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Accurate calculation of three-body depletion interactions
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We compute three-body depletion interactions in a hard-sphere mixture within the framework of density-
functional theory and by considering the infinite dilution limit of the functional. The results look very accurate
and show three-body interactions much smaller than the pair depletion ones, revealing that these are strongly
influenced by correlations and have a decay length similar to the two-body depletion potential. The results are
compared with the predictions of the Asakura-Oosawa model for the triplet interactions.
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[. INTRODUCTION work to provide accurate numerical resul§. A previous
calculation has already been presented elsewl€ievhere
Asymmetric mixtures composed of species of highly dif-DFT was employed in the form of the Rosenfeld’s “funda-
ferent particle size have wide physical interest, covering thénental measure” functiongl11]. By minimizing the free
study of colloidal suspensions and macromolecular solution&€rdy on a 'three-'d|menS|onéBD) computational grid at
In these systems the component of large size, a colloid or glffere_nt configurations of the three large HS, the triplet
macromolecule, is surrounded by a fluid composed of sma epletion forces were C(_)mputed by a brute force a_ppro_ach. In
particles layered around it. The effective interaction exerte eneral, the numenca} |mplementat|on_ used o minimize the
between two or more large particles, is in general given b osenfeld func.tlonal in a fully three-dimensional geometry
both the bare interaction acting between them, e.g., of eleéuffers by a serious drawback due to the large amount of grid
trostatic nature, and the forces that may be of entropic origi oints needed to acc_urately_ solve_th_e computatlo_nal prot_)lem
alone, called depletion interactions, arising from the varia 12]. In fact, the rapid spatial variation of the fluid density

tion of the free energy of the surrounding fluid with the for a large size ratio between the two componestech as

: : : 5:1) and the intrinsically singular nature of the functional
nfiguration of the larger particl¢4]. To low rder, th . . . . ’
configuration of the larger particlgg]. To lowest order, the require a number of grid points that is beyond the actual

depletion effect can be described in terms of the AsakuracpU d bilities. In th ) K in ord
OosawaAO) theory[2,3] where the fluid is taken as an ideal and memory capabllities. In the previous work, in order

gas and the effective potential is computed as the variation dp _facilitate the calcula_ltion, a Iocz_;llly _adapti\_/e _grid was used
the volume available to the fluid with the colloids configu- to increase the numerical resolution in proximity of the large

ration. According to the simple AO theory, the depletion hard sphk:arr(]as, wher%tr(lje den5||t_)t/ \;gnes {Phore rr?md]}z ;heb
potential is a monotonic function of the colloids separation.apfroacf i .aT Frgw Iet' a (?ua| a Il:)/et' a hougl rg_ug ,toﬂ?er—
Depletion interactions arise from the presence of the fluid/a1on of triplet depietion forces but, when 100king at the

surrounding large colloids, the larger the difference in siz size of the numerical error bars as compared to the triplet

between the two components, the stronger the resulting e orces, the results were somewhat inconclusive. .
In the present paper, we employ an approach different

fective interaction. Moreover, the presence of excluded vol]c th ; it t by adonting th Cth tical
ume effects and internal correlations of the surrounding ﬂuid,rorn € previous attempt, by adopting the recent theoretica
dvances due to Rott al.[8]. Following these authors, we

modulates the effective interaction between the large palé‘ te th . d trivlet deoletion b :
ticles in a nontrivial way4]. compute the pair and triplet depletion forces by using a re-

Depletion forces are, in principle, many body in naturefmed form of the potential distribution theorem, the so-called

[5]. For example, when three particles approach each Othelrnfinite dilution limit, in order to reduqe the problem of cal-
the overall depletion interaction is not simply given by the CUlating the free energy of three particles to the case of only

sum of two-body interactions, as seen by computing triplefwo. .partlcles er'nbe.dded in the solvent of small HS.'By ex:
forces within the AO correlation-free picture. The magnitudepIOItIng the_ cylindrical symmetry of two large HS in the

of such triplet depletion forces is of interest to understand thé?lvem. fluid, - the pr(_)blem_ IS reduce_d _from a_three-
nature of solvent-mediated interactions and in designiniImenSIOnaI to a two-dimensional one. Similarly, Retal.

ood two-body parametrization of the effective potential be revio_usly computed pair depletion inyeractions in compari-
tgween colloids)[/5p—8]. As for the two-body case, Ft)he sum of Son with Monte Carlo resultsl3], showing that the method

the interaction due to AO interactions for a given three-iS viable and accurate in DFT. By psing the formulation O.f
particle configuration, and the fluid internal correlations, isthese authors, we are a_ble to Obf[a"? very accurate dep_let|on
expected to give rise to a modulated shape in the triple'furves and provide the first quantitative observation of triplet

depletion forces. depletion forces.

In the present paper we are interested in hard spheres  ner FoR HARD SPHERES AND THE INFINITE
(HS) and in computing the triplet depletion interaction ex- DILUTION LIMIT
erted between three large hard spheres surrounded by a sol-
vent composed of small hard spheres. To this purpose, we We considemN, large spheres of diametet, generating
use density-functional theoffDFT) as the theoretical frame- an external field for a mixture of small spheres of diameter
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o and density profileg(r), and large spheres of diameter With the following weighted densities defined as
oy, and density profilep,(r). The size ratio between the two

components isx=o,/0g. Given a configuratiofR;}(1<i o
<N,) of the large spheres, the two densities depend para- No(r)= p(r)o(r=r'| -0,
metrically on{R;} and satisfy the constraints
ps(r)=0, for|r—R;|<(oy,+0)/2 => SN2(1),
O-I/
pp(r)=0, for|r—R||<oy. (1)
. —_ . 1
In the grand cgnomcal ensemble, the_equmbrlum profiles nl(r):E pr(r’)5(|r—r’|—a )dr
p,(r),v=s,b, minimize the grand potential
QLos0) (N ERD = Flps(N)pp(N1+ X | pulr) =2 o),
XV R —pildr, ()

z(r)=Zv fpv(r’)é(lr—r’l—av)drEEv Ny, (1)

whereVe*(r{R;}) is the external potential.’ the reservoir
chemical potential, andF[ ps(r),pp(r)] the Helmholtz free
energy, customarily split into ideal and excess parts

na(r) =2, fpv(r’w(lr—r'l—oy)dr':Z N3, (1),
Flps(r),pu(r)]=Fialps(r),pu(r) 1+ Fed ps(r),pp(r) ], v v

1
where nva(r)=2 mvrj p(r")0(r—r'|—o,)dr’
Flps00oo(01=ksT 3 [ pul0)i0g A (1)1~ 1. 3
4
A, being the de Broglie thermal wavelength of speates
To date, the most accurate free-energy functional for hardhy,(r)= E \% f A e(r—=r'|—o)dr'=V,> N3, (r),

spheres is the Rosenfeld’s “fundamental measure” func- ®)
tional[14,11]. Rosenfeld functional for a homogeneous fluid
turns into the Percus-Yevick compressibility equation of
state[15], with a wide range of validity versus the packing
fraction. Among several different forms of the functional
proposed in the literaturgl6], we have chosen the one that _ , I ,
correctly provides freezing of the one-component hard- nZV(r)_J pur)&(r=r"|=a,)dr,
sphere system, with the proper treatment of the zero-
dimensional limit of the functional. Recently, Roth and
Dietrich have successfully tested the reliability of the Rosen- df’ﬂs,y(r)=f p(r)o(r=r'[—0,), )
feld functional for binary mixtures close to a planar hard
wall [18], while we have tested the functional for ternary
mixtures of HS in confined geometri¢$7,19 with Monte
Carlo results.

The Rosenfeld functional for HS has the form

where we have introduced the partial weighted densities

and the functioré(r) =|ny,|/n,(r).

In general, the weighted densities can be rewritten in
terms of scalar and vectorial weight functioag ,, via the
equation

na,V:f pI") @ (r—r")dr’. ®

—ng(r)log[1—n3(r)]

Felps1).o601=kaT [ @ (0,0
=keT f By functional differentiation of the total free energy, the
equilibrium densities are found to satisfy the following self-
N1(r)Na(r) —Nyy(r) - Nyo(r) consistent equation
1—n(r)

L (- &(n?)] ]d
.
24m[1—ng(r)]?

p,(1)=plexi — BVEX(r)+cM(n], 9

wherep®= A, *exp(8u,) is the reservoir bulk density and
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L SFex simplified by exploiting the symmetry of the external poten-
cn=-p 3p.(1) (100 tial, in fact reducing the problem to a one-dimensional cal-
Y culation.

is the one-body direct pair-correlation function. _An analogous procedure can be applied to compute the
The depletion potential between two large HS embeddediplet depletion potential of three large HS embedded in the
in a sea of small HS, is defined as the difference in gran§€@ of small HS. The triplet depletion potential is equal to the

potential between two configurations in which the pair is atdifference in grand potential between a configuration in
distanceR,, and at infinity, respectively: which three particles have overlapping excluded volume and

a configuration when the three particles have separations so
Wa(R10) = Q ([ ps(r), pp(r)];R12) !arge that they do not see each otlﬁ'ee.,_ the qorrelations
induced by each sphere on the surrounding fluid are mutually
—Q(ps(r),pp(r)];R1z—°). (1) independent

Roth et al. have shown that computing the depletion poten- \v 'R R. R.)=O(R: Rs Ra)— O(R: Ros 0 Ras oo
tial can be greatly simplified by writing the depletion poten- 3(R1:R2,Ry) =Ry, Ry Re) = 1Ry, Ro =8, Ry =)
tial in terms of the one-body direct correlation function of —Q(R;—x©,Ry,R3— )

the large spheres
—Q(Ry—»,Ry—»,Ry) 17
Wa(Ryp)=cf’(Ryz—) — c{(Ry,). (12
where we have dropped the functional dependence on densi-
The previous expression can be applied once an explicit forrties for simplicity. The three-body correction to the depletion
of the excess free energy is provided, as for the Rosenfelohteraction is therefore taken to be
free energy functional. In this case,
AWS3(R1,R2,R3)=W3(R1,R2,R3) = W3(Ry2) = W(Rya)

cé})(r>=—f§ At wp (r—1)dr’, (13 ~W,(Ry9), (18

where we have defined whereW, for different two-body configurations is computed
via independent calculations.
P We remark that the infinite dilution limit is applicable to
Aa(r)=aT(r). (14 compute triplet depletion interactions via both computer
“ simulations and experiments. Given the pair depletion inter-
If we set the density of the large HS to zero, i.e., in theaction, an accurate expression for the free-energy functional
infinite dilution limit of this species being unperturbed, the is needed to construct the triplet interactions.
weighted densities take the form: We now evaluate the triplet contribution to the depletion
potential within the AO model that, as we will show, arises
from the triply excluded volume of three spheres surrounded
na(r)zf ps(I")Ws o(r—r")dr". (19 by a perfect gas. Let us consider a system made of three
particles, embedded in a fluid at constant den;aiiyand
Equation (13) provides the so-called direct limit route to contained in a region of volumé;. Each sphere determines
computeW(r). In fact, given the small spheres density thata region precluded to density of volunve= (o, + o) /6.
minimizes the Rosenfeld functional, the weighted densitiedNow, let us consider the volume doubly precluded to the
n, and the functionA, can be evaluated to yield the pair density and formed by a paij of overlapping sphere¥;;
depletion potentia(12). and the volume triply precluded to the density and formed by
Alternatively, a numerical procedure can be applied toa tripleti,j,k of particles,Vj;, . A simple geometrical argu-
take the infinite dilution limit. This is obtained by consider- ment shows that, given three overlapping spheres, the vol-
ing the Rosenfeld free energy as a functional of both theime available to the surrounding fluid is:
small and large HS densities. The large HS density is taken

small enough to leave the small HS density unperturbed, and V85.=V1—3V+ Vot Vigt+ Vog—Vigs. (19
the depletion potential is obtained as
pb(R1) Similarly, Vi’ =V;—2V+V;; is the available volume due to
W(Ryp) = —kgT lim In—2—2 (16)  two overlapping spheres.

pp0  Po(Riz—>) The AO pair depletion potential is given by
The two d|§t|nct procz_adur_es allow to compute the pair dgple- W§O= _ kBTpg[Vi"’}”— (V1—2V)]
tion potential by considering the external potential of a single
large HS surrounded by a sea of small particles, eventually = —kBTpg[VT—2V+ViJ- —Vi+2V]
together with an infinitesimal density of the large spheres if 0
the numerical limit is used. In both cases, the computation is =—kgTpsVij, (20
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where we have dropped the dependence on the sphere pogihere
tions for clarity. Analogously, the three-body depletion po-

tential is 1 (2=
gas(rrr,!Z_Z,):_ d(ﬁwas[f(r,r’,Z_Z’)],
AO Or\ jav ' 2mJo '
= — kBTpg[VT_3V+ V12+ V13+ V23_ V123_ VT"F 3V] and
=—kgTpAViz+Vizt Vag—Vizal, (21)
! ol — _ ! _15
where the pair and triplet depletion potentials are both nega- frr',z=2))=[r—r'| 2

tive and do not depend on the volume of the singly excluded
regions. The corresponding three-body correction is derived
from Eq. (18), yielding:

=[r2+r'2-2rr'cos¢

S

Hz-2)- 22 (25

AW5O=KgTpeV 1z, (22
which is a positive quantity, depending on the triply ex- If\évt\a/;rr?:tjgrr\?véhﬁaiggular integral from the variaklanto
cluded volume only, and monotonic as the three sphereg1 '

move away from each other.

Before concluding this section, we remark that)(r) dep— 4(f+o42) ¢
needs to be computed by either using the direct limit of the {4r2r/2_[02_(f+gs/2)2]2}1/2 '
Rosenfeld functional or the numerical limit, analogously to
Eqg. (16), and in both cases the Rosenfeld functional needs to [c2— (f+04/2)2]2
be minimized given a configuration of two large HS. The CoS¢p= S , (26)
cylindrical symmetry can be fully exploited to increase the 2rr’

accuracy of the calculation with respect to a brute force ap-

proach where, in the presence of three large HS, the calcwhere we have introduced the functiofr,r’,z—z") being

lation involves a fully three dimensional minimization of the

functional. Moreover, instead of obtaining few points of the c’=r2+r'2+(z—272") (27

depletion potential, the method allows us to study the whole

three-body potential surface for a given two spheres separaye note that in expressio(6) for the differentiald¢ a

tion. factor 2 needs to be introduced given the two possible solu-
We finally note that Eq.(13) proves computationally tions for cosp in the range (& ¢<2m).

more convenient than the numerical limit route, since for the The explicit calculation oh,(r,z) then yields

former, only the one-component form of the functional needs

to be minimized. Moreover, the performances are also dif-

ferent, since the numerical limit route implies an extra com- n2(r,z)=J df'f dZ'f df

putational cost due to the use of the large sphere density and

further iterations in the free-energy minimization are re- ar’ (f+ a4/2) 6(1)

quired. Therefore, we will present numerical results obtained X— P PRy

via the direct limit of the functional to compute pair and {arr' == (f+042)°]%

triplet depletion interactions. r+og2 e
f dr’[ f dz'
€1

ZpS(r,YZI)

max(r — o4/2,0)

I1l. NUMERICAL IMPLEMENTATION

To solve the Rosenfeld functional for a pair of large HS n f*eldz, 2r'osps(r’,2") 29)
the optimal choice is to use cylindrical coordinates. As dis- [4r2r'2—(c?— o2/4)?]2’
cussed in the previous section, we consider here only the

density field of the small sphergg(r), and first look at the  where the extrema of integration are defined as

scalar weight functions, s andws . The relative weighted

densities are expressed in cylindrical coordinates as e;=max[o/4—(r' +1)2]¥?+ 2,2),

—ep

na,s(r)=fdr’ps(r’)wa,s(lr—r’l) e,=min([o2/4—(r'—1r)?]¥2+ 2,2+ 042), (29

o 3 and provided thaé,<e,.
=f dz’f dr'2mr’pg(r',z") g, s(r,r',z=2"), The explicit calculation of4(r,z) proceeds similarly by
o 0 applying the same transformation in the angular variable.
(23)  The resulting expression is
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- ’ , Ar' (f+ a4l2) 6(f)
n3(r,z)—f dr fdz f df{4r2r’2—[02—(f+0s/2)2]2}1/

_f dr’f dz,fmin(orloim—(r’fr)zf(zfz’)zll’% ar’(f+o42)
max(—og/2,~[o2/a— (1 +1)?—(z-2)21Y)  {4r?r'2—[c?— (f+ 0/2)?]?}1?

r+og/2 e3 €5
=f dr’ f dz’+f dz' }{ m—2tan !
max(r — o4/2,0) 0 ey

PHYSICAL REVIEW E54 011403

zps(r,,z,)

ps(r’,z")

c?—alla

[4r2r72_(02_0_§/4)2]1/2

]prs(r’,z’), (30

where the extrema of integration are
e;=max{[a2/4—(r+r')2]*2 0},

e,=min{o¢/2+ z,[g§/4— (r—r")2]%2+ 2},

fined by Eq.(14), and its bulk valueAg is known analyti-
cally. Therefore, the self-consistent £§) can be solved by
computing at each iteration step

c(n=-2 fAAa(r')wa,s(r’—r)dr’. (33)

es=max[o2/4—(r+r')?]¥2+ 2,7} (32)

o . _ The advantage of this formulation relies in that, since the
Similar lengthy expressions can be obtained for the vectoguantitiesAps, An,, andAA, are zero in the bulk, their
weighted density. However, a more convenient form for nu-spatial variations are reduced with respect to their absolute
merical purposes is obtained by using the relatiep(r)  values. Moreover, wherever a region precluded to density is
=V,n3(r), so that the vector weighted densities can be compresent in the computational domain, such as inside a large
puted by numerical differentiation of the scalar weightedhard sphere, the local values of andA, are taken to be

densityns(r). equal to their bulk values.
Due to the dependence of the weighted densities on (

—2') only, the integrals in the direction are easily com-
puted in Fourier space by using the convolution theorem,
therefore, with a performance that scales linearly with the As a preliminary benchmark of the described method, we
number of grid points in the axial direction. Vice versa, in have computed the depletion potential of a pair of large hard
the radial direction, the integrals are not convolutions any
more. These need to be computed with a cost that scales wit 4 - T - I T
the number of grid points per hard-sphere times the numbe ]
of grid points in the radial direction. —r =375 AO
A particular care is needed in computing the radial inte- b,
grals. In fact, spurious numerical correlations arise due to the e
discrete computational grid that is unable to account for the B,
fast variation of the weight functions close to the origin. For »
instance, this can be observed by direct inspection of;” g,
w,s(r,r'), the weight function with the strongest spatial & s
variation, versus’. The singular behavior is particularly rel- &,
evant ag —0. s,
To alleviate this problem, we have reformulated the mini- s, @
mization procedure by considering only quantities as differ- >, -
ences from the corresponding bulk values, which can be i . L
computed analytically, their corresponding values given by %, iy,
the Percus-Yevick equation of state. We define the following * "o,
guantities: Ty

IV. RESULTS

=80
90
“PRong.

0 0.5 1 1.5
Ana(r)=f (ps(r') = pw, ((r=r")dr’, Ab,

FIG. 1. The three-body correction to the potentdlV; /pokgT,
when a third sphere is moved a heigttt away from two spheres at
contact for size ratiax=2.5, 3.75, and 5. The full lines are from
the AO model and the symbols are the numerical DFT results in the
wheren,(r)=An,(r)+n%, andn? is the bulk value of the infinite dilution limit (with a packing fraction of small spheres of
weighted density, known analytically. Similarl,(r) is de- /30 000).

AAa<r>=Aa<r>—A2=j%<r>—A2, (32
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10 T T T T T 438 ! I | I
------- 2D calculation
y | — 1D calculation
. 4
\ / 2.4 B
v 3
12
0 T U ! ' I ’
-1s -0 0 10 15 PPy 2~

FIG. 2. Contour plot of the density of small spheres around two
large spheres. The separation of the large spheres is 10 in units ¢ 1=
the small sphere radius. Thez coordinate is along the line of the
centers of the large spheres and thmordinate is perpendicular to
this. The density values are measured in dimensionless units o o . ! s ! .
p(r)/ps, Wherepg is the bulk small hard-sphere density of 0.075. 6 8 1o 12
The size ratio of the small spheres to large spheres=$, and the Distance from Center/r
packing fraction isy= 7/10. The cell size is 6Q in the z direction
(along the line of the centers of the large spheeesd 20 along
ther direction in cylindrical coordinates. The grid used is made of
1800x 600 points.

FIG. 3. Comparison of density profiles of small spheres around
a single large sphere from the 1D and 2D approaches for a system
with @=5 and »=#/10. R is the distance from the center of the
sphere inrg units. The 1D spherically symmetric calculation uses
f327 radial grid points per small sphere radius and the 2D cylindri-

spheres for three different values of the packing fraction OcaIIy symmetric code uses 30 grid points per small sphere radius.

the surrounding quid,nzpsoga-r/G, and for a size ratiay
=5 in cylindrical coordinate$2D) and via the infinite dilu- report the contour plot of the density around a pair of spheres
tion limit in spherical coordinate§lD) (see Fig. 7 of Ref. at contact. The density exhibits maxima close to the HS bor-
[20]). A similar test has been previously md@g for the size  ders, and in particular close to the contact point between the
ratio =10, by comparing the Rosenfeld functional resultstwo spheres. The contour plot refers to a size ratio5 and
versus molecular dynamics dafd3]. We have obtained a packing fractiony= 7/10. The density map has been com-
nearly perfect agreement between the 1D and 2D apputed for a cylindrical simulation cell size of 38, in the
proaches, proving the quality of the performances of theaxial direction, and 1@ in the radial direction. The com-
Rosenfeld functional via a self-consistent test. At the sameutational grid is composed of 18800 points in the two
time, the numerical procedure in cylindrical coordinatesdirections, respectively.

looks accurate, lending confidence on the solution of the The numerical accuracy of the spherical versus cylindrical
three-body problem via the infinite dilution route. grid methods has been compared in Fig. 3, where we report

As a different preliminary test, we have considered the
three-body correction to the depletion potentieW; ob-
tained via the infinite dilution route and the Asakura-Oosawa
prediction, the latter becoming exact in the limit of a small
packing fraction of the surrounding fluid. The AO depletion
potential is obtained by using E2) and where the overlap
volume of three large HS has been computed via a numerica
integration procedure.

Figure 1 shows\ W, for three spheres in isosceles geom-
etry, with two spheres forming the base at contact and theB hE
third sphere displaced vertically at heighh. The calcula-
tion is repeated for three different values »f In all cases,
good agreement is found between the two approaches, il
particular for an intermediate value of the size ratio. A
simple but tedious geometrical argument shows that for
larger size ratio, the AO three-body depletion potential drops

-0.1 1 ] 1 ] 1 ]

to zero when the vertical separation excefgl Sy 21416
1 10 11 12 13 14 15 16 17
Ahmax=§[\/20'50'b+0'§—(l— \/§)Ub+0's]- (34) R/,

) L ) ) FIG. 4. The two-body depletion potentidl, from both the 1D
Moreover, as the size ratio is increased, the interaction besng 2D calculations, for=5 and»=#/10. The inset graph shows

comes more short ranged and disappears continuously wheRice the difference for these potentials. The 1D spherically sym-
a>6.46. metric calculation uses 327 radial grid points per small sphere ra-

The DFT approach allows us to inspect directly the localdius and the 2D cylindrically symmetric calculation uses 30 grid
behavior of the density, as illustrated in Fig. 2, where wepoints per small sphere radius.
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15

T I T I T
0.41
— n=w/10 T
--- M=n/15 _
o4 - v n=n/30
I s [ v L P n=w/10 AO|
-0.13 —]
04 1
-10 0 10
z -
0.41 7]
0.14 —
Pt
-0.13
i 1 ] ! ] ! ] 1 ] 1 ] !
0'30 1 2 3 4 5 6
=04 Ah/r
FIG. 6. Plots of the three-body contribution to the depletion
15 T : . potential felt by a third sphere a vertical distansé above the
041 contact point with the bottom two spheres. The size ratia#s5
and the packing fraction isy= /10 (solid curve, /15 (dashed
o4 curve, and 7/30 (dotted curvé The dotted-dashed curve refers to

the AO result fory= m/10.

013 considered as a combination of the numerical error due to
different grid resolutions and the usage of the approximate
04 Rosenfeld functional. The error is visible in the inset and
-10 0 10 exhibits limited oscillations smaller than 0.83T and with-
z out a definite trend versus the HS spacing; this error can be
FIG. 5. Contour plot of the three-body contributidiW; felt by Con.Sidered to be.va“d also fc.)r the three_bo.dy depletion po-
a third large hard sphere near two other spheres that are separattgdmals reported in the f0'||0WIng of the section.
by Ry,=10 1, (upper pang| 12 r (middle panel, and 14 (lower Th_e thre_e-t_)ody potentials are computed_once_the free_en-
pane). The packing fraction of the small spheresjif 7r/10. Out- €M@Y IS minimized for the two spheres conﬂgurauon.. In Fig.
side the region, there is no observable three-body potential and the W€ report the contour plots of the quantityV; obtained
white areas indicate the regions inaccessible to the third harfor three different separations of two spheres, for /10
sphere. The gray scale indicated is KT units. r is the radial and a=5. The plots show that the three-body potential is
coordinate, and is the distance along the axis, bothripunits. highly localized around the center line=€0) and is at least
one order of magnitude smaller than the typical two-body
the density profile of small spheres around a single larggotentials at the same packing fraction. Also, the three-body
sphere, obtained via the 1D and 2D methods. For this tesgontribution rapidly disappears when the particle separation
the size ratio isv="5 and the packing fraction is=7/10. In  becomes larger thanoz . An interesting feature of the con-
the 1D calculation, we used 327 grid points per small spheréour plots is the circular band structure observed when the
radius, whereas for the 2D calculation we used 30 grid pointtarge spheres are close to contact.
per small sphere radius. The contact values of the density are The behavior ofAW; is next extracted from the data,
found to be 3.9%, and 3.96p, for the 1D and 2D methods, considering a three-body isosceles geometry and by using
respectively. The discrepancy of around 1% will reflect onEq. (18) with R;=(—R22,0,0), R,=(R1,/2,0,0) andR;
the depletion forces, since these are surface integrals of the(0,0z), for different values ok Figure 6 illustrateA W,
density of the small spheres at contact with the large spherder «=5 and at three different packing fractions. The inter-
[22,5]. Overall, the two profiles show excellent matching atesting feature of the data is that the three-body potential is
all distances from the large sphere, so that with the chosehighly modulated by correlations as compared to the AO
grid resolution, we can proceed in computing three-bodyresult, also shown in Fig. 6 fop=7/10. The AO curve is
depletion potentials. rather short ranged and is an order of magnitude smaller than
The numerical error present in our calculations has beethe three-body contribution, in contrast to the two-body case
estimated by considering the pair depletion potenialob-  where the AO potential has magnitude comparable to the
tained with the 2D and 1D distinct calculations, and showrtrue depletion potential.
in Fig. 4. The difference between the two approaches can be The AO three-body contact potential is further analyzed

011403-7



DAVE GOULDING AND SIMONE MELCHIONNA

02

PHYSICAL REVIEW E 64 011403

- =25 ||

— o=5
....... (X¢=75 .
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0.15 0-0 =25 A0 ]
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AW,/3W,
0.1

0.05

FIG. 7. Plot of the ratio of the three-body potentW; to the
pairwise contribution (8V,) when three spheres are at contact ver-

sus the size ratie, for a packing fraction ofy= 7/30 000. Full line
is for the AO model symbols are the DFT results.

by considering the case of three spheres in cont&gt (
=R;3=Ry3=07y,), and by plotting the ratidd W/3W,, as in
Fig. 7, where the Rosenfeld and the AO results are compare:
versus the size ratio for a packing fraction of the surrounding

AW
fluid of »=7/30000. The AO and low-density limit of the PAW,

Rosenfeld functional agree, as expected, and the curve de
cays quickly at large size ratio and exhibit larger contribu-
tions of the three-body terms for smaller size ratios.

---- 0=2.5
o=5 |
~~~~~~~ o=7.5

== o=10
-0 0=2.5 AO
o--a =5 A0

-0.05 L ] 1 |

Ab/r

FIG. 9. Plots of the three-body contribution to the depletion
potential felt by a third sphere a vertical distanté above the

contact point with the bottom two spheres, which are in contact.
The size ratio of the large to small spheres is given in the legend
and AO indicated the Asakura-Oosawa for that size ratio. The top

graph is for a packing fraction of the small spheresréfO, and the
bottom graph is for a packing fractiom/30.

Another interesting configuration to analyze the three-
body contact forces is when the third sphere is in contact
with the bottom spheres, the latter being at variable separa-
tion Ry,. As Fig. 8 shows, in this case, the correlational

oscillations are relatively large and rather different from the
FIG. 8. Plot of the three-body contribution to the depletion po-AO estimate.

tential felt by a third sphere in contact with two spheres separated Finally, we have studied the three-body contribution to

by a distanceRy, in rg units, fora=5 and for packing fraction of
n= /10 (circles, =/20 (squarel and #/30 (diamond$. The AO
result for »= /10 is also reported for comparisdidot-dashed

depletion versus the size ratio, in the same isosceles geom-
etry where the base spheres are in contact and the third
sphere is displaced vertically. Figure 9 illustrates the three-

body potential for»= /10 and »=#/30. At the higher
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packing fraction of7/10, the magnitude of the three-body the large hard spherd®2,10, the presence of the third
potential seems to be relatively unchanged by the size rati@phere induces a surplus or deficit of density at contact, and
However, since the strength of the pair interaction is aptherefore a modulation of the local kinetic pressure due to
proximately proportional to the size ratibe., increases with the surrounding fluid5].

large sphere radiyisthe three-body potential becomes rela- Moreover, the triplet contribution to depletion rapidly de-
tively less important as the size ratio is increased. The AQcays to zero as a third sphere moves away from two spheres
depletion potential seems to have an effect at size matio with a decay length similar to the corresponding two-body
=2.5, where it appears to push up the value of the threedepletion potential. This effect is evident at small packing
body potential. At the lower packing fraction= /30, the fraction and the decay is slightly slower as the packing frac-
potentials are greatly reduced, but again, the AO potentiafion approaches one. We have compared our results with the
seems to have an effect far=2.5. This time, however, the Asakura-Oosawa correlation-free model, and observed that,
effect is quite visible, with the potential initially following although the AO model captures the magnitude of the triplet

the same gradient as the AO potential. interactions, only at small packing fraction and small size
ratio can the AO picture can be taken as a good estimate for
V. CONCLUSIONS the three-body correction to the depletion interactions. Fi-

nally, our results suggest that a similar behavior has to be

We have presented a numerical method for computingxpected for higher order contributions to depletion interac-
three-body interactions in hard sphere mixtures within thejons. Since thenth-order AO contribution to depletion po-
framework of denSity-fUnCtional theory. The Computationaltentia| depends on the over|apping excluded volumen of
effort is greatly reduced by considering the so-called infinitejarge spheres, theth-order depletion potential will presum-

dilution limit of the fUnCtionaI, since the Original three- ably be smaller by one order of magnitude than the term at
dimensional problem is reconducted to a two-dimensionajower order.

one. Therefore, by minimizing the free energy in cylindrical
coordinates we haye obta_lined a whole family of_ depletion ACKNOWLEDGMENTS
curves versus the size ratio and the packing fraction.

The obtained results have shown that the three-body in- The authors wish to thank J. -P. Hansen for his continuous
teractions are much smaller than the pair depletion ones arftelp during the development of this project. Fruitful discus-
are mostly correlation-driven, exhibiting both attractive andsions with R. Evans and R. Roth are kindly ackowledged. D.
repulsive behavior. Since depletion forces can be written aSoulding thanks the EPSRC for their support and S. Mel-
surface integrals of the small sphere density at contact witlshionna acknowledges the support of the Leverhulme Trust.

[1] E. J. W. Verwey and J. T. G. Overbeedijeory of the Stabil- [11] Y. Rosenfeld, J. Chem. Phy38, 8126(1993.
ity of Lyophobic ColloidgElsevier, Amsterdam, 1948For a  [12] L.J.D. Frink and A.G. Salinger, J. Comput. Phy&9, 407

recent review, see J.-P. Hansen and Hwen, Annu. Rev. (2000; 159, 425(2000.
Phys. Chem51, 209(2000. [13] T. Biben, P. Bladon, and D. Frenkel, J. Phys.: Condens. Matter
[2] S. Asakura and F. Oosawa, J. Chem. PI3%.1255(1954). 8, 10 799(1996.
[3] S. Asakura and F. Oosawa, J. Polym. S8, 183(1958. [14] Y. Rosenfeld, Phys. Rev. Let3, 980(1989.
[4] Y. Mao, M.E. Cates, and H.N.W. Lekkerkerker, Physica A [15] See, for example, J. -P. Hansen and I. R. McDorigory of
222,10 (1995. o Simple LiquidsiAcademic Press, London, 198@nd ed.
[5]B. Gazelmann, R. Evans, and S. Dietrich, Phys. ReS® 4] v Rosenfeld, M. Schmidt, H. lwen, and P. Tarazona, Phys.
6785(1998. Rev. E55, 4245(1997).

[6] B. Gatizelmannet al, Europhys. Lett47, 398 (1999.

[7] M. Dijkstra, R. van Roij, and R. Evans, Phys. Rev5® 5744 [17] D. Goulding, S. Melchionna, and J.-P. Hansen, Phys. Rev.

Lett. 85, 1132(2000.

(1999. O
[8] R. Roth, R. Evans, and S. Dietrich, Phys. Rev6E 5360 [18] R. Roth, gnd S DIEtrIC.h' Phys. Rev.@, 6926(2000.
(2000 [19] D. Goulding, S. Melchionna, and J.-P. Hansen, Phys. Chem.

[9] R. Evans, inFundamentals of Inhomogeneous Flyidslited Chem. PhysB, 1644(200D.
by D. HendersoriMarcel Dekker, New York, 1992 [20] D. Goulding and J.-P. Hansen, Mol. Phg8, 865 (2001.

[10] S. Melchionna and J.-P. Hansen, Phys. Chem. Chem. Rhys. [21] D. Goulding, Ph.D. thesis, Cambridge University, 2000.
3465(2000. [22] P. Attard, J. Chem. Phy$1, 3083(1989.

011403-9



