, which we expect to comprise the crystalli
observed in real suspensions. The size distribution of p
ticles incorporated into colloidal crystals is determined
the kinetics of their formation and, as we shall explain, ne
relaxes to the equilibrium distribution, remaining instead a
relic of that process. Despite the fact that the state of
system evolves while the crystals are growing, we shall sh
that a large temporal regime exists during which the dis
bution of species incorporated into a growing crystal is
variant with time. Hence, during this regime, there exists
unique solution for the distribution constituting the cryst
We expect this kinetically mediated distribution to b
trapped within colloidal crystallites in laboratory sampl
that are quiescent and thereforeappearto have reached equi
librium. We shall find that the particles buried deep within
crystallite are on averagesmaller than would be expected
from an equilibrium calculation. If attractions exist betwe
©2001 The American Physical Society04-1
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the hard particles, the effect can be so marked as to sw
the thermodynamic driving force that favorslarger than av-
erage particles in the equilibrium crystal phase.

The rest of the article is organized as follows. In the n
section we shall discuss the formal procedure for obtain
the equilibrium phase diagram of ann-component hard-
sphere system. We then go on to discuss the evidence
experimental hard-sphere systems are not at equilibrium
Sec. IV we construct the most general equations of mo
for diffusive growth of a polydisperse hard-sphere crys
and show that there exists a time regime during which
distribution of particles dynamically incorporated into th
crystal has a time-invariant solution. It will transpire that t
crystalline distribution is one that appears on the ph
boundary in theequilibrium phase diagram, but is not lo
cated on the expected tie line, due to temporary violation
the lever rule. Using a low-concentration approximation
the diffusion coefficients in the fluid phase, we shall deri
in Sec. V, a simple replacement for the lever rule, wh
yields the appropriate distributions for this nonequilibriu
situation. In Sec. VI we derive the conditions for local m
chanical and chemical balance at the crystal-fluid interf
~equivalent to finding binodals in the equilibrium phase d
gram! using, for convenience, a perturbative approximat
that is valid for narrow distributions. Section VII contain
our results, and we conclude in Sec. VIII.

II. EQUILIBRIUM PHASE DIAGRAMS

As explained above, the phase diagram of single si
~monodisperse! hard spheres is well known. The phase b
havior may be calculated via a theoretical treatment in
following way. First, an expression for the Helmholtz fre
energy of the fluid and crystalline phases must be fou
From this, one has knowledge of all thermodynamic qua
ties. The phase boundaries are then determined by fin
the values off for which the pressure and chemical potent
are equal in two phases, signaling mechanical and chem
equilibrium between the phases. The volumes of the
coexisting phases may be found by application of the le
rule,

fcVc1f fVf5fpV ~1!

in terms of the system volumeV5Vc1Vf . The subscriptc
refers to a quantity in the crystal phase,f refers to the fluid
phase, andp to the overall, orparent, composition. The lever
rule follows from conservation of material in the system.

The situation is immediately complicated if we conside
system containing differently sized particles, although
formal procedure is wholly analogous. We illustrate this fi
by a glance at a system of binary hard spheres. The p
diagram is now two dimensional, so the task of finding c
existing phases is a problem in four variables, because
must determine the concentrations of two species for eac
the two phases. Coexisting phases must have equal p
sures, as well as equal chemical potentials for each spe
These three constraints on four unknowns lead to a locu
fluid ~crystal! states in the phase diagram that can coe
with a crystal~fluid! phase. We now have two lever rule
01140
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one for each species, which supply the extra constra
needed to fix coexisting points, and to fix the volume of t
crystal phase.

In the case of ann-component system, there aren11
constraints arising from equality of pressure andn chemical
potentials. The problem of finding two coexisting points
the n-dimensional space of the phase diagram is
2n-dimensional problem, leaving us wit
(n21)-dimensional phase boundaries. There are nown lever
rules, one for each species, allowing us to fix coexist
points on the phase boundaries, as well as the ratio of ph
volumes. We note that, in the continuously polydispe
case, the equations remain closed despite the infinite num
of thermodynamic variables. Therefore, in principle at lea
we know how to calculate the equilibrium phase behavior
any hard-sphere system. The practicalities of phase sep
tion in real systems are a different matter, which we n
proceed to discuss.

III. COLLOIDAL SYSTEMS

In a polydisperse hard-sphere system each particle h
slightly different size. In a given sample, then, there will
a thermodynamically large number of species present,
thus the free energy is a function of the same number
concentration variables. As such a system tends toward e
librium, it must minimize its free energy with respect
these variables. The minimization in this case is obviou
much more complicated than in the monodisperse situat
where there is only one relevant parameter.

To reach the equilibrium state from some initial state th
an experimenter prepares by mixing and homogenizing,
system must separate itself into distinct regions of coexis
phases. Even in the relatively simple case of monodispe
phase separation, there are many pathways by which
phase separation may occur@13#. In the polydisperse case
the situation is complicated further, as the densities of in
vidual species need not relax at the same rate as the ov
density. One could conceive a situation whereby phase e
librium is approached by a two-stage process, as has b
suggested previously for polymeric systems@14#. In such a
scenario, the polydisperse system initially lowers its free
ergy by a quick and expedient demixing of material to fo
the separate phase regions. Subsequently, the distributio
species within the phases are further optimized to attain
absolute minimum of free energy, which requires particles
be exchanged between the separate regions. Alternative
would be possible for the system to separate into the
phases with the optimum particle distribution right from t
start. Perhaps more realistically, the separation could proc
along a path somewhere between these two extremes.

A clue to how the separation does occur is found in e
periments on colloids of attractive particles. Colloidal sy
tems may, given a sufficiently long ranged interparticle
traction, exhibit two fluid phases, analogous to the liquid a
gas phases of atomic systems. Observations of the fluid-fl
phase separation reveal that the process is approximate
swift in the polydisperse case as in the~near! monodisperse
@6#. Given that minimization of the polydisperse free ener
4-2



,
d
g-
th
o
fo
re

ui
e
ho

b
o
ng

re
le
d
al,
le

as
a

ys
to
s-

tic
b

le
i

am
nt
id
d
s
al
a-
n
d

ba

h
o

pe-

x

es,

on
-

be-
nd
,

r-

ss
w-

n-

-
he

to

ius
n-

m-
cal
n-

e

m

DIFFUSIVE GROWTH OF POLYDISPERSE HARD- . . . PHYSICAL REVIEW E 64 011404
must be carried out with respect to many more variables
might be expected that the additional ‘‘sorting’’ require
would result in a slower relaxation to equilibrium. This su
gests that the initial phase separation is not the end of
story—the systems are relaxing to equilibrium by a tw
stage process, with an initial fast separation of material,
lowed by particle exchange to absolutely minimize the f
energy.

Such an optimization stage is feasible between two fl
phases as, given sufficient time, particles can diffuse betw
phases. In a hard-sphere fluid-crystal phase separation,
ever, the system has a problem. The caging of particles
their neighbors suppresses diffusion within the crystal t
very low rate, mediated only by lattice defects. Optimizi
the population of particles in the crystal, by exchanging
macroscopic amount of material with the adjacent fluid
gion, is therefore unachievable on experimental time sca
Hence we expect the crystalline population to be arreste
a nonequilibrium state, so that the footprint of the initi
expedient stage of phase separation remains observab
late times.

Therefore, if we wish to make predictions as to the ph
behavior of hard-sphere colloids, we need to move aw
from equilibrium predictions and model the process of cr
tal growth. We now develop such a model, with a view
predicting the size distribution that forms within a polydi
perse hard-sphere crystal.

IV. CRYSTAL GROWTH PROCESS

In this section, we outline the treatment of the kine
process during crystal-fluid phase separation. We begin
considering a size-polydisperse sample of colloidal partic
suspended in solvent, prepared with a composition lying
the fluid-crystal coexistence region of the phase diagr
The sample is assumed to be initially homogeneous. Eve
ally, a crystal will randomly nucleate somewhere in the flu
creating a concentration gradient in the fluid, as the imme
ate vicinity of the growing crystal is depleted of particle
Particles will diffuse down this gradient toward the cryst
with the smaller particles diffusing more quickly. The situ
tion is illustrated in Fig. 1. It should be noted that the late
heat released during the crystal formation does not hin
crystallization. This is because the solvent acts as a heat
keeping the temperature of the system constant.

We wish to find the composition of the crystal, for whic
we require the time- and position-dependent composition

FIG. 1. Schematic illustration of the crystal growth mechanis
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the surrounding fluid. Let us characterize each particle s
cies by its radiusa. The number densityr(a,r,t)da is a
function of position and time, as is the diffusive flu
j(a,r,t)da, for particles with sizes in the intervala→a
1da. We begin with an expression of continuity,

]r~a!

]t
52“• j~a!, ~2!

and a generalization of Fick’s law to polydisperse particl
to describe the diffusive dynamics of the fluid phase,

j~a,r,t !52E D~a,a8,@r~a!# !“r~a8,r,t !da8, ~3!

which tells us that the flux of a particular species depends
the concentration gradients ofall species. The diffusion co
efficient D„a,a8,@r(a)#… is a functional of the composition
r(a). Later, we will introduce a particular form forD, but
for now we continue with the general case.

We must also describe the physics of the interface
tween the fluid and crystalline regions. First, we dema
conservation of material. Ifr 0 is the position of the interface
in unit time the interface advances a distanceṙ 0. In this time,
unit area of the crystal surface ‘‘swallows up’’ a volumeṙ 0

of the fluid, requiring an additionalṙ 0Dr particles, where
Dr is the ~positive! difference in densities across the inte
face. Soṙ 0 is related to the flux across the interface by

j~a!52n̂ṙ 0Dr~a!, ~4!

wheren̂ is a unit normal to the interface.
Various empirical approximations exist for the flux acro

the interface between nonequilibrium phases. In the follo
ing, the details of the approximation will turn out to be u
important. We choose the standard Wilson-Frenkel law@16#
which, for a monodisperse system, is given by

j52n̂nDs

~expDm!21

L
,

wheren is a constant,Ds is a short-time self-diffusion coef
ficient, Dm is the chemical potential difference across t
interface~with units such thatkBT[1), andL is the inter-
facial width. We generalize it for our polydisperse system

j~a!5
2n̂

L E G„a,a8,@r~a!#…$expDm~a8!21%da8 , ~5!

whereG„a,a8,@r(a)#… is a mobility for particles of radiusa
due to a chemical potential difference in particles of rad
a8. The mobility is a functional of the whole set of conce
trations present.

We now search for a solution to our equations. For si
plicity, let us assume that the crystal grows with spheri
symmetry, neglecting the possibilities of faceting or de
dritic growth. We try a solution in which lengths scale ast1/2,
the validity of which will be examineda posteriori. We may
then replacer→Rt1/2. With this assumption, we can writ

.

4-3
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R. M. L. EVANS AND C. B. HOLMES PHYSICAL REVIEW E64 011404
the density of particles of radiusa asr(a,r ,t)5r(a,R). At a
given value ofR, the density remains constant in time; th
diffusive flux, however, will fall off ast21/2, as it is propor-
tional to density gradients. We write the flux asj(a,r ,t)
5t21/2J(a,R). Let us use these variables to rewrite the r
evant equations. The generalized Wilson-Frenkel law
comes

J~a,R!52n̂E G„a,a8,@r~a!#…H expDm~a8!21

Lt21/2 J da8.

Note thatL, the width of the interface, is the only length th
does not scale ast1/2. Since the fluxJ is now independent o
t; the right-hand side~RHS! must also be time independen
so we have

expDm~a!215g~a!t21/2

with some~unknown! function g(a), which gives

Dm~a!→g~a!t21/2→0 ~6!

at late times, confirming our expectation that the interfa
tends to local equilibrium. The Wilson-Frenkel law has de
onstrated the relevant physics, that lengths controlling s
interfacial dynamics remain microscopic and therefore
come irrelevant.

The equation of continuity may also be written in terms
the scaled variables. As spherical symmetry is assumed
transform tod-dimensional spherical coordinates. Hence E
~2! becomes

]r~a,R!

]R
5

2

R S ]

]R
1

d21

R D J~a,R!. ~7!

Similarly, we write Fick’s law@Eq. ~3!# as

J~a,R!52E D„a,a8,@r~a!#…
]r~a8,R!

]R
da8. ~8!

From Eq.~4!, we obtain

J~a,R0!52
1

2
R0@rc~a!2r~a,R0!#, ~9!

whererc(a) is the density distribution in the crystal andR0
is the value ofR at the interface. Note thatrc(a) is indepen-
dent of position and time. Our scaling solution yields
unique answer~although not the equilibrium one! for the
crystalline composition~for a given system and parent!. In
other words, the crystal grows uniformly.

We now have a closed pair of time-independent equati
@Eqs.~7,8!#, with the boundary condition atR5R0 given by
Eq. ~9! and, from Eq.~6!, local thermodynamic equilibrium
across the interface. The boundary condition atR→` is
r(a,R)→rp(a) since theparentdistributionrp(a) exists in
the bulk. The fact that this asymptote remains time indep
dent is a consequence of our scaling solution, for which
lengths vary ast1/2. We see, then, that this scaling solutio
describes the regime of growthbefore the distant composi-
01140
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tion of the supersaturated fluid has been depleted~i.e., while
condensation nuclei grow as if isolated!, butafter the crystal-
fluid interface has locally equilibrated following the initia
transients of nucleation.

V. A MODIFIED LEVER RULE

In order that an analytic solution is possible, we no
make the simplest possible choice of the diffusion coeffici
present in Fick’s law, and write

D~a,a8!5D0~a!d~a2a8!5
kT

2dpha
d~a2a8!, ~10!

whereD0(a) is the monodisperse diffusion coefficient of
particle of sizea, taken to be of Stokes-Einstein form. I
making this approximation, our generalized Fick’s law r
duces to the ordinary form for each species independen
This neglects the flux of a given species due to density g
dients of all other species. This becomes correct in the lo
density limit @15#, but will be incorrect at the large densitie
required for coexistence in a hard-sphere system. Here,
generalized Fick’s law has been discarded, but a more
phisticated treatment could utilize it along with a more acc
rate approximation to the diffusion coefficient, such as
expression given in Ref.@15# to second order in concentra
tion. The consequences of our low-density approximat
and the likely effects of the neglected interactions are d
cussed in Sec. VIII.

We now wish to solve our system of equations. We be
with Eq. ~8!,

2J~a,R!5D0~a!
]r~a,R!

]R
. ~11!

Substituting in Eq.~7!, and with a little work, we find

J~a,R!5J0~a!S R

2AD0~a!
D (12d)

expS 2
R2

4D0~a! D
with J0(a) appropriately defined. Now using the expressi
of continuity of particles at the interface~9!, we fix J0(a),
leaving us with

J~a,R!52
1

2
R0@rc~a!2r f~a!#

R0

R

d21

expS R0
22R2

4D0~a!
D ,

~12!

where the density distribution in the fluid at the interface h
been written asr f(a). Integrating Eq.~11!, and applying the
boundary condition atR→`, we obtain forr(a,R)

r~a,R!5rp~a!1E
R

`J~a,R8!

D0~a!
dR8.

On substitution from Eq.~12!, we obtain
4-4
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rp~a!2r~a,R!

rc~a!2r f~a!
5

R0

2D0~a!
E

R

`S R0

R8
D d21

expS R0
22R82

4D0~a!
D dR8.

~13!

This yields a closed form expression forr(a,R). For our
present purposes, we evaluate Eq.~13! at R5R0. With a
change of variables tou[R8/R0, we find

x~a![
rp~a!2r f~a!

rc~a!2r f~a!
5 f dS R0

2AD0~a!
D , ~14!

where

f d~x![2ex2
xdE

x

`exp~2u2!

ud21
du

5H Apxex2
erfcx for d51

2x2~12Apxex2
erfcx! for d53.

~15!

This is an important result in our treatment of the kineti
Recall that, in a systemat equilibrium, conservation of ma-
terial is expressed by the lever rule@Eq. ~1!#, which may be
reexpressed as

rp~a!2r f~a!

rc~a!2r f~a!
5

Vc

V
, ~16!

whereV andVc are the overall system volume and the vo
ume of the crystalline phase, respectively. The densities h
the same meanings as in Eq.~14!, with the exception that
herer f(a) refers to the equilibrium fluid, which will be the
same throughout that phase, while in the nonequilibrium c
the subscriptf refers only to the fluid at the interface. W
stress that the lever rule doesnot hold in the situation unde
consideration. Rather, on comparing Eqs.~16! and ~14!, we
note that Eq.~14! may be considered an alternative to t
lever rule in our nonequilibrium system. Obviously we mu
conserve matter in the nonequilibrium system as a whole,
here we are only considering a certain region, into wh
there is a flux of material.

In the same way as the lever rule closes the set of eq
tions governing equilibrium phase behavior~and fixes
Vc /V), Eq. ~14! closes the same set of equations in the n
equilibrium case~and fixesR0). As we are not conserving
material in this case, the tie lines predicted in the noneq
librium phase diagram, using Eq.~14!, need not be straight
In summary, the crystal formed has a composition that
on the equilibrium phase boundary, since it coexists wit
local region of fluid, but this composition appears at the e
of the ‘‘wrong’’ tie line.

So now we have an alternative to the lever rule for o
nonequilibrium system. Using this, along with conditions
local equilibrium at the crystal fluid interface, we shall pr
dict the phase behavior of our polydisperse system.
01140
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VI. LOCAL EQUILIBRIUM

In order to solve Eq.~6! for the locally coexisting density
distributions that ensure chemical~and mechanical! balance
across the crystal-fluid interface, we need a technique
which to calculate phase equilibria in a polydisperse syst
This is a difficult task, even in the simplest case of an eq
librium system for which the free energy is known, since t
free energy is a function~al! of an infinity of concentration
variables. Several different approaches have been devel
to tackle the problem@17#, most relying on a numerical stag
to the solution. In pursuit of a concise result, we adop
perturbative approach that yields analytic answers in a clo
form. The method has previously been applied to equilibri
problems@11,12#. We shall adapt the mathematics to de
with the nonequilibrium aspects of the system, by replac
the lever rule with our nonequilibrium equivalent.

We take a monodisperse system as a reference state
treat the polydispersity as a perturbation. This permits us
deal with systems in which the degree of polydispersity is
some sense, small, and will be applicable only if the po
disperse system behaves similarly to the monodisperse li
In particular, we expect to find coexistences correspondin
those present in the monodisperse system, with binodal c
centrations and other properties altered a little by the po
dispersity. For details of the method, the reader is directe
Ref. @12#.

Let us briefly explain the notation used. For a species
particle of radiusa, we define a small, dimensionless numb
e[(a2a0)/a0, to quantify its deviation from the radiusa0
of particles in the monodisperse reference system. We de
the number density of particles of ‘‘size’’e asr(e)de. Nor-
malized distributions are denotedp(e), and subscripts labe
the relevant population of particles, be it that of the crys
(c), fluid ( f ), or parent (p). Angular brackets denote ave
ages over the relevant distribution. We choose the refere
sizea0 to be the mean of our parent distribution so that,
definition, ^e&p is identically zero.

Our approach is as follows. We wish to find the cond
tions for equality of pressure and chemical potentials acr
the interface between crystal and fluid. The pressure o
phase is a functional of the whole distribution of densit
within it. Likewise, the chemical potential of a species is
functional of the density distribution, and is also a functi
of the particular species in question, characterized by its
deviatione. So we need to solve the infinity~plus one! of
equations

P@r f~e!#5P@rc~e!#, ~17!

m„e,@r f~e8!#…5m„e,@rc~e8!#… ;e, ~18!

the latter of which is the late-time limit of Eq.~6!. These
relations betweenr f(e) and rc(e) define the phase bound
aries of an equilibrium phase diagram inr(e) space. Simul-
taneously applying the modified lever rule@Eq. ~14!# then
fixes uniquely the coexisting distributions. To solve Eq
~17,18!, we expand their slowly varying parts ine. At zeroth
order, this yields the conditions for local equilibrium in th
monodisperse system, for which solutions are known.
4-5
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problem exists in expanding Eq.~18!. In the reference sys
tem, species for whicheÞ0 are unpopulated, so their chem
cal potential is negative infinity. This singularity is logarith
mic in the density, as is the case for an ideal gas,m id(e)
5 ln r(e). To circumvent the problem, we shall subtract o
this singular part, and work with the excess chemical pot
tial mex[m2m id, in terms of which Eq.~18! becomes

r f~e!expm f
ex
„e,@r f~e!#…5rc~e!expmc

ex
„e,@rc~e!#…,

~19!

which may be substituted into Eq.~14!, the modified lever
rule, to yield

rc~e!5
rp~e!

x~e!1@12x~e!#exp†mex
„e,@r~e!#…‡f

c
~20!

where the notation@x# f
c denotes the difference in quantityx

between the phases, i.e.,xc2xf , and we have writtenx(e)
for x„(11e)a0… as defined in Eq.~14!.

If we now express each density distributionr(e) in terms
of its normalizationr and moments$^e&,^e2&, . . . % then the
excess chemical potential, appearing on the RHS of Eq.~20!
can be expanded as@12#

mex
„e,@r~e!#…5m0

ex~r,^e&!1
A~r!

r
e1O~e2! ~21!

in terms of its valuem0
ex for the mean species in the pha

~which differs a little @12# from the overall mean ate50)
and the functionA(r) that parametrizes the variation of e
cess chemical potential with size. Note thatA(r)
5rdmex/de, with the derivative evaluated in the limit of
narrow distribution.

Expanding the exponential in Eq.~20!, and writingx(e)
5x01ex11O(e2), we obtain

rc~e!5
rp~e!~j11!

11x0j H 12e
x1j1~12x0!@A/r# f

c

11x0j
1O~e2!J ,

~22!

wherej[exp(2@m0
ex# f

c)21, with r f(e) given, from Eq.~14!,
by (rp2rcx)/(12x). The overall density in either phase
then given by integration over all sizes. This allows one
obtain an expression fornormalizedsize distributions. The
difference in this distribution between phases is thus foun
obey an expression that is independent of kinetic parame

@p~e!# f
c52pp~e!$e@A/r#b

a1O~e2!%. ~23!

Combining this result with the modified lever rule@Eq. ~14!#
recovers expressions for the normalized size distributions
either side of the crystal-fluid interface,

pc~e!5pp~e!S 11H ~x021!
r f

rp
@A/r# f

c2x1

~rc2r f !

rp
J e

1O~e2! D , ~24!
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pf~e!5pp~e!S 11H x0

rc

rp
@A/r# f

c2x1

~rc2r f !

rp
J e1O~e2! D .

~25!

Note that Eq.~17! for equality of pressure was not require
It affects the results only at higher order ine.

In order to employ these equations, we need express
for x0 , x1 @which depend onD0(e) and the unknownR0#,
and the densities of each phase in the nonequilibrium p
disperse system. Consider the behavior ofR0, the scaled po-
sition of the interface. This controls the rate of growth, v
r 05R0t1/2. Physically,R0 must depend on the compositio
of the system, i.e., on the density distributionrp(e), so R0
5R0(rp ,^e&p ,^e2&p , . . . ). Assuming that R0 can be
smoothly expanded about its monodisperse value thus:

R05Rm~rp!1R1~rp!^e&p1R11~rp!^e&p
21R2~rp!^e2&p

1•••,

we find that, to first order, it is unchanged from the mon
disperse value, sincêe&p[0. We may therefore use th
monodisperse value ofR0 in our first order calculation.
Hence, we can takex0 to be the monodisperse value o
f d„R0/2AD0(e)…, given by Eq.~14!. That is,

x05
rp2r f

m

rc
m2r f

m
, ~26!

i.e., x0 is the distance of the quench from the monodispe
phase boundary, as a fraction of the width of the coexiste
region. The unknown crystal growth rateR0 is then given, in
terms of the inverse of the functionf d , by

R052AD0f d
21~x0!1O~^e2&p! ~27!

with D0 evaluated ate50. Taylor expansion of Eq.~14!
then gives

x15
dx~e!

de
52

R0D08

4D0
3/2

f d8S R0

2AD0
D ,

whereD085dD0 /de is evaluated ate50.
By integration of Eq.~22!, one finds that~to first order!

the overall densities of each phase are unchanged from
monodisperse values. Hence, on the RHS of Eqs.~24! and
~25!, we may use the monodisperse, equilibrium values
these quantities.

VII. RESULTS

The formal expressions obtained are now applied to
case study of nonattracting polydisperse hard spheres
which the value of the parameter@A/r# f

c has been deter
mined previously@12,7# as23.55 in units ofkT.

Equations~13!, ~24!, and~25! allow calculation of density
profiles in our system. An example is plotted in Fig. 2, whi
shows density profiles calculated for a nonattractive ha
sphere system ind53 spatial dimensions. One can see th
4-6
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the diffusion process transports small particles to the crys
fluid interface in relatively greater abundance than it do
large particles~relative to the numbers in the parent distrib
tion!. Thus, when thermodynamic effects~of local equilib-
rium at the crystal-fluid interface! decide which particles are
incorporated into the crystal, the choice is made from a
ased version of the parent. The result of this is that the c
tal is made up of particles that are, on average, smaller
would be the case in equilibrium.

Equation~24! allows us to calculate the size distributio
in the crystal, given any narrow parent. As an example
use a Gaussian parent. For comparison the resulting dist
tions in the fluid and crystal, for a system that has reac
thermodynamic equilibrium~as predicted by the equilibrium
perturbation theory@12#! are displayed in Fig. 3. We not
that the crystal has a preference for larger particles, telling
that entropy is maximized if the particles are partitioned
this way. Heuristically, this is because the particles’ po
tional entropy in the fluid phase is increased if more spac

FIG. 2. Density profiles for three of the infinite number of sp
cies in the hard-sphere system: the mean sized species (e50, solid
line!, a large species (e50.01, dashed!, and a small species (e
520.01, dotted!. The normalized parent distribution is Gaussi
~inset!, with standard deviationA^e2&50.05; the parent concentra
tion is fp50.52.

FIG. 3. Theequilibrium size distribution in the crystal~solid
line! and fluid ~dotted!.
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made available by removing the larger particles to the cry
phase. What then is the effect of the growth process on
size distributions? The effect can be seen by plotting
difference between size distributions in the crystal as p
dicted by the kinetic and equilibrium calculations. This
shown in Fig. 4.

We see the effect of kinetics is to bias the distribution
the crystal toward smaller sizes. We take the first momen
Eq. ~24! to find the mean sizêe&c in the crystal, which is a
function of the overall concentration in the system. It is plo
ted in Fig. 5 as a function of the relative supersaturationx0
beyond the fluid phase boundary.

At x050, the system is at equilibrium, at its cloud poin
since the fluid is not supersaturated, and the crystal phas
coexistence occupies an infinitesimal volume. As a res
the growth rateR0 vanishes, and the mean size deviation
the crystal attains its equilibrium value^e&c53.55̂ e2&p . As
the supersaturation of the initial fluid state increases,
mean particle size in the crystal becomes smaller, in an
most ~although not quite! linear fashion. In the limit where
the initial state is so dense that crystallization induces
density change, the mean size in the crystal equals that in
parent (̂ e&50).

FIG. 4. The difference in normalized size distributions in t
crystal between that calculated using the present kinetic model,
that of the equilibrium theory~for the parent used in Fig. 2!.

FIG. 5. The mean size deviation of particles in the crystal,
units of the overall variancêe&c /^e2&p , as a function of relative
supersaturation of the initial fluid phasex0.
4-7
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Note that, in the hard-sphere system, although the ef
of kinetics is to reduce the mean particle size in the crysta
remains larger than the overall parental mean, i.e.,^e&c>0.
Hence, in a sense, the thermodynamic effects of crystal-fl
partitioning win over the kinetics. We find that this is a co
sequence of the small density change at the hard-sp
crystal-fluid phase transition (rc /r f21'10%). In a second
case study~not presented here!, we have substituted into Eq
~24! parameters appropriate to a system of hard spheres
attractive interactions@12# ~in particular, the ‘‘depletion’’ in-
teraction arising in colloid-polymer mixtures@18#!. In that
case, the coexistence region can become much broader s
with strong attractions, even a very dilute gas of hard sphe
can crystallize. Then we find a range of values ofx0 for
which crystals form from particlessmaller on average than
the mean composition of the system, i.e.,^e&c,0, signaling
the dominance of the kinetic effects presented here.

VIII. CONCLUSION

The kinetics of polydisperse systems are sufficiently co
plex that few analytical or even numerical studies have b
attempted. Exceptions are Refs.@14# and @19#.

We have argued that colloidal hard-sphere syste
~which are inevitably polydisperse! form crystals whose
composition is not at equilibrium, i.e., does not maximize
entropy of the two-phase ensemble. Instead, particles
caged in the crystalline structure. In practice, some sm
scale rearrangements within the crystal can take place in
presence of lattice defects, but the rate of particle diffusio
negligible ~particularly with interparticle attractions! com-
pared to that in the fluid phase. As a result, the distribution
particle sizes frozen into a colloidal crystal remains as a r
of its growth mechanism.

The establishment of chemical equilibrium requires
significant fraction of each chemical species to be exchan
many times between the crystal and fluid phases.
hypothetical system in which this occurs, so that ph
space is fully explored and distributions are optimize
would preferentially partition more large particles in
the crystal phase, so that particles in the coexisting fl
have more space in which to enjoy positional entropy.
contrast, the diffusive growth process biases the crystal
composition toward small particles, since they can tra
most quickly from the distant bulk of the ambient flui
While the mean particle size at the crystal-fluid interfa
must be larger in the crystal side than in the adjacent flu
the largest, most sluggish particles remain predominantl
the fluid bulk.

The regime for which we were able to find analytic
solutions of the equations of motion was at intermedi
times, when all relevant lengths scale with time ast1/2. That
is, after transients associated with the initial random nuc
ation event have passed so that, on the scale of the interf
width ~a few particle diameters!, the phases are at local equ
librium, but before the fluid zone of depleted concentrat
around each condensation nucleus begins to overlap wit
neighbors, so that the distant fluid composition still asym
totes to that of the initial~‘‘parent’’ ! mixture. Once these
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depleted regions do significantly overlap, the supersatura
of the fluid phase is soon exhausted. The remaining mix
predominantly large particles, which have remained in
fluid, will eventually coat each crystallite, and growth w
cease when no concentration gradient remains in the fl
Hence, in laboratory samples, we expect the inert colloi
crystallites to have an unknown core of a few particles t
collected together during the early nucleation stage, a sig
cant bulk of the uniform composition we have calculate
and a nonuniform coating of larger particles. Happily, eq
librium phase diagrams, that have previously been calcula
are not redundant, as the uniform composition from the s
ing regime of crystal growth does lie on the equilibriu
phase boundary, although not on the tie line specified by
usual lever rule. For our calculation to be useful, the c
region of each crystallite, whose composition we do n
know, must be small compared with the whole crystalli
which requires a low concentration of condensation nucle
appear in the system.

The above scenario should hold, no matter how the dif
sion matrix ~which determines the flux of each species
duced by concentration gradients of any other species! varies
with concentration. Although collective motions and man
body interactions lead to a nonlinear diffusion equation
the fluid @15#, this affects details of the shape of the conce
tration profiles in Fig. 2, but does not alter thet1/2 growth
law or the conditions of local interfacial equilibrium, leadin
to a uniform crystalline composition. Also, the qualitativ
principle remains, that small particles diffuse most quickl

To find quantitative solutions, however, we were co
pelled to make two approximations. The first, in order
diagonalize the diffusion matrix, was a low-concentrati
approximation which, although it has a regime of validi
near the fluid phase boundary of attractive systems, is ot
wise quantitatively poor. In its favor, it yields qualitativel
significant results. The trend in Fig. 5, for instance, is c
rect, tending as it does from an equilibrium result at the flu
phase boundary~zero supersaturation,x050) to a total ab-
sence of demixing at the crystal boundary (x051). More
accurate analysis reveals complex physics. The diffusion
efficient for smaller particles may be attenuated more@15# or
less@20# than for larger ones as concentration increases,
pending on details of the mixture. However, in experime
on binary colloids@21#, the long-time self-diffusion coeffi-
cients of the small/large particles were found to remain
approximately the same ratio over a wide range in conc
tration. This, together with intuition based on effective m
dium theory, leads us to believe that the small particles w
always tend to diffuse more quickly.

Our second approximation holds true for many expe
mental systems. Hard-sphere colloids can be synthes
@22# with a narrow distribution of particle sizes~typically
2 –10 % tolerance in the radii!, for which perturbation abou
a monodisperse reference state, to first order in size de
tions, has been shown to yield accurate results for two-ph
equilibrium @11,12#, which is local in this case. The pertu
bation expansion holds, given that the perturbation~i.e., the
4-8



la
ng

a
r

he

ns.
of

DIFFUSIVE GROWTH OF POLYDISPERSE HARD- . . . PHYSICAL REVIEW E 64 011404
width of the distribution! is sufficiently small. With increas-
ing polydispersity, the system is expected to exhibit singu
behavior, partitioning its particles into several coexisti
crystal phases of more uniformly sized particles@23#, or
forming alloys with more complex unit cells@4,5#, to avoid
costly lattice interstitials of very mis-sized particles. In th
case, the growth may be controlled by the kinetics of seg
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hy

tt

tt
s.

.

d

M.

01140
r

t
e-

gation at interfaces, leading to different physics from t
diffusion-limited regime calculated here.
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