PHYSICAL REVIEW E, VOLUME 64, 011303
Dispersion in poroelastic systems
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We address one key source of the known discrepancies between theory and experiment in poroelasticity, i.e.,
the fact that Gassmann’s equations for the bulk and shear moduli predict that the shear modulus is independent
of the saturating fluid properties, whereas it is observed on the contrary that at high enough frequencies the
shear modulus can in fact depend on the fluid’s elastic properties in many porous materials. One clue to
understanding this behavior comes from effective medium theory, which shows that the shear modulus does
depend on the fluid properties in many circumstances. In comparison to values predicted by effective medium
theory, Gassmann’s equations predict different, smaller values for both the effective bulk and shear moduli of
porous media. Sorting through these appafent not actual disagreements among theory and theory, and
theory and experiment is the main thrust of the paper.
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[. INTRODUCTION forts to explain poroelastic data is Biot's thedr®]. In a
series of laboratory ultrasonic wave propagation experiments
Velocity dispersion is an inevitable consequence of aton porous glass immersed in a water bath, P[@&ahowed
tenuation in real systems. For example, Aki and Richétds 20 years ago that many of the predictions of Biot’s theory of
show how causality(the requirement that the effect must wave propagation in poroelastic media could be observed for
always follow—never precede—the capskeads to the these materials. Predictions included the existence of a sec-
Kramers-Kronig relations between the real and imaginaryond (slow) compressional wave, the magnitude of the slow-
parts of the wave number, or equivalently, the velocity of awave velocity and attenuation, and the resulting enhanced
wave propagating through a dispersive medium. The velocitattenuation of the faster compressional wave that corre-
acquires an inherent frequency dependence in such systensgponds to the usual viscoelastic mode in such media. Chin,
and this frequency dependence is what we mean by “dispeBerryman, and Hedstronj4] and Johnson, Plona, and
sion” in the present context. We will assume the reader iKojima [5], together with many others by the present time,
familiar with this result, and not elaborate any further here.have shown that the theory explains these and similar labo-
The consequences of dispersion are very important imatory data on synthetic materials remarkably well.
seismology and acoustics, because dispersion makes recon-On the other hand, there are many examples of real earth
ciliation of field data with laboratory data much more diffi- materials for which Biot's theory does not seem to explain
cult than it would be if there were no dispersion. The explo-the dispersion very well and it would therefore be most use-
ration seismic band is from about 10-100 Hz, whileful to clarify what the physical issues are that limit the use of
earthquake seismology usually considers frequencies frorine theory. Various additions and corrections to Biot’s theory
about 10 Hz down. Well-logging tools usually work in the have been attempted including treating the porous medium
high sonic range, from about 1-20 kHz. On the other handas granulaf6], treating the elastic medium as nonlin¢at,
laboratory experiments are most often performed in the ulireating the pore space as a double-porosity sy§&nso
trasonic range from about 100 kHz to 2 MHz. So the gap inthat high permeability fractures and low permeability but
frequency between laboratory and field data can be as high d&sgh storage matrix porosity coexist in the theory, and con-
five or six orders of magnitude, but efforts to produce labo-sidering the effects of both partial and patchy saturaftfiin
ratory data below the ultrasonic range have been carrieBach of these approaches has something important to say
through successfully using resonance bar methods, forceabout dispersion in poroelasticity systems. But it, neverthe-
oscillation methods, and some other methods. When they atess, remains difficult to explain some of the data from first
available, these types of laboratory data are often the mogrinciples.
useful ones to us because we can make direct comparisons The main purpose of this paper is therefore to clarify an-
between field and laboratory systems at the same frequewther of the outstanding questions about dispersion in po-
cies. But often we do not have this luxury, so we need taoelastic systems, such as those described by Biot's theory
understand both the mechanidior possibly mechanisms [2]. The work to be summarized here was motivated in part
and the consequences of dispersion in these earth or porobg ongoing studies of shear velocity in partially saturated
rock systems in order to aid the interpretatiand inversioh ~ porous system§9], but partial saturation will not play any
of field data. role in the present discussion. Our approach will be to recon-
Probably the most common choice of theory used in efsider a basic result in the theory, i.e., Gassmann’s result
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TABLE I. Comparison of time scales for wave propagation andtime is longer than the time for the wave to pass. We con-
diffusion at frequencies below Biot's critical frequency. Parametersclude from this that the changes in the medium induced by
used werev,=5 km/s, v;=15 km/s, D=10"2 m¥s, andd  the sound wave will not be significantly altered by the ten-
=10"*m. The times arey =d/v, and7,=d?/D. The wavelength  dency toward fluid pressure equilibration except at relatively
becomes comparable to the grain sizé at50 MHz, but the valid- high frequencies. Thus, Gassmann’s results should apply to
ity of Biot theory is limited tof<2.5 MHz. For any set of these 4| these lower frequencies. It will be our purpose here to
physical parameters, the fluid pressure equilibration time is "mitedmotivate and explore the expected and observed deviations
by the speed of slound in the fluid, so the ratjdv,, is the pertinent from Gassmann’s predictions as the higher frequencies are
bound on the ratio. approached.

Section Il will rederive Gassmann’s basic result in po-
roelasticity for a fluid-saturated, closed system. Section Il
2x10°8 1x10°6 2x10°2 0.3 will present effective-medium results for the same system.
Section IV will show in more detail why these methods ap-
ply to different frequency bands, and therefore can differ for
[10,11] that the effective shear modulus of the porous, fluid-this system. Section V presents an analysis that reconciles
saturated system is independent of the presence of fluid ithe two results. Section VI summarizes our conclusions.
the pores. Gassmann’s result will be compared and con-
trasted with the effective-medium results for inhomogeneous ,
elastic systems. We find that, even though these two adl' GASSMANN'S EQUATIONS FOR ISOTROPIC POROUS
proaches are both at least nominally low frequency methods, MEDIA

Gassmann’s results differ from the effective-medium theory  one of the most fundamental results in poroelasticity con-
results because they are quasistatic and actually pertinent tq:@rns the mechanical behavior of an enclosed, undrained,
lower frequency band than is allowed for or considered byjyid-saturated system. Exact results for the effective bulk

the effective-medium theory approach. _ and shear moduli of such systems were derived 50 years ago
We can gain a sense of the physics behind the results t§y Gassmanii10,11.

follow by first stressing the main physical difference be-

tween the time scales for Gassmann and effective medium o _

theory. Gassmann’s argument assumes fluid pressure equili- A. A derivation of Gassmann’s equations

bration for draineduntrapped fluigfmoduli, but not for und- We now present a concise and complete derivation of
rained (trapped fluig. Pressure equilibration is a diffusive Gassmann’s famous results. The analysis of this section is
process having a time scalg=L%/D, whereL is a charac- imited to isotropic systems, but it can be generalized with
teristic length(usually chosen to be either a typical grain sizejittle difficulty to anisotropic systems[10,15,1§. Gas-

d, or the wavelengti, or a correlation length andD is the  smann’s equationgl0] relate the bulk and shear moduli of a
pertinent diffusion constantdirectly proportional to fluid saturated isotropic porous, monomineralic medium to the
permeability of the systemin contrast, the elastic-effective- pulk and shear moduli of the same medium in the drained
medium theory has the principal time constagt=L/v,,  case and show furthermore that the shear moduiustbe
whereuv , is the compressional wave velocitye., the fastest mechanically independent of the presence of the fluid. An
acoustic mode if there is more than orw# the system. For  important implicit assumption is that there is no chemical
comparison, the characteristic time scale for applicability ofinteraction between porous rock and fluid that affects the
Biot's theory [2] is determined byf<0.15.=2.5 MHz,  moduli. Gassmann’s paper is concerned with the quasistatic
where the critical frequency &= ¢ n/27p;k, with (for ex-  (very low frequency analysis of the elastic moduli.

ample porosity ¢=0.2, viscosityp=1 cP=10"3 Pas, fluid In contrast to simple elasticityl7] with stress tensow;
density pg=10® kg/m®, and fluid permeabilityx=1 mD  and strain tensoe;; , the presence of a saturating pore fluid
=10 m?. Table | supplies a comparison of these twoin porous media requires the introduction of conjugate vari-
mechanisms valid over the frequency range of most interestbles associated with the fluid. The pressurén the fluid is

We use representative values suchvgs=5 km/s andD  the new field parameter that can be controlled. Allowing suf-
=K/ p¢p=10"?m?/s (see Berrymaiil2] or Chandler and ficient time (equivalent to a low frequency assumptidor
Johnsor{13]), where the bulk modulus of the fluid is taken global pressure equilibration will permit us to consiggrto
asK¢=2.0 GPa, and the porosity=0.2. The results for this be a constant throughout the percolatifmpnnectedl pore
example show that the characteristic times satigfyr 7, for  fluid, while restricting the analysis to quasistatic processes.
all frequencies below =0.15f., which may be viewed as The change’ in the amount of fluid mass contained in the
the limit of applicability of Biot's theoryAt highest frequen- pores is the new type of strain variable, measuring how much
cies when the wavelength approaches the grain sideitis  of the original fluid in the pores is squeezed out during the
clear that the diffusion approximation must break down, asompression of the pore volume, while including the effects
the apparent speed of diffusion cannot exceed the speed of compression or expansion of the pore fluid itself due to
sound in the mediunisee Morse and Feshbaldd]). There-  changes inp;. It is most convenient to write the resulting
fore, we must replacep by r5=d/v¢, since it is the wave equations in terms of complianc&; rather than stiffnesses
speed in the fluid that limits in the pressure equilibration inC;;, so for an isotropic porous medium in principal coordi-
this frequency band. For all lower frequencies, the diffusionnates the basic equation to be considered takes the form

7y (9 7 (9 vl vilvg
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o Sy S S -8 If KS®andG**are respectively the undrained bulk and shear
1 S. S. S. — 71 moduli, then standard elasticity relatiofs7] together with
€2 | _[ ©12 ~u P12 B 023 1) Egs.(5) and(6) imply that
€33 S, Si S -8 o33 |
4 -B —-B —-B v Pt §agl+1:1+1_'8_2 o
11 ngat SGsat 9Kdr SGdr ,yl
The constantg and y appearing in the matrix on the right-
hand side(RHS) will be defined later in this section. For and
now, they are defined implicitly by Eq1) as coefficients
that can be measured by observing the changes in system o 1 1 1 1 B2
strain caused by changes in system stress. SiZ_ngat 6G% 9K, 6Gg 7 (8)

The fundamental results of interest are found by consid-
ering the saturatethnd “undrained,” meaning that the lig-

uid is trapped and cannot escape from the volucase such 1Suts)£Eclting Eq.(8) from Eq. (7) shows immediately that
that 5G%=35Gy,, or equivalently that

(=0, ) G*=Gy,. 9

which is the undrained condition. Fluid cannot escape be- 'I('jhu_s, tg? str;]ear modulustrf]o: :che t(;]ase with tl_’:?]ppEdﬂﬂl:I(;d
cause of assumed jacketing materials at the boundaries, a{w raineq Is the same as that for the case with no flul
this is equivalent tok=0=D and therefore very low fre- (drained [19]' Substituting Eq(9) back into either Eq(7) or
quency. From Eq(1), it follows that the(averagg pore pres- =9 (2 grll\rln?s one tl;om ?ft;hebﬂlélftrlrl: ccriorlnm'only known as
sure must respond to external applied stresses according tg-ass ann's equation for the bu odulus:

1 1 9p?

B = 10
pf:_;(011+022+033)- ©) K Ky (10

For isotropic systems, we must have E®).in order for Eq.

Equation (3) is often called the “pore-pressure buildup” (10) to hold, and vice versa

equation (see Skemptor{18]). Then, using result3) to

eliminate both{ andp; from Eq. (1), we obtain
B. Alternative formulas for K

ey ot 5 S o1 To obtain one of the more common forms of Gassmann’s
e | | ssat gat gsat| | result for the bulk modulus, we now need to define the co-
e 22 efficients 8 and v. First note that
x|\ s s s \ow
ap= = 11
Sll 812 SlZ Bz 1 1 1 o1 18_ Kdr Ks_ Kdr, ( )
= Sp St Sp|-—|1 11 022 |,
S, S, Si Y 1 1 1 033 where K is the grain modulus of the solid constituent

present and is the Biot-Willis parameter19]. Furthermore,
@ the parametery is related through Eq(3) to Skempton’s
pore-pressure buildup coefficiefit8] B, so that
whereSf‘ja‘is the desired saturated compliance including the
effects of the trapped liquid, whil§; is the drained compli- 3B
ance in the absence of the liquid. =
Since for elastic isotropy there are only two independent
coefficients(S;; andS;,), we find that Eq(4) reduces to one
expression for the diagonal compliance

B. (12)
y

Substituting these results into Ed.0) gives

2 sat_
fosu- © K 1—ap 13
which is another forni20] of Gassmann’s standard result for
the bulk modulus, which will be useful to compare to our
5 later results for the shear modulus.
Sl g _'8__ 6) One other fqrm of Gassmann’s equation for the bulk
12mEz modulus[10,11] is

and another for the off-diagonal compliance
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a? Gubernatis and Krumhan§27] and references But these
(a—d)IKot IK; " (14)  two “self-consistent” approaches can give very different re-
sults when the inclusions have shapes other than spherical.
The CPA has the advantage that it is known to provide esti-
mates that always lie between known rigorous bounds
[22,28 such as the Hashin-Shtrikman boun@8], whereas
the other “self-consistent” formulation is known to violate
the bounds in some cas@hough not for spher@¢sThe CPA
has also been generalized recently for use at higher frequen-
cies by Kaelin[30] and Kaelin and Johnsdr81,32. Since
our goal here is to elucidate a point in poroelasticity theory,
it will be adequate to concentrate on the noncontroversial
case of spherical inclusions. Useful reviews of the effective-
medium topic with emphasis on geophysi¢aick physics
ll. EFFECTIVE MEDIUM THEORY applications for further reading are those of Watt, Davies,
Porous media are inherently inhomogeneous because gpd O'Connell 33] and E_Serrymar{34].
the voids(pores that may contain either air or some type of The CPA formulas arise this way from an argument, e.g.,
of Berryman[21]: If we imagine a scattering experiment in

liquid, SU(.:h as water or oil. Typical naturally occurring PO \which a single sphere of one inclusion material is imbedded
rous media are also random, as the pores are not dlstrlbut(?rdqa host matrix, then for a plane compressional wave inci-

In any organlzec(perloc_ilc) way throughogt the porous bOdY' dent on this sphere, the two pertinent scattering coefficients
So itis natural to consider homogenization theory, or equivag, infinity are
lently effective medium theory, to estimate physical con-

KSa=K g+

This form highlights how the undrained const#ff! differs
from the drained constahty,. Here ¢ is the porosity andK;
is the fluid bulk modulus. We could alternatively have cho-
sen to replace the first term on the RHS Bky,=(1
—a)Kg. Then, all the geometrical and volume fraction in-
formation is contained i and ¢, while the pertinent con-
stituent properties are just; andKj .

Next we consider what effective-medium theory has to
say about the same physical system.

stants such as the elastic constants of porous media. One K= K;

significant difference between effective-medium theory and Bo(Km Ki.Gm) = 3726 (15
the methods used by Gassmann is that the constituents of the : m
inhomogeneous medium are essentially fixed relative to ong, 4

another; i.e., when studying elastic constants, we often use a

welded-contact assumption: two points in contact remain in B(G Gy K. 20G(G;—G)/3

contact throughout a deformation. This assumption implies a B2(Gn,Gi,Kp)= == ;
no-slip boundary condition between fluid present in the pores 6Gi(Km+2Gm) + Gm(9Km+BGm)(16)

and the solids surroundiri@nd therefore defining the bound-

aries of the pores. Gassmann, on the other hand, assumggere the moduli for the surrounding matrix material Krg
that the drained porous medium has a finite fluid permeabiltpulk) and G,, (sheay, and the moduli for the spherical in-
ity, SO pores are connec.ted and fluid is free to move in anglusion areK; and G;. Then imagine that our composite
out of the pores depending on the state of elastic stress ar@ntains inclusions=1, ... n, wheren=2, and that the
fluid pore pressure. This difference is important, but—as W&cattering experiment is being performed at such low fre-
shall see—it is not the only source of disagreement betWeeGuencies(and therefore long wavelengththat the precise
the two_approaches.. . _ locations of the individual scatterers have no special effect
To highlight the differences in the results, we will first on the results. Then, we can suppdsee Fig. 1 that the
provide a quick derivation of a particular effective-medium composite(scattering medium is imbedded in an adjustable
theory (the CPA, or coherent potential approximatiand  matrix materialm=+, such that each individual scatterer
make some observations about connections between thiges all the other scatterers as composing this matrix. Then,
theory and rigorous bounds. Then we will study some relthe composite inclusion, when imbedded in the adjustable

evant properties of the so-call¢@1,22 “canonical func-  matrix, should actually produce no scattering at all at infinity
tions” that can be used to study and compare both rigoroug the single-scattering coefficients satisfy

bounds and the effective-medium theory estimates of elastic

constants. Then, we will show how Gassmann’s results fit n
into the same framework. 21 fiBo(K* K ,G*)|, —e=0 (17)
1=
A. Derivation of the CPA and
Probably the best known of all the effective-medium theo- n
ries in elasticity is the*self-consistent theory.” One formu- fB.(G* G K* =0 18
lation of these results was presented by IH28] and Budi- 2’1 1B2(G*.Gi K™ ~e=0, (18

ansky [24]. For the special case of spherical inclusions

(which is the only case we will consider hgréhese results  where thef;’s are the volume fractions of all the constituents
are identical to results obtained later by Korringtaal. [25]  in the composite and therefor®;f;=1. The particular
and Berrymar{21,22,26 using arguments based on the co- choices of the adjustable moduli that cause the RHSs of Egs.
herent potential approximation from the theory of alldggee  (17) and (18) to vanish are then defined to be the CPA
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B. Hashin-Shtrikman-Walpole bounds

Now we merely quote the results for the Hashin-
Shtrikman boundg29] in elasticity. These results take a
form very similar to those for the CPA for spheres. The
symbols for the Hashin-Shtrikman upper boundskfig and
G/s, and for the lower bounds the pluses are replaced by
minuses. The results are

1 _En: fi 1
Kist4G./3 <4 K+4G.13 \K(x)+4G./3
(21
and
S L T 22
GustF- S1G+F. \G(X)+F./’ (22

where K,=maxK;, K_=minK;, G,=maxG,, G_
o ) =min,G;, and F., where all constants inF=G(9K

FIG. 1. Schematic diagram for the coherent potential approxi- . 8G)/6(K +2G) now take the same subscripts Bs . If
mation (CPA) concept. The true composite is replaced by a IargefOr a two-component medium, the material propérties are
sphere(dashed circlecontaining spherical inclusions of type-1 and well-ordered so that®,— G )(K, —K,)>0, then equations
type-2 constituents in the proper relative proportions. The matrix(21) and (22) are knov%/n aé the2 Haslhin-éhtrikman bounds
(type*) is composed of a material with adjustable elastic constants —if th tant t I dered © ’
When the adjustments have been made so there is no net scatteri G_)I(K eK ():ing ar:hse %rfmuT:S [\)Ar/:serireder:ré S?ill Ztiue

U R27 Ky —

the composite and the surrounding matrix presumably have the :
same effictive properties. g P Y ounds, known instead as the Walpole bouf@5-37.

Sometimes equatiori@1) and(22) taken in their entirety are
called the Hashin-Shtrikman-Walpole bounds.

effective-medium constants. Equatioiis) and(18) provide
a coupled set of equations that uniquéNote: the only
constituent moduli vanish—see Berrym4Rl,26) deter- These results and others of a similar nature using many of
mine the effective elastic constark$™=K* and G*"=G*.  the known bounds in elasticitisee Berrymaii22]) suggest

These formulas may be written in many different ways, butthat a single set of two functions controls the behaviors of

the one that we prefer here has the form both effective medium theories and bounds. We call these
expressions the “canonical functions of elasticity” because
1 n f; 1 they occur repeatedly, and they have many useful properties.

KeT T 4Ge /3=i:1 Ki+4Geff/3: K(x)+4G3 These functional properties include monotonicity as a func-

tion of the arguments, which makes them very convenient

(19 for comparisons between and among many of the bounds and
effective medium results.
and We define the canonical function for the bulk modulus as
Ge+Fef & G+Fe"  \G(x)+Fe"/" (20 K(x)+4G/3 37

) ) and the canonical function for the shear modulus as
whereF=G(9K +8G)/6(K + 2G), with F& being the same

formula with all physical constants replaced by those with 1 -1
“eff” superscripts. The notation(-) is introduced as the M=\ e F

: G(x)+F
volume average, and the RHS, can then easily be shown to

be ide_zntical to the preceding quantity in each of the tWOUsing these definitions, equations9) and (20) can be re-
equatlons. written as
Note that Eqs(19) and(20) are strongly coupled, but the

pair of equations can be solved easily by iteration. Also note Keff= A (Gef (25)
that the resultings®" is the same for drained and undrained

cases only ifF®™ is the same, which would require addition- and

ally that K®" be exactly the same for the drained and und-

rained cases. Gef=T1(Fef), (26)

(24)
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respectively. Similarly, the Hashin-Shtrikman-Walpole re-assuming that the usual argumegtis the same for both
sults are written as expressions. By concatenating inequalities, we therefore ob-
. tain useful rigorous relations such as
Kiis=A(G-) 27
and A(KsaO;Gdr)SA(KsaKf ;Gdr)SA(KsaKf ;Gsat)v (37)

. since 0=K; and Gy=G, and, similarly,
Gﬁs:F(F:)- (28) f dr sat y

F(KSaO;Fdr)$F(KSaKf ;Fdr)gr(K&Kf ;Fsar)1 (38)

Both of these canonical functions are monotonic in their
arguments[21,22,23 The argument of I itself has the
property thatF=F(K,G) is a nondecreasing function of
both of its arguments. Furthermore, note that(0)
=(1K(x)) t=Kg, I'(0)=(1/G(x)) *=Gg, which are
the harmonic means, or Reuss averd@8| of these
constants. Similarly, lim_. A(G)=(K(x))=Ky,
lime_,..I'(F)=(G(x))= Gy, which is the mean, or corre-
sponding Voigt averaged9]. Thus, the physical range of real
arguments for these two functions produces results that lie in

sinceF y=<F4,;. We will make use of these properties in the
following arguments.

Note that the canonical functions have often played an
explicit role in formulating rigorous bounds since the work
of Milton [40Q], in which he introduced the/-transform
concept—closely related to, and in part motivated by, the
canonical functions.

the ranges

Kr=A(G)<Ky (29
and

Gr<I(F)<Gy. (30)

It follows that

Kps=K=K{s, (3D

since
A(Ghe) <A(GM<A(G},9), (32

because\ is monotonic and

Gs=G®*"<G/, (33

which we know to be true, independent of the present argu:

ments.

Finally, the canonical functions also have useful monoto
nicity properties as functions of their constituents’ moduli

values(not usually shown in the above argument)listo

make these properties explicit in the notation, we will also

list the constitutents’ modulKg, K;, and Gg in the argu-

ment list when it is important to draw attention to them. For
example, the drained bulk modulus in effective-medium

theory from(19) is then expressed as

KE&=A(Kg,K;=0;GEM, (34)

and the corresponding result for the saturated modulus is

KM= A(Kg, K GEM). (35)

Monotonicity of the canonical function in the fluid bulk

modulus shows that

A(Klef:O;G)gA(stKf;G)n (36)

D. Gassmann’s results in terms of canonical functions

Various authorgincluding Endres and Knighit41] and
Kaelin [30]) have noticed that Gassmann’s equation for the
undrained bulk modulus has a form similar to that of the
effective-medium theory equatid@t9), or equivalently to the
Hashin-Shtrikman[29] bounds (21). The significance of
these observations has remained uncertain, however,
because—when making these comparisons to the CPA—it
has been necessary to ignore the inter-relationship between
the bulk modulus equatiofi9) and the shear modulus equa-
tion (20) in order to make the similarity apparent. Taking
such a step removes the self-consistency condition relating
bulk and shear modulus, and replaces the derived result with
anad hocassumption thaKe”zA(Gdry):Ksat. When simi-
lar observations are made relating the Hashin-Shtrikman
bulk modulus bounds to the Gassmann result, a sinaithr
hoc step is required, which i/ s~ A(Gg,) =K Thead
hoc procedure sidesteps and confuses the real issue, which is
the question: Why do the two formulas in fact disagfiee.,
Gassmann and effective-medium theory—or Gassmann and
Hashin-Shtrikman bounds—disagyeehile having such ap-
parently similar functional forms?

To avoid making any unwarranted assumptions, we will
first of all show what is true about the Gassmann bulk modu-
lus result and how it is related to the canonical functions. To
do this, we will approach the subject from the direction op-
posite to the one usually taken, and show that effective-
medium results can be written in a form similar to that of
Gassmann’s formula. First note tHaee Korringaet al.[25]
for an early application of this formula, and also Pride,
Tromeur, and Berrymaf2]),

(1-¢)Ks

eff_
Kdr 1+ adr(;b '

(39

where ag=3K /4GS, This formula is completely equiva-
lent to the canonical form for the drained case
=A(GZM. In particular, we find that, when there are only two
constituents(solid and fluid, then the effective-medium
theory result can be written in the form

011303-6



DISPERSION IN POROELASTIC SYSTEMS PHYSICAL REVIEW &4 011303

X2 IV. THE DICHOTOMY

, 40 . N .
(X— P)Ks+ SIK; 40 The dichotomy is this: Gassmann’s equations are low fre-

) ) guency(pressure equilibration through diffusion, see Table
where all the microgeometry dependence of the equation aRy and predict that

pears here iry, and(coming from the coupling to the shear

K= (1- x)Ko+

modulug is contained in the parameter K= A (Gy) and GGy, (48)
1+asat . . . .
X=b T a & (41)  whereas effective-medium theofwyhich is also for low fre-
Asah quencies, requiring long enough wavelengths so that signifi-
where cant constituent correlations occur over scales smaller than
the wavelength for apparently the same problem predicts
aga=3K 4GS, (42  that
Equations(40) and (41) should be compared to Kg;ft: Asa£G§29 and Gg;ft:rsaﬁpgg i (49)

2

, (43 Furthermore, because the canonical functiongandI" are
(a—@)IKst IKs monotonic, it is easy to show from the foregoing results that,
wheneverK;>K =0,

K= (1— a)Kq+

and

1+agy G Gg;ft (50)

a:1—K§f/KS=¢1+adr¢ (44)

and, therefore,
with ag, given following Eq.(39). Thus, it now becomes
clear that the only difference between the effective-medium Ksal K &M (51
result and Gassmann’s result for the bulk modulus is deter-
mined by which value of the shear modulus is used for How do we explain that these two low frequency theories
evaluating the corresponding paramedeiThus, it is a defi-  clearly differ? Even if the numerical difference were not
nite result that Gassmann’s equation for undrained bullgreat, the mere existence of such a differef@ssuming both
modulus can be written in terms of the canonical functlon theories are correct, so it is a real differenskows that there
as must be dispersion in such systems. Dispersion also implies
at_ attenuation because of Kramers-Kronig relatiqgese Aki

K>=Asal Gar), (45 and Richardq1]), more attenuation of sound waves in a

where Ao (-)=A (KoK :-) and Ag(-)=A(K0:-). Note poroelastic system than we might expect from other consid-

. erations.
the d|ﬁerences_ among Eq34), (35), and (45). i The reason for this dispersion is that the Gassmann ap-
By assumption, we also have for both theoffies., Gass-

. . ) proach is really quasistatic, and therefore applies at ex-
mann and effective medium thegrthat K4= A (K¢,0;Gy,) vl f ; h h ffective- :
and Gy =TI'(K.0:F). Gassmann freatiy and G, as tremely low frequencies, whereas the effective-medium

| . tal e d th . ) ist theory is clearly not formulated to apply at such low frequen-
purely experimental quantiies and there I no INCoNSISIeNCYia g “The gifference arises physically from how fluid pres-
involved if we choose to treat the,, andG, from effective-

di th timat f the drained bulk ure is treated in the two approaches. Gassmann allows the
Q}i;?mod&?ry as our estimates ot the drained bulk ang, ;g pressure sufficient time to equilibrate throughout the

The preceding reasoning shows that it is inappropriate tﬁr)nnedium, however long it takes—perhaps very long times
decouple the effective-medium equatid@s) and(26). It is. deed. The effective-medium theory does not preclude the

thel Tue that EGS) i  stat Cof G fluid from equilibrating, but does not necessarily allow
never ,e ess, true that E5) is a correct statement of >as- nough time for equilibration. Time does not play an explicit
smann’s result for the bulk modulus in terms of the canonica

. X ole in the effective-medium theory, only an implicit one in
function Ag,. From this statement, Eqé31) and (32), and ; " " ;
Eqs.(37) and (38), we find that that it must be “long enough” so the frequencies are low

and the wavelengths long compared to the scale of the mi-
K=K KEZt (46) crostructure. If _quuids occupy isolated pocl_<ets scattered
throughout the inhomogeneous porous medium, they may
and have different fluid pressures if they are not permitted suffi-
cient time to equilibrate. In fact, the effective-medium theory
Ga=<T(Kg,K; ;Fdr)seggt, (47 does not explicitly allow for finiténonzerg fluid permeabil-
ity of the porous medium.
But, we emphasize that Gassmann’s result shGi%= G, These facts suggest that there are some good reasons to
#I'(Kg,Ks;Fg) when K¢#0, and nothing should be in- think that there could be differences between Gassmann and
ferred just from the fact that some of these quantities areffective-medium theories. But, so far the analysis still
expressible in terms of the canonical functions. leaves the technical question unresolved.
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V. RESOLUTION OF THE DICHOTOMY So what we will be attempting to show in the remainder

. . _ of this section is how these ideas can arise and then be quan-
One method of resolving this dichotomy might be to useyiaq explicitly in the theory.

the method of multiple scales for the time-dependent version
of this problem. In fact, this has already been done by Burr-
idge and Kelle{43,44). They find the interestingand per-

haps now not surprisingesult that there are two possible . S .y
purely isotropic(micro as well as macjgoroelasticity can-

solutions to the problem. O_ne IS essentlally_ that O.f BIOtsnot give the effective medium result. No matter what else
theory_ 2] of wave propag_atlon m_poroelastlc_ media. Thecrappens—no matter how we try to make changes in the po-
other is a set of viscoelastic equations. The difference leadyg|astic coefficients to see how such effects arise—we will
ing to the two quite different results is that, when the scaledqt pe able to change the fact ti&t— S;,= 3G [recall Egs.
viscosity is treated as being of ordef (e is the small quan-  (7) and(8)]. Changes in the coupling coefficients that result
tity), they get Biot-Gassmann, whereas when viscosity ign an isotropic elastic matrix must satisfy this conditiali-
treated as order 1, they obtain the viscoelasticity equationsectly related to system rotational invariancand this con-
instead. These results are consistent with the need for twdition guarantees that Gassmann’s result for the shear modu-
approaches and two rather different results, even though botHs will always hold, e.g., compare E) and Eq.(6). So an
are long wavelength, low frequency results. isotropic poroelastic medium that is also isotropic every-
We will now take a different approach to show how the Where on themicroscalewill not help us resolve our di-
effective-medium theory result can also arise fromChOtomy‘
Gassmann-style considerations.

B. Why local isotropy is not sufficient
We know from the arguments given previously that

C. Local anisotropy

In contrast, let us now consider one of the simplest cases
A. What we need to show of local anisotropy, i.e., transverse isotrofy). We suppose
that this anisotropy could arise from many mechanisins

The crux of our problem is to show how the shear modu- ” ) fract /crackand stil q th R
lus can be independent of the fluid properties at quasistati al layering, or Iracturesicracksand still proguce the sam
mulas we will use in this demonstration. The elastic ten-

frgquenues, .yet become dependent on them at somewhégr is not uniquely related to the microstructure. The precise
higher (but still low) frequencies.

X L mechanism is also not really important to our present pur-
Physically, we know what must be happening in the y Imp P b

" . o he off di ose. We are trying merely to establish a link between Gass-
effective-medium theory to give rise to the effects discusse ann’s result and the effective-medium results. We have

The presence of the liquid resglts in an increase in the shegrhown this to be very difficultand maybe impossibleto
modulus, even though the liquid shear modulus is zero. Whygtaplish for localmicroscopi¢ isotropy. We want to show

is that? The reason is that in an inhomogeneous mediumpat it is, however, possible for local anisotropy.

when we apply stress or strain at the macroscopic scale, that |f the inhomogeneous medium is isotropic on the macro-
stress or strain gets resolved locally in a complicated waycale, it certainly can still be anisotropic on the microscale.
because of the inhomogeneities. It is very easy to see thatis fact has been used extensively in the mathematical ho-
this must be so in a granular medium, but is clearly also trugnogenization community, where many auth¢sse, for ex-

in most inhomogeneous medidor an example of external ample, Kohn and Milton[46] and Avellaneda and Milton
tension being resolved into local hydrostatic compression ifi47]) have studied laminates to determine realizability results
an inhomogeneous elastic medium containing fractures, se€er bounding methods. A typical physical example is an ag-
Bai, Pollard, and Gap45].) An applied external compression gregate of randomly oriented crystalise., a polycrystal

can produce a shear field locally. An applied external puravhere individual crystals or domains are locally anisotropic
shear can produce a compression locally. This is the physicélut the aggregate may be isotropic due to spatial averaging
source of the effect. If we apply an external shear to a porousver orientations.

medium containing liquid, it matters that the liquid is present To make a clear connection with rock physics, we will
and not replaced by air. It matters because the external sheassume that, instead of being locally laye(kaninated, the

can be resolved into local compression in some regions connedium has randomly oriented fractures or cracks. The spa-
taining the liquid. In these regions, the liquid can support thetial distribution of randomness is such that the overall me-
compressioribut not a sheay and therefore the liquid stores dium is macroscopically isotropic. We will assume that there
some of the energy applied to the system by the externadxists a scale at which it makes sense to talk about the po-
shearing force. This discussion shows qualitativééynd  rous medium’s local elastic constants, that there is a single
physically why the effective-medium theory predicts that fracture per representative elementary volume on this scale,
the shear modulus depends on the bulk modulus of the ligand that the elastic compliance tensor can therefore be writ-
uid. (We will show explicitly how it happens in the math- ten locally as that for a transversely isotrogéame as hex-
ematics later in this sectionOn the other hand, if the liquid agonal symmetry medium. The axis of symmetry differs
has enough timéon the diffusive time scale and finite per- from location to location throughout the medium, but
meability permits it to move out of the way, it can relax to locally—if the x; direction is the local axis of

a state that does not support any of the local compressiogymmetry—we can write the strain-stress relations in terms
and then we have Gassmann'’s result. of the compliance matrix as
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analogous to Eq1).

Sin Siz Siz  —-BY

S St Siz  —-BY
€11 Siz Siz S;z —BY on
€2 _,3(1) _,3(1) _B(B) y 022
€33 1 033
- |= N — Ps (52
€3 t 023
€31 1 031
€12 G 012

1
Gdr

We still have the condition that &(,— S;,) = Sge= 1/G;, for transverse isotropy as we did for the isotropic case. But now
the other two shear compliances@l) are decoupled from the values of t8s in the upper left corner of the matrix. We can
use an argument of Schoenberg and Do{#&) (also see Schoenberg and M®] and Dellinger, Muir, and Karrenba¢bO0]
for related concepts and techniqu#és introduce the effects of the drained fractures/cracks into this matrix. And we assume

here that this has already been done. The effects are localized and result in an increase in the colBplaBegs1/G,, and
Ss3 (which implies a decrease in associated stiffnesses
Borrowing Gassmann'’s argument for this case, we have

at
11

at
12

at

12

at

11

at

13

at

13

en) | s sy osE o1
822 1 T2
833 <= 033
— Gsat
623 t 023
€31 i 031
€12 G 012
1
@t
[ Sll S12 Sl3
Sz Suu Sz (D)2 (B2 gIgA)
S S 011
13 S13 Ss3 . (D)2 (g2 ggA) oo
1 1| pVgd g3  (g@3))2 o
= G, - e EGE)
Y 0 023
i 031
G, 012
1
L Gdr

So, although this is more complicated than Ek, the result  change of volume. There are some subtle, but well-known,
is still basically the same: there is no obvious effect of fluideffects contained in Eq53) that need to be elaborated.
saturation on the shear modulus. Thus, local anisotropy in
the form of transverse isotropy is still not enough to induce
the desired response. The elastic stiffness and compliance tensors, in the matrix
Now we must be careful to account for all the effects ofform used here, have six eigenvectors. Four of them are uni-
the anisotropy on interactions between shear stresses amdrsal and independent of the values of the matrix elements.

1. Change of volume under shear
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These four are (Kp) ™1 =284 285+ S5+ 4S15= 2811+ 281+ Syt 4513
1 0 0 0 — (28 + 32y, (58)
-1 0 0 0 1 3 i i
0 0 0 0 wherey=(28M)+ B3)/B, with B being Skempton’s pore-
54 pressure buildup coefficient. The corresponding Voigt boun
o I'l1l:lollo (54) build ffici Th ding Voigt bound
is
0 0 1 0
1
0/ V0P 07 AL Ky=75 (2C5i 235 CHi+ 4C53)
When applied to the compliance matrix, all four correspond 1 a
to states of pure shear, and have eigenval8gs: S, Sy, = —(2C11+2C1,+ Ca3+4C19) + = (2aP+ a®)?,
Ses= Sy, andSgg, respectively. 9 9
The remaining two eigenvectors correspond to coupled (59
f i hear. Th i - .
j\fgtt;sn c;scompressmn and shear. These eigenvectors can v?ﬁere thea’s and 8's are related by defining the appropriate
column vectorse and B, respectively, and noting tha®
1 1 =Sa and a=Cp, with S and C being the drained compli-
1 1 ance and stiffness matrices, respectively. The constant coef-
a, —2la, ficienta in Eq. (59) is determined by H=y—a'Sa.
0 and 0 : (55 For hexagonal symmetr{following Nye [53]), we have
0 0 (the sat superscript will be dropped for npw
0 0 C11+ C12: 833/8, (60)
wherea, solves Cy11—C1o=1/(S;;— Sy9), (61
S+ = Sll+ 812+ a; 813, C13: - 813/8, (62)
S,a,=2S;3+a,S;, (56) C33=(S11+S1)/S, (63
andS, is one of the eigenvalues, which satisfy and
Cu4=Cs5=1/Sy,, (64)
S. =3[ Szt S11+ S12% (Sza— S11— S12)?+ 8574 e "
(57  with
Of these two solutions to E@56), a,. will normally turn out S=S3(Sit 812)—28%. (65)

to be the one closest to unity, while the other oree ( ] N ) )
= —2/a,) will be closest to—2. Whena, =1, then the first These !dentmes show thpdfter restoring the sat superscripts
eigenvector in Eq(55) is almost a pure compression and the @d using Eq(59)]
second is almost a pure shear. Otherwise, the eigenvectors
are mixec_i states, that might k_)e called quasicompressional szﬁt(sﬁq S 25534533
and quasishear states, respectively.

We see now clearly why it is that, if we apply a pure 1 a (1)1 (3N2
compression to the system, some local shearing must occur. = gg (S11+ S12+ 2833~ 48,9 + 5 (2a 7'+ )"
As long as this coupling is contained in the eigenvectors, it is 66)
unavoidable. There is no way to construct a compressional
state of this system that does not couple to shear. It is pos|so, note that both the Reuss and Voigt bounds on bulk
sible to construct some pure shear states that do not couple fodulus are always larger in the presence of the pore liquid
compression using the first four eigenvectors in &4), but  (j.e., B>0) than in its absence. These results are automatic

some interaction between compression and shear is neverth@r Reuss and follow for Voigt ii>0. When the TI medium
less guaranteed for such anisotropic systems. is almost isotropic, we find

(a). Bulk modulus boundsEffective constants for the
overall isotropic system composed from random orientations 1 2a'V+a® [(2aV+a®)?2  (a®—aP)?
of the matrix (53) can be determined approximately using 3~ 3BK oK + 3G '
Reusg[38] and Voigt[39] estimates, which are also known (67)
to be rigorous bounds on the constaii$,52. So, the best
results available for a general polycrysfdr] are the Reuss Wwhich reduces to &= a(1—aB)/BK>0 when a=a®
lower bound and the Voigt upper bound. The Reuss boung- a(®. So, with these restrictions, is positive if B<1/a.
on the bulk modulus is For our examples, we only consider the rangeB<1.
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(b). Shear modulus bound&or the shear modulus, we

accordingly in the Reuss lower bound

PHYSICAL REVIEW &4 011303

TABLE II. Drained stiffnesses and compressibilities of a Creta-
have the effects of the inhomogeneity showing up in theceous shale, estimated from ultrasonic laboratory measurements as-
bounds because the shear can depend on the liquid propertiggning hexagonal symmetf$4]. Stiffnesses are expressed in gi-

gapascals (1 GRal10’ N/m?).

.. —1
(G )*l:i(g at+4 sat_4 at_8583t+6 at+353at) ! C” (Gpa S” (GPa )
R 15(850 3~ 4515~ 853165, 1 354 11 343 0.0370

1 33 22.7 0.0560

_ 1 _ae 44 5.4 0.1852
158511+ 4533~ 45,,~ 8515+ 654+ 35¢¢) 66 106 0.0943

13 10.7 —0.0126

- %(B“)—Bm)z, (68)

=0.001476 andB®=0.02656 GPa, for this example.
These choices are intended to mimic behavior of a sample
with cracks oriented normal to the; axis, having its stron-
gest liquid dependence normal to the crack and significantly
less dependence parallel to the crack. We use Skempton’s
coefficientB as a proxy for frequency in the case of the shear
modulus (but it does not act as a frequency proxy for the
bulk modulus, the lowest values dB corresponding to low-
frequency, Gassmann-like behavior of the shear modulus,
while the highest values oB correspond to behavior ex-
pected at high frequencies when liquid saturates the pores.
We find as predicted that the bulk modulus is the stronger

(690  function of the liquid properties, but that the shear modulus

) ) does indeed depend on them also. In this example, the Voigt

where we have reinstated the sat superscript where appropfiyynds are seen to be monotonically increasing functions of

ate for clarity. _ _ _ Skempton’s coefficient8 for both moduli. The analysis

~ Using the Voigt-Reuss-Hill-type estimatgsl] (i.e., tak-  ghows that this must be so for the Reuss bounds. However,

ing either the average or the geometric mean of the boundsy i the analysis and some examplast shown indicate

we find that such estimates for the shear modulus now dg,e Voigt upper bound on the shear modulus can decrease

depend on the pore liquid properties. Furthermore, the liquidjightly asB increases. For such cases, the Voigt-Reuss-Hill

contributions have a definite sign f@g, showing that the  4yerage will be almost constant, and may not capture the true
lower bound on shear modulyand by inference the shear

modulus itself always increases due to the presence of the

and the Voigt upper bound
1 sat sat sat sat sat sal
Gy=1g(2Ci1+ C35-2C35- C5+6Ca 3C3)
1
= 1_5(2C11+ C33—2C1,— C131+ 6Cyst3Cgp)

a
+ g a¥(a®=ald)

_1f 2 6 3 SE+SEYSH
1505,-S, Su S 5% )

pore liquid. The sign of liquid corrections 8y, in Eq. (69) %J —— Voigt ' '
is not difficult to analyze, and can be seen to depend on the 345 — VRH
sign of the differencer® — a(Y). Using the identities relat- ol — L
ing the column vectors and 8, we also find for TI media
close to isotropic that 3

Sogt

a®(a®—aM)=2G[K(281+ B?)+(4G/3) £
X(BP=pM)](BY-pY). (70 S

=24f
Thus, the condition for increasin@y is either a®>a®), B ool
or, if we assume that =K —2G/3>0, theng®> M) tis,
nevertheless, somewhat surprising that thereaagecircum- 207 o
stancegeven for choices of the parameters that do not seem 18 -===~- "
very likely) in which the upper bound o8 can decrease. We 2

: . L : . 16 ' . :
will return to this point in the subsection on constraints. 0 0.2

(c). Numerical examplesTo provide one numerical ex-
ample of these results, we use measured values for a Creta- g1 5. Example of bulk modulus estimates obtained using
ceous shale as the drained constdh®. Constants for the  Reyss and Voigt bounds, and the Voigt-Reuss-Hill average. Con-
drained hexagonalTl) medium are given in Table Il. Re-  gtants for the drained hexagoridl) medium are given in Table II.

sults of the evaluations are shown in Figs. 2 and 3. Besidegote that this figure provides graphical confirmation of the optimal-
the constants listed in Table Il, we also needed values for th@y [47] of the Voigt and Reuss bounds since they nearly meet here

B's. To emphasize the dependence of the shear modulus e aboutB=0.65. Stiffnesses are expressed in gigapascals (1 GPa
the liquid properties, we have chosen to ug®  =10°N/md).

0.4 0.6 0.8 1
Skempton Coefficient B
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FIG. 3. Example of shear modL_llus estimatgs obtained using Re- 15 4 Example of bulk modulus estimates obtained using Re-
uss and V(.Mgt bounds, and the Vplgt-Reus§-H|I! average. Constanfgeg 5 Voigt bounds, and the Voigt-Reuss-Hill average. Constants
for the dr._suned hexagonaT_I) medium are given in Table II. Other for the drained Trafalgar shale are given in Table Ill. This figure
poroelastic constants are in the text. provides further graphical confirmation of the optimali7] of the

) ) Voigt and Reuss bounds since they are very close over the entire
behavior of the shear modulus. We see that there is a subange plotted here.

stantial quantitative difference between the changes in the
bulk and shear moduli, the bulk modulus changing by aghe transversely isotropic shale having values @f")
much as 100% in this example, whereas the shear modulus0.733 andx®)=0.749. These parameters can be shown to
changes by only about 10%Also, note that Fig. 2 provides b€ related to theg's in our formulation by the following
graphical confirmation of the optimality47] of the Voigt ~ €xpressions: :33( )= aD(Sy+8,) + o )1513 and B®
and Reuss bounds since they nearly meet here at @out =2¢VSia+ @Sz, giving values p)=0.01821 and
=0.7) B¥=0.022 45 GPa'. Results obtained for this example are
The effective-medium approach being used here and illusdualitatively similar to those for the first example. The main
trated in Figs. 2 and 3 falls short of proving that the sheafdifférence is that the values of ties used here do not differ
modulus is dependent on the pore liquid properties. A defini#S much, and therefore the dependence of the shear modulus
tive example would show, for example, that the Voigt upper®n the liquid properties is not as great. We believe that the
bound atB=0 lies below the Reuss lower boundB&1, assumptions of microisotropy and microhomogeneity, which
i.e., Gy(B=0)<Gg(B=1). This does not occur in Fig. 3, Were used by Chen(@5] as a means to reduce the number of
but the results do strongly suggest dependence of the effeduations needed to determine the poroelastic constants from
tive G on the liquid properties. The next subsection will data, may in fact be stronger than necessary and lead directly
provide an analytical example where it is easy to see that thi® the close values obtained here for fbie.
shear modulus should increase when pore liquid is present. 795

T T T

A second numerical example is based on a complete set of -~ Voigt
: ~~~ VRH
poroelastic constants for Trafalgar shale from Ch¢bgl ~~ Reuss
using data from Aoki, Tan, and Bamfof86] and the theo- 7.9¢
retical formulation of Thompson and Willig7]. The main =
elastic constant data are displayed in Table Ill. The results & T
are shown in Figs. 4 and 5. In addition to the data in Table g’%f SR
[ll, Cheng quotes generalized Biot-Willj& 9] parameters for % """""""
=
TABLE lIl. Drained stiffnesses and compressibilities of Trafal- E 78 Iy
gar shale, as derived by Chefisb] using data of Aoki, Tan, and o e T T
Bamford[56)]. 775k
i Ci; (GPa S; (GPah) o
11 24.1 0.0485 &6 02 0.4 0.6 0.8 1
33 21.0 0.0578 Skempton Coefficient B
44 7.23 0.1383
66 8.66 0.1155 FIG. 5. Example of shear modulus estimates obtained using Re-
13 7.62 —0.0142 uss and Voigt bounds, and the Voigt-Reuss-Hill average. Constants
12 6.80 —0.0092 for the drained Trafalgar shale are given in Table Ill. Other po-

roelastic constants are in the text.
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2. An alternative approach couple simple shear directly into either compression or pore

We have shown that in principle the shear modulus carPréssure becau;e there are no off-diagonal terms in the lower
depend on properties of a liquid in the pores. The results arBart of the matrix. Terms that can be added are those that
rather indirect, however, and it might be helpful to see aProduce a change in volume under an applied shear stress,
more explicit way for this behavior to develop in the equa-and others that produce a change in shear strain under a
tions. Furthermore, the corrections to the shear modulus areompressional loadn this case pore pressyraVe think of
expected on physical grounds to be positive. While explicitthis, not as introducing new physics into the problem, but
corrections of this type were found for the Reuss lowermerely as a book-keeping step to make the analysis simpler
bound, it would be helpful to see how such corrections arisén this complex system under studyhe terms introduced
more intuitively from the mathematics. could be obtained instead by performing a coordinate trans-

Without enumerating all the remaining possible perturbaformation to a system not aligned with the principal axes of
tions, we will now jump to another alternative, which makesthe compliance matrix.
use of the fact that, in addition to being anisotropic, the There are many possibilities to consider that would
compliance matrix can be generalized to include some norachieve the desired result, but the simplest apparently has the
standard terms. The form of E¢2) does not permit us to form

Sit Sz Siz  —pY
S Sit Sz —BY

e 3) I

1 Si3 Si3 S;i3 B o
€22 -1 g g —w 22
633 1 033
- | = 5 —Ps |, (71)
823 ! 1 T3
231 E’( o3

12 1 o1

—w

[

The only terms that are new here are those involangvhich couplesoy, to ¢ and also couplep; to e;,. Reciprocity
requires that both terms are present if either is present. For these purposes, we think of the strains on the left of the equation
as being resolved local strains, while the stresses on the right are global stresses.

Repeating Gassmann’s argument once more, we have
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Finally, we have a connection of the right type. We see VI. DISCUSSION AND CONCLUSIONS

sat_ _ 2 B
that 16 UGy w™y, or equivalently that We have shown that there are two main issues affecting

the possible occurrence of velocity dispersion in poroelastic

GsaL Gar (73 systems. The first issue concerns the time scales implicitly
- 1-Ggw?ly’ assumed by Gassmann’s derivation and by effective-medium
theory. Gassmann’s theory applies at very low frequencies
. . (long times, and should be thought of as a quasistatic ap-
showing that, sinceGy=0 and y=0, the saturatedun- proach. Fluid permeability is required to be finite, pores are

drained shear modulus always is larger than that of the . .
drained medium regardless of the sign of the new parameté:ronneCted’ and fluid can pass from one pore to another. Fluid

. The form of Eq.(73) should also be compared to that of pressure equilibrates through a diffusive process having
Ksain Eq. (13) characteristic time proportional to the square of distance and

inversely proportional to the fluid permeability. In contrast,
effective-medium theory, although also formulated at low
frequency, is not valid at such low frequencies as envisioned
We could now study the resulting system by examiningin the quasistatic picture of Gassmann. The ratio of wave-
its eigenvectors and eigenvalues. Unfortunately, the modifiefength to microstructural variations is the main parameter
system is more complex than a transversely isotropic systengietermining validity of the method, so the associated time
It is actually monoclinic(see Nye[53]). It is beyond our  neriod is the wave passage tirhév ,, (with L=d, I, or \,
present needs to stud_y this full system, so we wiII. simplifyi_e_, grain size, correlation length, or wavelengffhe prac-
and neglect the off-diagonal terms that make this systemycq| gitference is that Gassmann’s derivation permits liquid
differ from TI. Doing so introduces no grror in three of the {4 (ake as much time as it needs to equilibrate in pore pres-
eigenvalues, but small errors of oréfw? in the remaining  gre across the whole sample. In contrast, effective-medium

three eigenvalues. theory doesot assume that different pockets of liquid have
Once we have the constants for the saturated system, WgRe same pore pressure values. Permeability in the effective-

can obtain estimates of the effective overall isotropic conyedium picture might be either finite or zero. The time
stants by making use of the Voigt and Reuss bounds as Wg:ales of interest may therefore be too fast to achieve the
did in the previous example. This does not produce a forgqyilibrated pressures needed by Gassmann’s arguments.
mula, but it does give us insight into how the liquid effects Tne implied frequency-dependent transition from finite
can influence the overall isotropic shear modulus of a pPopermeanility to low or zero permeability can be understood
roelastic system. Using EqE8) and (69) again shows that  5nq described quantitatively by considering the frequency
the effective shear modulus depends on the liquid pr_Ope”'?%iependence of the permeability itsdl68]. A complete

We also have requirements on the resulting matrix that iheory of this transitiofwhich is beyond our present scope
be_ positive semldeﬂmtg. This amounts to the physical rey|| therefore presumably couple the frequency dependence
quirement that the medium be mechanically stable, and thgt the bulk and shear moduli to the frequency dependence of
mathematical requirement that the eigenvalues all be nonye permeability.
negative. These requirements are therefore Gat G, Although these differences are the most obvious physical
S11~ Sy, andS. [from Eq.(57)] must all be non-negative. ones and are important sources of discrepancy between the
This places four independent constraifastually five con- o approaches, they are not sufficient to explain the range
straints whenG** is decoupled fromS;;— Sy, as it is in @ of dispersion results observed in experiments. If they were
monoclinic systemon any models we might want to con- gyfficient, then we would not be able to explain Plona’s ul-
sider. WhenS;3=S,;, we have the approximation that O trasonic data on porous glass so w@lona[3], Chin, Ber-
<S_=Sy5—S{ySi,,  and  0<S,=S;;+S;,+S{/Si,,  ryman, and Hedstror], Johnson, Plona, and Kojinia]),
which amount to a shear modulus constraint and a bullpoth qualitatively and quantitatively. There must be more at
modulus constraint, respectively. issue.

Finally, we should point out that if the off-diagonal terms  The second significant issue concerns the fact that

16 and S33' are retained in the Reuss and Voigt averagesGassmann’s argumert@s usually presentgdo not treat the

then it is not difficult to show that the sign of correction due porous medium as if it is inhomogeneous, whereas the
to fluid effects forG,, can now be guaranteed to be positive effective-medium theory inherently does so. This difference
if w=pM/12. Thus, relatively small corrections of the type affects the results because in an inhomogeneous medium,
presented here, which may be present in the real systems bwhen fields are applied externally, the local impact to the
difficult to measure, could be affecting these systems andystem can be very different from that of the applied field
causing the shear modulus to increase in the presence of tf45]. In particular, if a pure compressional stress is applied
pore liquid. externally, this may be resolved into local shear stresses at

These various constrainftsr their more accurate counter- some points in an inhomogeneous medium. Similarly, if a
parts for the exact expressions derived in &@)] should be  pure shear stress is applied externally, this may be resolved
considered when doing forward modeling with these equainto local compressional stresses at some points in the me-
tions to make sure that the stability criteria are always satisdium. If the medium is porous, but the pores are entpty
fied. filled) or the pores are relatively rigid, then the effective-

3. Constraints on the parameters
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medium theory and Gassmann are in agreement. But in might have observable frequency dispersion that sets in at
porous medium, if the pores are filled with liquid and arefrequencies as low as a few kilohertz. Both kinds of systems
relatively compliant, then, for example, an external sheafas long as both have finite permeabilityould, however,
stress can be resolved into a local compressional stress thaill be expected to obey Gassmann’s equations at much
acts on the pore liquid. Elastic energy can then be stored ifbwer (quasistatig frequencies.

the liquid—energy that would not be stored in the pores in  The main consequence of the foregoing analysis is that
the absence of the liquid. Energy also would not be stored ifjifferences in shear modulus induced by the presence of lig-
the liquid were not trappedinite vs zero permeabilily SO jiq in the pores must be explicitly incorporated into the
that no compression of the liquid occurresbme liquid es-  haqry at ultrasonic frequencies when attempting to compare

capes the volume, thus avoiding compression theory to laboratory experimental data. Carrying this strategy
The mathematical expression of these physical argumenmrough will be the subject of future work

has been shown in one examitfer transverse isotropyto
follow simply from the fact that, in anisotropic poroelastic
media, it is expected that at least two of the eigenvectors of
the system will contain coupled compressional and shear be-
havior. Since an inhomogeneous medium may be locally an-
isotropic(depending on the degree of inhomogenkitiis is We thank Steven R. Pride for helpful comments on dis-
sufficient to establish our main result. persion in Biot theory. We thank Gary Mavko for a very

This effect can be very small in some situations, such as &elpful discussion of his own results regarding fluid effects
porous medium with finite permeability but isotropic on the on the shear modulus. We thank Patricia A. Berge for a
microscale, or it can be quite large for a very similar mediumcareful reading and helpful comments on the manuscript.
that is anisotropic on the microscale, as would be the case Work was performed under the auspices of the U.S. Depart-
randomly oriented liquid-filled fractures/cracks were presentment of Energy by the University of California Lawrence
in the systenj59]. Livermore National Laboratory under Contract No. W-7405-

A porous glass system that is uniform on the microscaleENG-48 and supported specifically by the Geosciences Re-
might very well obey Gassmann’s equations all the way upsearch Program of the DOE Office of Energy Research
to frequencies at the low end of the megahertz bdedore  within the Office of Basic Energy Sciences, Division of En-
scattering effects become importanwhile naturally occur- gineering and Geosciences. H.F.W. was also supported in
ring porous systems such as rocks containing microcrack@art by OBES Grant No. DE-FG02-98ER14852.
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