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Entropy-driven phase transition in binary mixtures
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Based on the principle of entropy maximum, a transparent method to study the phase separation is proposed.
The excluded volume effects of binary mixtures of hard spheres with two different diameters are analyzed and
the role of entropy is emphasized. As a result of the entropy variation caused by the packing of large spheres,
there is a critical volume fraction to denote the phase boundary. It is shown that the variation of free volume
fraction is influenced by the ratia=d, /dg of large to small sphere diameters and the ration /(7.

+ ng) of large-sphere volume fraction to the total volume fraction of large- and small-spheres. We introduce

a modification factoyB to describe the overlap degree of two large spheres excluded volumes when they pack
together. The critical volume fractions for large-sphere packing with different valuesaotix are calculated,

and the corresponding phase boundaries are determined. Our results are in quite good agreement with previous
experimental measurements.
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Suspensions of spherical colloidal particles in solvententropy is related to the volume accessible to hard spheres.
have attracted considerable attention because of their rickn a binary suspension of hard spheres with two different
thermodynamic properties and their industrial and medicatliameters,d, and dg, for the large and small spheres, re-
utilities. Experimentally, it has been observed that, with in-spectively, the center of mass of a small sphere cannot pen-
creasing sphere concentration, there is a progression frogirate withindg/2 away from a large-spheres’ surface, so
colloidal fluid to a phase of fluid and crystal in coexistence,there is a region of “excluded volume” surrounding each of
and to a fully crystallized phadd—6]. The computer simu- large spheres. When the surfaces of two large spheres come
lations with Monte Carlo and molecular dynamics methodghear each other within a small-spheres’ diameter or the large
also predicted s§7]. Theoretically, colloidal particles may Spheres contact with the wall of container, the excluded-
be considered as hard spheres, therefore, systems consisti¥gjume regions overlap, as shown in Fig. 1, so that the vol-
of hard spheres are very important. The well-known equatiotime accessible to the center of mass of a small spheres,
of state due to Carnahan and Starlif@S) [8] has usually increases and the total entropy of the system also increases.
been used to calculate phase diagrams of binary hard-sphertowever, the large spheres do not pack when the concentra-
mixtures with modifications such as the small Spheres reﬂon of the system is low. In fact, there exists a critical con-
sided in a reduced volume, which depends on the Vo|um§entration above which the colloid varies from the fluid
fraction of the large spheres. The equilibrium conditions aréPhase to a coexisting phase of fluid and solid, and the sphere
involved in the chemical potentials as well as osmotic presPacking takes place.
sures of large and small spheres. The reduced volume can be In this paper, we study the binary mixtures of large- and
determined by the geometric argumé2il, or by comparison Small-hard spheres by entropy and find out the critical con-
of the chemical potentials of small spheres in an ideal ga§entration or its corresponding volume fraction, and then
with that in a binary hard-sphere fluid under Percus-Yevicksome concrete examples will be given for large-sphere pack-
approximation{9]. But all these theoretical results are lower ing in several special cases. Furthermore, the factors that
than the experimental measuremef#s Recently, Velasco Mmay affect the critical volume fraction, such as the ratio be-
et al.[10] have given the phase diagram of a binary mixturetween large- and small-sphere diameters, and the ratio be-
of hard spheres through a first-order perturbation theory anveen their volume fractions, are discussed.
the agreement with computer simulations is good. To discuss We consider a container with a fixed volurive In the
the subject of hard-sphere packing caused by the excludegPntainer there are large- and small-hard spheres with diam-
volume effects, or “depletion” force, however, we are going €tersd, andds, respectively. Generally speaking, the en-
to study the problem in a new approach. Our approach will
pay much attention to entropy of hard-sphere systems. Since
the diameters of large and small spheres have been included
in a theory{11], which is a generalization of the CS equation
from pure fluids to mixtures of hard spheres, the effect of
free volume on free energy or entropy can be studied di- |
rectly, and the phase diagrams can be determined by entropy. ) |

As is well known, the excluded volume plays an impor- ST/
tant role for systems consisting of hard spheres, because the e ‘
free energies of these systems are entropy dominant, and the

FIG. 1. Schematic diagram for excluded volume effect. The
center of each small sphere is excluded from a layer of thickness
* Author to whom correspondence should be addressed. dg/2 around a larger sphere and along the wall of the container.
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tropy S of this binary system consisting of hard spheres iswith
closely related to the numbers of large and small sphétes (

3/2
andNg), the free volume/;, and the temperatufg so that _ o c.2mkgT
it can be written as Sgas=Nkg In| e em*mg? h2 ’
S:S(NL ,NS,T,Vf)- (1)

S.=—Nkg(c_ Inc +cglIncg),

It is reasonable to assume that the small spheres do not
pack together, thus the numhég of small spheres does not
change, whenever the large spheres aggregate or not. Obyjng
ously, when a part of the large spheres has packed together,
the numberN, of isolated large spheres decreases and the 3 ., 3 )
free volumeV; for small spheres will have an increment. If S,=Nkg S ("= Dyt 5(s— D%y
the temperature is invariable, the variation of the entr8py
can be written as

S,=—NKkg(s—1)(s+3),

1
E(s—l)(q—3)+ln§

(1_YS)],
S S S S dV;
58:5_|\|L5NL+,9_\/fgvf:(a_|\|L+(9_\/fd_|\|L) SNL. D \where Q=VIN is the average volume of each sphere,
m_ (mg) is the mass of a largésmal) sphere, and the pa-
According to the second law of thermodynamics, any hardrameters are defined as follows:
sphere system must evolve in order to make its entropy

maximum. In Eq. (2), when [9S/aN, +(3S/aV;) (V! s=(1-n"" )
dN_)]>0, the large spheres do not pack together because

the decrease of entropy caused by the variatibip due to _ ¢ cg(d, +dg)(d. —dg)?

large-spheres’ packing dominates over the entropy increment Yi= d3 '

caused by the increase of the free voluri¥;. However,
when [dS/IN| + (dS/dV¢)(dVi /1IN )]<O0, the case is just 2 2 4.2
the opposite, the large spheres tend to pack because the en- y2:CLCSdeS(CLdL+CSdS)(dL ds) ,
tropy contribution from the increase of the free volume due d®
to large-spheres’ packing plays a leading role. The critical
case happens whefdS/SN, =0. Therefore, there exists a and
critical number (). of large spheres for the system. Since
the volume of the container is assumed to be fixed, the vol-
ume fractionn can be ascertained if the number of hard
spheredN(=N; + Ng) is known, so the variation of entropy
Swith N is actually equivalent to its variation with the free Here we define the constast=2.718 28, the volume frac-
volume fraction. tion »=w/Q), and thus the free volume fraction-1. It is
Equations(1) and (2) are useful for us to analyze the €asy to show thay;+y,+ys;=1.
problem of sphere packing qualitatively and to predict the The correctness of E¢3) has been tested by the molecule
relation between entropy and free volume. In order to anadynamics and Monte Carlo simulations, and also by the ex-
lyze the problem more exactly, we are going to deal with itperimental results for liquid alloysl2—-14. It was found to
quantitatively from the number of spheres through the genbe in good agreement with numerical results except for the
eralized CS equatiofil1]. In a binary mixture composed of cases of the higher densities and/or for larger diameter ratios.
N_=c.N, large spheres with diametel, and Ng=cgN, In higher small-sphere concentrations, this significant devia-
small spheres with diametelg, (wherec, , cs are concentra- tion may be caused by the changes of geometry packing
tions of spheres satisfying +cs=1), the mean volume where the larger spheres are not close packed, due to the

and mean diametet of a sphere have the following relation Oscillatory behavior of the entropic interactions, as shown in
recent experimental resulfd3]. Obviously, the entropys

T s s T varies with the numbeN,_, the concentrations , cg, the
w=g(cLdi+cgdy) = od”. volume fraction# (or the free volume fraction 4 7), the
diameterd, , dg, massesn, , mg, and temperaturé of the
Mansooriet al. [11] provided a convenient and accurate Nard-sphere system, but the relation between them is very
thermodynamic description of the above system and, in pa€OmMplex, So we would try to solve it numerically. _
ticular, derived an expression for the Helmhotz free energy Ve first discuss the variation of the free volume fraction
Fhs, and then Umaet al. [12] gave the corresponding ex- (.1— n), caused by large-sphere packing, which by defini-
pression for the total entrops, which is divided into four  tion, leads to
parts as

(e df+cgdg)®

Y3 46

s1-n _ 5
Shs=Sgast+ Set+S,+ S, (3) SNL L7
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TABLE |I. Measured and calculated volume fractions of the phases at equilibrium.

Sample d,(xm)/ds(xm) Modification Measureds["s!" yTsu" Calculatedy£3'%/ 753!

1 a=0.460/0.069 B=0.63 (0.0556:0.0054/(0.1798+0.0059) 0.05559/0.16801

2 =67 (0.02510.0019/(0.1893+ 0.0020) 0.02511/0.19551

3 (0.01719-0.00066/(0.1970+0.00022) 0.01718/0.20367

4 (0.0087-0.0013/(0.2168+0.0026) 0.00869/0.21311

5 a=0.605/0.069 B=0.60 (0.00709:0.00086/(0.2204+ 0.0024) 0.00702/0.21932

6 =8.8 (0.012@-0.0013/(0.2106= 0.0026) 0.01206/0.21121

where _Beg(df-dd)  2cq(dP-d)
3= - .

o3 cd®+cgd?d ¢ di+cgdd

I
Yoo d3+cedd © . . .
LEL T -SEs In principle, we can obtain a relation s

From Fig. 1, it is evident that only some excluded volume of:(c'- '.d'- ’dS’T’m'- '“?s) from _th_e equations above. But the
analytic expression is very difficult to get, so we try to deal

two large spheres OVE‘T'aP.S when they pack together, and t%th this problem by numerical calculations. From E®), it
free volume released is diameter dependent. In order to lo- . .
N . o ) .~ _Is obvious that the temperature, the masses, and the diam-
cate a liquidus curve where a binary liquid coexists with ters of hard spheres can affect the critical value
dense solid of large spheres, Ef) should be modified. As ) P : S
) : . iy As a first example, we consider the case in which the
a first step toward this goal, we introduce a mod|f|cat|onvOlume fractions of the two kinds of spheres are nearl
factor 8 in Eq. (5) to effectively take into account the change p y

- =~ S ¥ equal, ie., p~75s, Where p =mc d>/6Q and 7,
of the overlap region due to the large-sphere packing, i.e., . L
preg ge-sp P g = mcgd/6Q) are the volume fractions of larger and small

8(1-7) spheres, respectively. If we define the parameters

N —Bkin=—kin (7)  =d_/dgandx=7n_/(n_+ ns) , the concentratioe, can be
L expressed as, =x/[ a3(1—x) +x]. Let us take the diameter

and mass of a small sphere beig=6.9x10 8 m andmg

with =3.2x10 ?* kg, respectively. These two parameters are in
3 accordance with the polystyrene sphere in the experiment by
ky=BK,=B————, 8y Dinsmoreetal. [2]. It is usual that the large and small
c d+cgdd spheres are all made of the same material, i.e., both have the

same mass density, sty =adg and m_ =a’mg. Take a
where the factor@ stands for the degree of the overlap, =3, 8=1.0, and the temperatuiie= 300 K, the solution of
therefore, it is concerned with the diametels, ds and the Eq. (9) is s.~1.5827, thereforey.~0.3682. This value is

concentrationg, , Cg. closely fitted to the experimental valug= 7 + 7s=0.18
For further discussion, we make a transformation{®n
via Eq. (4), and haveQ) = ws/(s—1). The liquidus curve is 0.40 4
determined by the condition5§,,s/ SN, ) =0, which leads to ]
0.35 1
2K1y3s3+[(1+ka)ys+3kiy,ls?+[2(1+Kz)ys o.3o-§
+3(1+ka)ya—3ky(y2+ys) +kils 0‘25_5
_(1+k3)y3|n§+|n(§_1) E
0.20
3/2 ]
2mkgT 3 m n ]
_ CL,C B L C ]
=In| ew| em’*mg® " +§cslnm—s—ln CL 0-155
0.10
+[3(1+ka)y2+3(1+ka)ys—kiyz+ki]—1, (9) ]
0.05 1
where ]
0.00 T T T T T T T T
2 2 3 3 3 4 5 6 7 8 9 10 1 12
Cs—CL . cs(df—dgy) 2cg(di—dg)
2= - ) (¢
CL CLdE+C5dg CLdE+C5dg
FIG. 2. The critical volume fraction;. vs the ratioa of the
and large- to small-sphere diametersTat 300 K.
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FIG. 3. The critical volume fractiony. vs the ratio x FIG. 4. Phase diagrams for different valuesaof
=l (n+ ng).
a—3

+0.19=0.37. Consider the variation of temperature, when
T=280 K, the solution of Eq(9) is s,~1.5818 andy,
~0.3678, and if the temperature is changed to e We now turn to consider the effect of the raticon the
=320 K, s.~1.5836, and;.~0.3685. This means that the critical volume fraction for different values of. For «
critical volume fraction is hardly affected by the temperature,= 3.0, the numerical results for the relation betwegrandx

i.e., itis nearly independent of temperature just as the obserre plotted in Fig. 3. We see from Fig. 3 that the critical
vation in laboratory{2]. volume fraction increases as the ratiincreases. This indi-

For the other two examples=6.7 anda=8.8, we take cates that it is more difficult for large sphere to pack as the
the modification factor of free volume fractiog=0.63, small sphere volume fraction decreases. The phase diagrams
0.60, respectively, and obtain the solutions of E%).with ~ for =3.0, 6.7, and 8.8 have also been plotted in Fig. 4.
different values ofx. The numerical results are listed in Obviously, below the liquidus curve, no sphere packs, while
Table 1, in which we also cited the experimental measure@P0Ve it, packing takes place. From Fig. 4, on the other hand,
ments from Ref[2]. The total volume fraction in fluid phase We Se€ that the liquidus curve af=8.8 is higher than that of
measured and calculated ap@""+ 575" and ﬂfa|+ ncal a=6.7 whenn_ —0. This singularity is consistent with the

where the superscriphsur and cal denotes the meassu'red measurements listed in Table I. Our results are exactly fitted

and calculated value in the fluid phase at equilibrium, respect-0 the experiments in Ref2], so the excluded volume effect

tively. From Table |, it is clear that our calculations are in andk;ar']ntror?é/ t:;\}ppr(r)]ach can kr)eti ur?ecfi ;?n drescnlli)eidthe sphere
good agreement with the experiments. We note that th@3cKINg & € phase separation o ary cofloids.

modification factor3 decreases as the ratioincreases. This . In summary, we have .StUd'Ed the hard-sphere packl_ng of
inary mixtures by starting from an entropy formulation.

'S due to the fact that when two large spheres pack togetheéErom the discussion above, we have shown that the excluded
the overlap degree of their excluded volume will decreas . ' . . :
volume plays an important role in systems consisting of bi-

remarkably as the ratia increases. However, the manner narv hard soheres. As the overlan dearee of the excluded
that 8 changes withw will become very complex whemy, y >PNETES. . p deg )
> 16 OF 7 <7 volume varies with the ratiae andx, we have introduced a
To see more clear that the critical volume fraction is af-yoﬁg:zga;'%?s?acrtg rtiﬂ(;ntgf?r?;cffr”ebeevt:lﬁn\wlsrlsgdog tgfatr?Zr:ctrr%e
fected by the ratiay, we deal with the casg, = n5. Indeed, Lo s A tropy
o ., force to drive a phase transition from liquid to a coexisting
as the ratioa increases, the excluded volume effect will L . X .
. o phase of liquid and solid. By numerical calculations, we have
become more and more evident and the critical volume fract . - .
. : . X shown that there is a critical volume fraction for the ex-
tion will decrease. This argument has been confirmed by the :
: e . ' Cluded volume effect, and phase boundaries can be correctly
experimental resulte2]. It is interesting to find out whether . ) ;
; : . . determined. Our approach is transparent and the results are in
our scheme can predict this behavior. The numerical calcu-Ood agreements with the experiments
lation of Eq.(9) does tell us that the critical volume fraction J 9 P '
becomes lower as the rati® of the large- to small-sphere This work was supported by the National Natural Science
diameters increases. This tendency is perfectly described fRoundation of China under Grants No. 19925415 and No.
Fig. 2. In the present case, we can approximately fit an ex19847003 and the “Climbing Project” of the National Com-
pression mission of Science and Technology of China.
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