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Thermodynamically consistent incorporation of the Schneider rate equations
into two-phase models
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We formulate a solid-liquid two-phase model including viscous stresses, heat conduction in the two phases,
as well as heat exchange through the interface, and a phase change in the structure of nonequilibrium thermo-
dynamics described by a general equation for the nonequilibrium reversible-irreversible c¢GHNERIO.

The evolution of the microstructure is studied in terms of the Schneider rate equations introducing the nucle-
ation rate and the radial growth rate of the solid phase. The application of the GENERIC structure shows that
this radial growth factor is not an additional, independent material function but is to be expressed in terms of
the difference in the chemical potentials, in the temperatures, and in the pressures between the two phases. The
contribution due to the pressure difference appears in conjunction with the surface tension in such a way, that
a driving force results only if deviations from a generalized version of the Laplace equation occur. Further-
more, it is found that for conditions under which the radial growth rate is zero, the nucleation rate must vanish.
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[. INTRODUCTION advantage that such a model is suitable for finite element
simulations. A comprehensive introduction to this type of
It is well accepted that the phase diagram of a materiatwo-phase flow model can be found in the books of Ihji
can be determinedin principle) from a given thermody- and Drew and Passmgg|. In the following, we consider the
namic potential. The use of equilibrium thermodynamics, incase of equal velocities of the two phases, thereby reducing
this context in particular the extremum critef@nd the cri- the set of variables and of equations. This approximation is
teria and constructions derived thergdfas shown to be of justified either by neglecting external forces and relative dif-
invaluable help. However, only little is known about tthe-  fusion of the two phases or by assuming infinitely high in-
namicsof the phase change and about its governing equaerfacial friction between the two phas¢$,6]. We may
tions and criteria. This paper attempts to show how nonequihence choose the following fields as independent variables
librium formalisms can be used as a guideline to close thigor the solid@)-liquid(l) two-phase system: the apparent
considerable gap. For this purpose, we unite a continuurmass densitieg,,(r) (a=s,l), and the apparent internal en-
two-phase mod€]1] with the Schneider rate equatiof®|,  ergy densitiese,(r) (a=s,lI) where all apparent densities
the latter giving a coarse-grained picture of the structurahre the intrinsic densities per unit volume of the constituent
changes during phase transformation, in the framework ofimes the volume fraction of the respective constituent, the
general equation for the nonequilibrium reversible-total momentum density(r) of the two phases, as well as
irreversible couplingGENERIQ [3,4]. This paper is orga- the volume fraction of solidp(r) and the amount of inter-
nized as follows. First, a brief overview over the two-phaseface per unit volume/(r). The velocity fieldv(r) is given
model and over the Schneider rate equations is given, befotgy u(r)=[ps(r)+p;(r)Jv(r). Since we intend to also in-
the essentials of the GENERIC formalism are outlined.clude the Schneider rate equations into the model and hence
Then, a model that unifies two-phase flow and the Schneideran follow the time evolution of the volume fraction, the
rate equations is incrementally developed using GENERIGnass transfer during phase change can be related to the
as a guideline. change in volume fractiofin contrast to the linear constitu-
tive equation on p.172 in Ref1]). If the rate of change of
the volume fraction¢ due to phase change is denoted by

The description of two-phase flow adopted here consistg e, the rate of mass transf(?r 'S propg rtional to the phase
of the hydrodynamic variables for both of the two pha\sesCha‘nge ratep¢|,c. The governing equations then read when

and in addition, of the volume fraction of one phase and Oiheglectlng turbulent contributiorjd |
the amount of interface per unit volume. Hence, the micro-

A. Two-phase flow

structure is characterized on a rather coarse level, having the d1pst V- (Vps) =+ p e, 1)
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diest V- (Ves) = —pg(V-V) + 75:(VV) =V -qgg+ €]

(4)

+€g¢|pc-

ate|+V-<ve.>=—p|<V~v>+n:<Vv>—V-q|+eﬁ—eF¢|?c.)
5

Let us briefly comment on the various contributiotier
more details the reader is referred to R¢is6]).

Using ¢=¢ and ¢, =1— ¢, the pressurep, are given
by p.= #.P.. P, denoting the pressure in phaseand the
viscous stresses and heat fluxes are expressed as

7a=Ga ML (V) +(VV) ]+ 2610 (V-V) 1, (6)

qe=— ¢)a)‘a' (VTa)a (7)

with the effective viscositieg,, , the effective dilational vis-

cosities k,, k,=k 12— 1,3, and the(generally aniso-
tropic) effective heat conduction tensaks, (for details, see
Ref.[6]). The last term in Eq(6) is absent in Refd.1,6] but
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The rate of phase change affects not only the mass bal-
anceq1),(2) as discussed above, but also the internal energy
balanceg4),(5). The corresponding contributions are deter-
mined by[1,6]

652 ;)Fai _Bai ’ (10)

whereﬁai denotes the enthalpy per unit mass of phasand

P.i is the pressure of phase at the interface. Since the
volume element, which defines the resolution of our model,
is larger than the microstructures, it is necessary to introduce

two different pressures, namely the bulk presqupend the

interface pressurp,,; in order not to lose too much detail. In
general, the interfacial pressures are a subtle issue and have
to be discussed for the specific problem at hand. For ex-
ample, in liquid-solid two-phase systems one might assume

Pi=p; due to relatively fast pressure equilibration in the
liquid phase. As far as the solid phase is concerned, it is
claimed in some referencé6—8] that, as long as the solid
“crystals” are completely surrounded by liquid and there are
no contacts between crystals, one fjas=ps. However, if
there is significant contact between the crystals or if the solid
forms a continuous structure, additional pressure contribu-

in analogy to classical, one-phase hydrodynamics one mighions occur in the solid6-8. It is commonly assumed that
wish to include it. The reader should notice that in the conthe difference of the interfacial pressures relates to the mean
text of the two-phase models discussed here, all these phgurvatureH of the interface and to the surface tension

nomenological coefficients also depend on the microstru

ture, i.e., ong and ¢ [1,6]. A detailed discussion of the
different phenomena included in the effective viscosityis

given, e.g., in Ref[7]. In particular, the constitutive assump-
tion (6) also holds for the rigid solid phase as long as th

crystallites do not merge to form a single big crydi@/7].

This peculiarity originates from the fact that the spatial resoh,; .

e

Cthroughps;— p;; = oH on which (8) is based. In the follow-

ing, fast pressure equilibration in the liquid phase and no

contact between solid particles is assumed, pg;=p,-
Similar to the pressures, one also needs to distinguish be-

tween the bulk enthalpiega and the interfacial enthalpies
It is well established that the difference between the

lution of the model presented here is larger than the size ahterfacial enthalpiesand not the difference between their

the individual crystallites.
In the momentum balance E@), the termu” denotes the
effect of the surface tension given by (see, e.g., Refs.

[1.6])

u’=V(¢Ho), 8

where the coarse-grained mean curvatdrdepends on the
microstructureH (¢, #). It is noteworthy that the interfacial
momentum sourcé8) is such that it modifies the bulk pres-
sure contribution in Eq(3). Another effect of the interface is

bulk counterpartsequals the latent heat=h,;—hg;. A dis-

cussion of possible closures for the interfacial enthalpigs
can be found in Refd1,6].

It is evident that the above set of Eqd)—(5) is not
closed for two reasons. First, in the above equations, the
temperature of the interface enters, both directly troefjh
given in Eq.(9), as well as implicitly throughlr(T;). Since it
is desirable to have the interfacial temperature as a dynami-
cal variable rather than as a constant, a corresponding equa-
tion is required. In Ref{1], such an equation is presented if
some approximations can be made. It will be shown in Sec.
Il that the equation describing the dynamicsTof(or of an

the possibility to exchange heat through the contactinterfaceequivment variable naturally arises when using the GE-
hence there is a heat-flow proportional to the interfacial areayer|c formalism. Second. the above set of EA3—(5) is

If A9 denotes the microscopic heat conductivit{) is a
characteristic microscopic heat conduction length, dnd

not closed because there are no evolution equations for the
microstructural variableg) and . In order to close the sys-

stands for the temperature of the interface, the interfacialom of equations, we here consider the Schneider rate equa-

energy change in phase due to interfacial heat transfer is
given by Refs[1,6]

A (O

eii=w|%0)<Ti—Ta>. (9)

tions.

B. Schneider rate equations

In 1939-1941, Avrami studied the kinetics of phase
change and developed the well-known Avrami equaf®h
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to follow the time evoI_ut|on of .the _vqum.e fractiogh of the dep= ¢|Conv+ ¢|pc' ¢|pc==G(T)¢, (17)
solid phase. Since this equation is an integral equation de-
pending on the whole history of the process and is hence

complicated to solve, Schneider, fuel, and Bergeff2] = Pleont Plper  Ylpe=G(T)L($,1h,¥5), (18
transformed the integral equation into a set of four coupled . ] ]

differential equations for the variabl¢¥,, ¥, ¥,, ¥ 3} un- WV =Pl comt Polpe,  Wolpe=G(M)¥3, (19
der quiescent conditions, where the physical volume fraction

¢ and the amount of interface per unit volungecan be OV =W 3] ot Walper  Walpe=8ma(T), (20)

expressed in terms dfV,,V,,¥,,V3}. When accommo-
dating the original Schneider equations to flow conditions
the  convection  mechanism for the  variables
{V,,¥,,¥,,¥;} needs special care. The explicit form of dw,| 1
the convection shall be addressed when formulating the w:(d—) vy,
model in the GENERIC framework. In the following, the ¢
dynamics of the structural variables is split into a convective

and a phase change contribution, which are hereafter denoted dv,
by the subscripts “conv” and “pc,” respectively, E(d’*’ﬂ'q’Z):(w

where

(21)

_1(\1’ dZ‘PO 2) (22)
2 44 .
W o=Wolcont Wolper  Wolpe=G(T)Wy, (1) The Schneider rate equatiosl)—(14) as given above
have been used by Eder and Janeschitz-Kriegl to study the
: : : crystallization of quiescent polymer melts1-15. Further-
HW1=Vilcont Wilpe, Vilpe=G(T¥,,  (12) more, since the Schneider equations allow us to modify the
phase change kinetics at different levels, it has even been
. : : possible to capture a number of essential phenomena occur-
WY o=Yolcomt Palpe,  Walpe=G(T)¥3, (13  ring in the crystallization of sheared polymer mlst, 15).
In their work, the(modified Schneider rate equations are
) ) ) solved simultaneously with a temperature equation including
V3=Vl comt Yalpe: Palpe:=87a(T), (14 latent heat effects. In the procedure presented here this tem-
perature equation is replaced by the internal energy balances
o - and hence arises as a dependent equation. The above-
describing the growth of spherulitic structures, Wh&€T)  mentioned applications of the Schneider rate equations

(in_units of m s?*) is a radial growth rate, and clearly demonstrate their practical use and the strong need to
a(T) [m™® s™!] denotes the nucleation rate. The variablesrejate them to a nonequilibrium context.

{V,,¥,,¥,, ¥} disregard the fact that, first, nuclei can be
swallowed by other growing crystallites, and, second, that
different crystallites may impinge as crystallization proceeds.
Hence, the above quantities are called “unrestrictew.; Recently, a general equation for the nonequilibrium
denotes the unrestricted volume fractioh, is the unre- reversible-irreversible couplingGENERIQ has been devel-
stricted surface per unit volum#,, is the total length of the oped for describing nonequilibrium systef3s4]. When try-
crystallites per unit volume, an#l ; represents the number of ing to formulate a model in the GENERIC framework, the
nuclei per unit volume. As in the two-phase model, the redirst step is to choose the variables that describe the system.
stricted (physica) volume fraction and interfacial area in- Similar to the procedure in equilibrium thermodynamics, the
stead of their unrestricted counterparts occur, it is essential tehoice of variables must be such that they are independent
relate the two descriptions. There are two common relationgnd sufficient to capture the essential physics. Such a set of
between the redi.e., restrictefland the unrestricted volume Vvariables shall here be denoted kyNote thatx may have
fraction of the form¢= (W) [with dp/dW¥,>0, (¥, both discrete indices as well as continuous indides field
=0)=0, and "”11, Y(W)=1], namely, variables. According to GENERIC, the time evolution of
0= the variablesx can be written in the form

C. GENERIC structure

p:=1—e Yo, ie., Wo=-—In(1—¢) Avrami[9], d—X=L(x)%+M

15 dt (23

1)
(X)g,

where the two generatois and S are the total energy and
Y, i 0] . entropy functionals in terms of the state variableand L
Le., Wo=7— b Tobin[10.  (16)  andM are certain matrice@perators The matrix multipli-
cations imply not only summations over discrete indices but
may also include integration over continuous variables, and
The coupled Schneider rate equations can be mapped frodl 5x typically implies functional rather than partial deriva-
the sef{ Wy, ¥, V,, ¥} onto{¢, s, V,,V;}: tives (for more details se¢3,4]). The GENERIC structure
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also imposes certain conditions on the building blocks in Eqquantities for the interface are the apparent interfacial mass
(23). First, EQ.(23) is supplemented by the degeneracy re-density, p;(r), and the apparent internal energy density,
quirements € (r). As previously discussed, it is sufficient under the equal
velocity assumption to describe the flow by only one mo-
L(x) 5—S=O (24) mentum density, where in the following the total momentum
ox density u(r) accounts for both the momentum of the two
phases as well as for the momentum of the interface, in con-
S6E trast to Sec. | A. And finally, according to the reformulated
M(x)§=0. (29 Schneider rate Eq917)—(20), the microstructure shall be
described by the volume fractiah, the interfacial area per
The requirement that théunctiona) derivative of the en-  unit volume, by the unrestricted length, per unit volume,
tropy lies in the null space ok represents the reversible and by the unrestricted number of crystallids per unit
nature ofL. Hence, the functional form dsandL are con-  volume. The set of variables to describe the system is
strained such that the entropy is not affected by the operatanerefore
generating the reversible dynamics, i.e., lbyOn the other
hand, the requirement that the functional derivative lies in X={ps.p1,Pi U, €, € €, 0,4,V , Vil (26)
the null space oM manifests that the total energy is not
altered by theM contribution to the dynamics. In addition to Natural expressions for the energy functioliabnd for
these degeneracy requiremettsnust be antisymmetric and the entropy functionabare obtained by the local equilibrium
fulfill the Jacobi identity, wherea® needs to be positive assumption. If the thermodynamics of the solid and of the
semidefinite and Onsager-Casimir symmetric. As a result ofiquid phase is characterized by the two branchgands, of
all these conditions one may easily show that the GENERIChe entropy density and the thermodynamics of the interface
Eq. (23) implies both the conservation of total energy as wellis given by the entropy density, the generating functionals
as a nonnegative entropy production. The two contribution& and S read
to the time evolution ok generated by the total energyand
the entropySin Eq. (23) are called the reversible and irre- 1 u? 3
versible contributions, respectively. E[X]:j (E ok i Estate dr, (27
. sT Pl i
Both the complementary degeneracy requirements and the
symmetry properties are essential for formulating proper
and M matrices when modeling concrete nonequilibrium gix]= | [¢sy(ps,€s)+(1— @) (py . €)+ ¢si(pi ,€)]dr
problems. The list of systems, which have already been ex-
pressed in the GENERIC form includes classical hydrody- (28)

namics, polymer kinetic theor§including hydrodynamic in- Lo . —
teraction, rigid constraints, reptation models, and polymePNhere Ithe :ntrénsr:cit(iquantltle\s/ (Ijer?qoteci ?ﬁr rfor theti\'/nd' h
heat conductivity, chemical reactions, Boltzmann’s kinetic ces 6.1) are densities per volume of the respective phase
equation, and the Doi-Ohta model. These various applica(-and not with respect to the total yplume of the VO'U”_‘e ele-
tions have shown that the two-generator idea and the dege teny and fpr the index are densities per amount of inter-
face per unit volume. They can be expressed in terms of the

eracy requirements have strong implications. In order to jus di t variabl tained i
tify this approach, these elements of GENERIC, originallycorreSpon INg apparent variabies containes as

discovered by empirical observations, have been derived by
projection operator formalismigl6,17], which strongly en-
courages us to use the GENERIC formalism.

Ps

ps=ps(ps, P) = ) (29

Il. GENERIC FORMULATION OF A TWO-PHASE - - pI
MODEL p=pipd)=7_2. (30)

We here unify the two-phase model given by Ed$—(5)
with the Schneider rate Eq$17)—(20) in the GENERIC ~ o~ Pi
framework, thereby also constructing the appropriate equa- pi=pilpi.¥)= v
tions for the thermodynamic variables of the interface.

(31)

- o~ €
A. Set of variables and generating functionals €s=€(€s, ) = gs, (32

The solid@)-liquid(l) two-phase system is described in
terms of the following variables. First, the two phases are o
characterized by the apparent mass densitjigs) (a=s,l), e=¢€l€,p)=
and the apparent internal energy densitiegr) (a=s,l)
where all four apparent densities denote the intrinsic densi-
ties per unit volume of the constituent times the volume frac-
tion of the respective constituent. Second, the corresponding

€|
=g’ (33
hil

v (34)

€ =€, )=
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The following assumptions are implied in the above ex-

PHYSICAL REVIEW B4 011209

pressions for the energy and entropy functionals. The currer - %
model includes neither the configurational entropy of the in- s
terface nor accounts for the relative arrangement of the crys 1 M
tallites. Disregarding the latter is in agreement with neglect- — EVZ T,
ing the relative diffusion of the two phases as discussed i i
Sec. | A. Furthermore, the pressure due to collisions betwee 1 T,
crystallites is not captured in the model presented here. | 2" '
accordance with the comments on the interfacial pressures 1 0
Sec. | A, the current GENERIC model hence represents th - EVZ 1
situationps;=ps (andp;; =p;). Using the following defini- T,
tions for the temperatures, the chemical potentials per un5_E= v §= 1 (39
mass, and the pressures of the two phases and of the interfa §x 1 &x T ’
(ie., fora=s,1,i), 1 ;
! T;
0 -~ -
DPs 14
~ o~ -1 0 —_—
IS (Pu €n
Ta<r>—<(’i)) , (35) 0 LT
Jde, ~
0 Pi
T,
0
- = 0
alr IS (Pu €n
’;Er))—— Purce) (36
“ WPa where the velocity fieldv(r) is given by u(r)=[p4(r)
+pi(r) +pi(r)v(r).
Pa(r) Cs(p. )7 I84(Pur €a) _7) 950(Pa+€a) B. Reversible dynamics
Ta(r) ~O7CT T ge, “ op. In order to determine the reversible dynamics, we now
37 construct the operatdy. It has been discussed and illustrated
in Ref.[4] that this operator is closely related to the genera-
tor of space transformations on the field variablssalars,
scalar densities, and vector densitieAs an extension of
classical one-phasic hydrodynam|ed, we propose the fol-
one finds for the functional derivatives Bfand S lowing form for the operatot
|
0 0 0 L,uw O 0 0 0 0 0 0
o o o0 Ly o o o0 o0 o0 0 0
o o o0 Ly, o o o0 o0 o0 O 0
Lups Lup, Lupi Luu Lues Luel Luei Lu¢ Lu¢, Lu\I'2 Lu\I'3
0 0 0 Lea © 0 0 0 0 0 0
Lm= o 0o o Ly 0o o0 o0 o0 O 0 0 | (39)
0 0 0 Lew O 0 0 0 0 0 0
0 0 0 Lg O 0 0 0 0 0 0
0 0 0 Ly, O 0 0 0 0 0 0
0 0 0 Lyuy 0 0 0 0 0 0 0
0 0 0 Lyuy O 0 0 0 0 0 0
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with Let us finally comment on the convection of the structural
variables, i.e., on the form of the elementg,, L, Lw,u

ps— —psV. (409 and Lyu- The fact that all four structural variables have a
different convection mechanism is motivated by the follow-

Lop==Ver Luy=—mV, (400 ing argument. Considering the change in the structural vari-
_ _ ables when simply blowing up the volume element isotropi-
Lpu= Vi LUPi__in’ (400 cally, it is easily seen that the volume fraction does not

T change, while the other quantities change since the surface
Lu=—[Vutuv], (409 area, the length, and the number scale differently than the
_ _ volume element under blowing up. This analysis explains
Lew=—Ves—psV Ly =—&V—Vps, (409 why the volume fractionp is convected as a scalar in accor-
dance with literaturésee, e.g., Ref§18—-21]), whereas the
Leu=— Ve-—pV Lug=— aV—Vp, (40f) number density 5 is naturally convected as a scalar density.
The “intermediate” variablesys and ¥, accordingly are
L..=—Ve—3%pV L,=—¢V—3%Vp,, (409 found to transform as indicated in the corresponding expres-
' ' sions in Eq.(40). It should be mentioned that the amount of
Lyu=—Vo+oV Lyy=—¢V+Ve, (40h) interface per unit volume) is sometimes proposed to be
convected as a scalar dendisge, e.9.[1,8,27) whereas the
=—Vy+ 2yV Luy=— 9V + 2y,  (40i) convection mechanism proposed a_bove is in agreement \(vith
Ref. [23]. Furthermore, as the Doi-Ohta model for multi-
_ 1 _ 1 phase flow shows, the shape of the interface enters the con-
Luu== VWt W,V Ly, = =W,V 4+ 5V¥y, . vection of ¢ [23,24]. However, since such detail is not in-
(40) cluded in the current description, the elemepy gives a fair
description of the convection af.
Lyu==V¥s Luy,=—¥sV, (40K) P of

L yu

and with the apparent pressurps= ¢ps, pi=(1—¢)p, C. Ireversible dynamics

andp; = ¢p; . The derivatives act on all terms to the right of  In this section, we construct the matik representing the
them. The matrist. given by Eqs(39), (40) is antisymmetric  irreversible effects in Eq91)—(5) and (17)—(20), i.e., vis-

and satisfies the Jacobi identity. Furthermore, the degenera@pus stresses, heat conduction in the bulk of the two phases,
(24) is fulfilled due to the expressions for the pressu8®.  and through the interface, and phase change. Due to the dif-
The elements., , andL. ,, giving rise to the reversible ferent origin of the effectsM will be a sum of different
dynamics of thle mass <|:iensi(y'n accordance with Refs. contributions, each representing one specific phenomenon,
[18,19) and the internal energy density of the interface'-€"

[which are absent in Eq$l)—(5)] are justified on one hand M) =M7(r)+MMr)+MIr) +MPSr 41

by analogy with the variablegss andp, and e and ¢, re- S8 S ") ") "), 4

spectively, and on the other hand by the compatibility Wlthcorresponding to viscous stresses, heat flow in the two

the GENERIC antisymmetry and degeneracy requirement$ ;
on L. It can be shown easily that(r) - SE/5x(r) gives rise phases, heat transport across the interface, and phase change,

. Lo X a = respectively. The criteria of GENERIC imposed bh are
itc; aIIt ge%gséglﬁvgzgggb%ggﬁ alrr:i sErgglgn(o?)tr?gdp(rlez)séfe())(’:ontr?mh that they can be verified for each contribution individu-

butions including a momentum source due to the pressure @l¥h$ tg{gle (;ifc,osiggz\r/znéeﬁatsqeicgomgr?ggll::]ytxv:?oﬁ;oliv’?lnlzR:/f/:e
the interface. If the surface tensienis defined in terms of P y : ' g

) ~ ~ i will show that each of the contributions is Onsager-Casimir
the pressure of the interfagg by o= —p;, one obtains for gy mmetric, is positive-semidefinite and fulfills the degen-
the momentum source term=—3Vp,=V(540) rather eracy requirement25).

thanu?=V(4Ho) as given by Eq(8) where the curvature Before we proceed to the detailed discussion of the irre-
H is involved. This discrepancy originates from the fact thatversible contributions, we here briefly mention the general
in the generating functionalE and S only the area of the guideline along which the corresponding matridds are
interface enters, thereby not accounting for curvature. Howeonstructed. First, one lists the variables that are involved. It
ever, for the specific case of spherical particles, the GEmay either be that the effect under consideration makes a
NERIC expression foru” coincides with Eq.(8) since contribution in the balance equation of these variables, or
H(p,¥) =3yl ¢ (see, e.g., p.178 in Reffl]). A further dif-  that the functional derivatives of the entropy with respect to
ference between Eqgél)—(5) and the GENERIC formulation these variables may help to construct meaningful driving
presented here is that the latter accounts for a mass density fofrces for the effect under consideration. Then, all other el-
the interface that is absent in Eq4)—(5), explaining why  ements inM that are not related to any of these variables
the momentum density as used in Eg7) includes also an should be set to zero. In order to simplify the notation, we
interface contribution in contrast to the momentum densityonly give the nonzero elements for each of ¥econtribu-
used in Eq(3). tions in the following. For that purpose a subscript is at-
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tached to the correspondingV contribution denoting in 2. Heat conduction: Bulk contribution
which rOWS(and COIUmnsthe nonzero elements are located. Ana|og0us|y to the discussion for the viscous stress con-
_ tribution, one can determine the irreversible contributions
1. Viscous stress due to the bulk heat flows in Eq&), (5) using the closure
The matrixM 7 that reproduces the viscous stress contri-(7). The resulting matrix
butions in Egs(3), (4), (5) with the closure(6) can be de-

2
termined by comparison with the classical one-phase hydro- MA(r) _ VAsgTs-V 0
dynamic case described in detail in REf]. Realizing that tesal 0 V-N(1-¢)TEV
the contributions in the two-phase model due to viscous (55)
stresses are the sum of the single phase contributions, one . N o
finds with the aid of Ref[4] is symmetric, positive semidefinite, respects the degeneracy
(25) and byM™(r)- 8S/6x(r) leads to the desired heat flux
MZ ML M 3e| contributions.
M ”(r){ \= M7, M? 0 (42) 3. Heat conduction: Interface contribution
U, €g € €s s€s 1

M7 0 M7 Since the heat flux through the interface is specific to
u €14 two-phase systems, we cannot here resort to one-phase hy-
, drodynamics to find the proper contributioefs given by Eq.
with (9) to the Egs(4), (5). Since the expressionsg contain the
.. .. .. temperatureS s, T;, andT,, inspection ofdS/ 6x suggests
Ml=—[V (st m)V+1V-(ns+ 7)V]"=2V(kst 1)V,  that only the elements in the rows and colunegs €, and
(43) ¢ are nonzero. Indeed, the mati&® defined by

MSGSZV- ;fs:y'"V’w‘str '.}’: (44) Mq(r){fsvfl €}
. . N NG
M, == 757V —kstr vV, (45) I(_O)TS 0 - I(—O)Ts
s s
0 0
... 1. “\2 =uT 0 ET — ET
M 2553257737’3 7/+ EKS(tr 7) ’ (46) - dl i I(O) | l(o) |
| |
; o . ) )\(SO) )‘I(O) )\go) )\I(O)
MUelzv' my+t Vi try, (47) _L(S_O)TS _II(_O)T| lg—O)Ts-i‘II(—O)-ﬂ
. . o . 56
MZ,==my- VK tryv, (49 (56)

is symmetric, positive semidefinite, respects the degeneracy
1. . . 1. ) requirement, and results By 9(r)- 8S/8x(r) in the desired
MZ’,q:E??n’-J/JF §K|(tr )%, (49 heat transfer contributions. In addition, the degeneracy re-
quirement produced a corresponding contribution in the
equation for the internal energy of the interfage such that

and the total energy is conserved by the interfacial heat transfer.
y=Vv+[VVv], (50 4. Phase change contributions
. Here, we try to model the contributions to the evolution
ns= nsdTs, (51 Egs.(1)—(5), (17)—(20) arising due to phase change. It has
been observed in many applications of the GENERIC frame-
m=m(l-¢)T, (529  Work (and is a fundamental essence therdloat the appear-

ances of one and the same phenomena in the different evo-
lution equations are interwoven. In order to address this

Ks=KsPTs, (53 guestion for the phase change contribution when unifying the
two-phase model with the Schneider rate equations, we first
,“q = ,}I(l_ T, . (54) consider a wider class of closures for the phase change con-

tributions than presented in Sec. | A in a twofold sense. First,
By calculatingM ”(r) - S/ 8x(r) one indeed recovers the de- We allow arbitrary sources for the phase transformation rates
sired terms in Eqs(3), (4), (5). Furthermore, one can show N the structural variable® , of the form
that the matrixM 7 given by Eq.(42) is symmetric, positive .
semidefinite and fulfills the degeneracy requirem@). ®M|pC=YM(x) (u=1,2,3,9, (57)
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generalizing the modified Schneider rate E@s7)—(20), ® SE
where we have usefib,,®,,&5,®,} = {¢,4,V,,¥3) to Ay=a, = (v=1234, (65)
simplify the notation. Second, the rate of phase change of
any of the structural variable®, may enter in any other 55
balance equation in the sense A®=a,. = (v=1,2,34, (66)
4
Xt > aY (59)
T u(X): the degeneracy requiremd@6) and the equations of motion

for the structural variables read
It is essential for the further procedure to notice that by
virtue of Egs.(57) and(58), the set of vector$a, ,a,,a3,a4},
representing the effect of phase change in terms of
{®,,P,,D5,D,} on all variablesx, is linearly independent
as inspection of their four last components shows

4

0=2

v=1

ALOAB (X (1=1,2,3,4, (67)

. 4
®uloc= 2 AWM (#=1234. (69

Q= Q= Q= (59) The set of Eqs(62)—(68) contains the necessary and suf-
ficient conditions for the phase change contributions in Eq.
(58) under the restrictions discussed after Egfl). In the

following, we attempt to specify the matrixA ,,] for the

representing the four Eq¢57). If we assume that the phase equations of motionsl)—(5). First, we identify the vectors

change terms can be formulated in GENERIC, one may, With the corresponding contributions in Eq$)—(5). The
write fact that the evolution equations for the mass density of the

interface and for the internal energy density of the interface,
and hence, also their phase change contributions, are un-
specified, leaves the corresponding components of the four
vectorsa,, undetermined, apart from the degeneracy require-
Then the matrixMP° describing the phase change contribu-ment (67). However, as shown in the Appendix, the only

o O O -
o O +~» O
o » O O
O O O

=b

D, oe=Y, (1=1,2,34. (60)

tions becomes due to E(8)

4
MP=2> a,b,.

u=1

(61)

In the following, we make the basic assumption that

MPE. §S/ x is an ordinary matrix multiplication, i.e., that no

part of the operator acts as a derivative or as an integratio

Thus, the vectorsg,, and bM are “normal” vectors. The task

physically meaningful choice of the corresponding compo-
nents ofa, is such thatA\®) = 0. If one assumes thalt, and

V5 have no influence on the balance equationg;cdind ¢;
[i.e., if (as), =(a4), =(as)=(a4),=0], and using total
mass conservatigwhich by virtue of Eqs(1), (2) results in
(a1),,=(a2),,=0], one concludes from\(®=0 and Egs.

{4), (5) that (ay) ;= — (e5—€l) and (a;) = 0. Since, by do-

ing so, all components of the four vectas are determined,

to formulate the phase change terms in GENERIC then be2n€ finds

comes a matter of linear algebra. Due to the fact that the

vectors {a;,a,,a3,a84} are linearly independent, one can

show in a mathematically rigorous manner that the matrix

MP€is symmetric and positive semidefinifeand only if

4

MP= > A,.a,8,, (62)
w,v=1
with
A=[A,,]=0, (63
T_ H _
AT=A, e, A,=A,,. (64)

Equation (62) emphasizes that the driving forces for the
phase change as introduced in E@®Q) are intimately

coupled to the appearance of the phase change contributions

in the evolution equations, namely to the vectas, by
b,=%,A,,a,. Furthermore, if we define

ha3N

a = a= a;= a=

S O =, O O O O O O O O
S =, O O O O O O o O O
- O O O O O o O o O O

(69

and hence with5S/ 6x from Eq. (38) and o= —p;
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11 1 1) fus m) (Ps P
r_—_— r-—__—|_5/5s_2 S0
(T Ti)“' (Ti Tl) "(Ts T.)+ T
g
A= -7 : (70
1
0
0
|
By combining the evolution equation of the volume fraction L
: (9 (S
(17) with eq. (68), G=R| A} +EA2 , (79
Hlpe=Gr=(ApA D+ ApA L) = (ApA T +AA ), r
(71) 87ra=RQ(A(f’)+ZA(2$)). (76)

and by assuming the same thermodynamic driving forces for ) ) )
: : : : Let us first comment on the expressi¢ns) for radial

Blpc(=Palpd., ¢|pc(:¢’?|pc)' and forq’2|pc(:q’3|,pf) 85 growth rateG. Using the functional derivatives of the en-
proposed by the Schneider Eqs7)—(19), the matrixA is 45y given in Eq.(38) and with the definition of the vector
found to be of the forn(the star symbols denote elements A®(66) one finds

that are not yet determingd

A A X % EZA(S)+£A(S):‘H. 1 +ohyi| — — —
¢~11 ¢~12 R 1Ty Plsi T. T, PNy T, T
A= : 72 afps ) 11
WAy VR, + * (72 - f‘f)*@f (W{Bs—Bil-Lo), (77
* * * * i .
where we have set the interfacial pressures equal to the bulk
which, due to symmetry, becomésettingR=A,) pressuresp,;=p,,, in agreement with the discussion after
Eqg.(10) and the comments after E@®2), and the last term in
e yL Yy¥y = parentheses is the “Laplace” contribution. It is striking to

*

R | wL L2 WL see that the phase change js equally driven by the phase
=—" , (73  differences of all three intensive variables, namely tempera-
gl YyWs WL o+ % ture, chemical potential, and pressure. In particular, the
* * * * “Laplace” contribution in Eq.(77) is worth a comment. In a
microscopic description of the interface, the Laplace equa-
with the rate “constant”R(x)[K m* J°! s71]. The posi- tion relates the pressure difference to the surface tension by
tive semidefiniteness of implies R(x)=0V x. Through equating the change in volume times the pressure difference
the explicit construction of the Choleski decomposition forto the change in surface times the surface tension. Since,
the matrixA with the matrix elements already specified in according to the Schneider Eq4.7), (18), ¢ and £ are the
Eq. (73), it can be shown rigorously that the relatia#\;,  relevant quantities for change in volume fraction and in sur-
= iyA,, must hold. The other four elements in the lower-rightface per volume, respectively, the last contribution in Eg.
corner, which do not contribute to the dynamics, remain un{77) is the most natural and appropriate formulation of the
determined except thak must be symmetric and positive Laplace equation for the coarse grained description adopted

semidefinite. The matriA then takes the form in this paper. Furthermore, EGr7) shows that the beyond-
equilibrium situation in terms of a deviation from the recast
WP gL YyVy YQ(fx) Laplace equation is a driving force for phase change. The
2 expression(77) for the radial growth rate may be used to
= &X) yL £ L¥s  LAK) (74) study the influence of the microstructure on the melting tem-
g y¥3 LYz * ' peratureT*. If the latter is defined byG=0 and T,=T,
PA(X) LAX)  * * =T,;=T"*, the corresponding criterion reads

where Q(x) [m~#] is an unspecified function. According to A

the phase change expressions for the structural variables ~p(us )+
given in the modified Schneider rate E¢E7)—(20) and with

Eq. (68) one finds for the radial growth ra® and for the  We notice that the microstructure enters through the prefac-
nucleation ratey tor £/¢ [m™ 1] of the surface tension, which becomes impor-

=0. (78

=~ = L
[Ps—Pi] Al
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tant for very small spherulites. If the independent vaLiable%osed orM. Using the expressions for the functional deriva-
in Eq. (78) are the melting temperatuf, the pressureps  tives of E and ofSgiven in Eq.(38), and for the operatoris
andp;, and the inverse lengtli/, Eq. (78) predicts the (39) and M (41), the final and complete set of equations
change in the melting temperature when changing thejescribing the two-phase flow, including the dynamics of the
spherulite size, i.e., the melting temperature depressee interface and the Schneider rate equations, reads

also, e.g., Refl25]). Finally, one should notice that as far as

temperature and pressure is concerned, the corresponding Apst V- (Vpg) =+ pG, (80)
guantities of the interfac&; and o enter in Eq.(77), which

is in clear contrast to the chemical potential, where the influ- ap+V-(vp)=—pGy, (82)
ence of the interfacial properfy; is absent. This asymmetry

originates from the fact that in the current model, the inter- dpi+V-(vp)=0, (82
facial mass density, is not influenced by the phase change

of any of the structural variables, i.e., from,/ pi=0V,u. AU+ V- (vu)=—V(pst+p)+V-(7s+7)+V(ipo),
However, in view of the procedure presented above, the ef- (83

fect of phase change contributions in the balance equation .
for p; on the radial growth raté77) may be elaborated dies+ V- (Ves)=—py(V-V)+7:(VV)—V.qst+ ed+e,Gyf,

straightforwardly. (84)
A comparison of the expressions for the radial growth rate q_ T
G (75) and for the nucleation rate (76) results in e+t V- (ve)=—p(V-V)+7:(VV)=V.q+¢€'—¢ G(ébS)
8ma=QG. (79

o€+ V- (ve) =2 (V-v)— (ed+ ) — (el — € )Gy,

It is of fu_ndamental importance tq notic_e that thi_s does (86)
pecessarly mean 1t e cleaton s cesental e A o
function. Thus, the GENERIC formalism does not impose A4V V3TV =GLGw V2. (89
oy ConsUanLon e form of e uceallon fale @XCDUVAL gy v- (v~ Vv -G, (69
a in order to have a nondiverging@, and correspondingly W4+ V- (V) =87a, (90)

nondiverging elements in the matricdg74) and finallyMP¢
(62). Physically speaking, this implies that for conditions where the expressions fdrandG are given in Eqs(22) and

under which the radial grOWth rate is zero the nucleation ratQ77), respective|y, and where the roots of the funct@(')()
must vanish. Hence, the distinction between nucleation anfleeds to be roots af(x).

growth becomes obliterate under such “steady-state” condi-

tions. It is worthwhile to notice that this constraint from the Il SUMMARY
GENERIC formalism onx is much weaker than the restric- '
tions imposed on the form d& as given in Eqs(75), (77) The solid-liquid two-phase model given by the E¢B—

since in the latter case the functi®must obeyR=0. This  (5) has been united with the Schneider rate HG3)—(20)
is insofar a severe restriction, as in particulBrcannot ac- within the GENERIC framework of beyond-equilibrium
count for the different signs of the radial growth raein  thermodynamics in order to describe the dynamics of solidi-
melting and crystallization conditions, respectively. fication, resulting in Eqs(80)—(90). The dynamic equations
for the thermodynamic variables of the interface have been
constructed using GENERIC as a guideline. It has been
. ) o shown that dissipative contributions due to the viscous
We collect here the previously discussed building blocksstresses and to the heat fluxes in both phases, as well as the
of the GENERIC formalism in order to write down the final peat exchange across the interface could be incorporated.
set of equations describing the two-phase flow, including thg-yrthermore, according to the GENERIC formalism the ra-
interface, in conjunction with the Schneider rate equationsgjg| growth rate in the Schneider rate equations is not an
At this point, the reader should notice the implications of thegqgitional material function but is expressed in terms of the
GENERIC structure on the equations for the mass density ohnase differences in temperature, chemical potential, and
the interface and for the internal energy density of the inter-pressure as shown in E(7). It has been discussed that this
face. First, the reversible contributions given by the elementgypression for the radial growth factor naturally incorporates
L,uandL, defined in Eq.(40) emerged not only due to the dependence on the crystallite size due to the surface ten-
analogy with{ps,p|} and{es,€}, respectively, but also due sion in terms of a reformulated Laplace equation. Thus, it
to the GENERIC conditions imposed &n Second, the irre- may be used to examine the dependence of the melting tem-
versible contributions due to heat transfer across the interfageerature on the microstructure. Finally, it is found that for
and due to phase change naturgfjthough not completely conditions under which the radial growth rate is zero the
rigorously in the latter cagearose from the conditions im- nucleation rate must vanish.

D. Final set of equations
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APPENDIX
pAE pAE

In this appendix, it is shown why the phase change con- )

tributions in the equations for the mass dengityand for the A= —BAL * *xox (A1)

internal energy density; of the interface are most naturally * * x x|

chosen such thaA®=f0. If we assume that there is no

contribution in the equation fop; and for ¢ due to the

change in the structural variabl#s, andW¥;, it follows from  However, according to the Schneider E@$7), (18), the

the form of the functional derivativéE/dx (38), from the  ratio D,¢/D,y determined via Eq(68) should only depend

two-phase flow Eq(1)—(5) and from the definition ofA(®) on the microstructure. It is very possible that this can be

(65) thatAgE)=O andAflE)=0. In order to fulfill the degen- achieved but only with a very peculiar choice for the matrix

eracy condition, four cases then need to be considered: elementA,,. The fourth case does not put any constraints on
the matrixA and is hence considered to be the appropriate

* * * *

Case 1: {A{®#0, A{P=0}, condition to determine the missing-components of the
vectors{a; ,a,,a3,a4}. Physically, the fourth case expresses
Case2: {A{P=0, AP+0}, the fact{that the totil energy is conserved by change in each
' ® ) of the stryctural variables individually, whereas th_e third
Case 3: {A;7#0, Ay”#0}, case requires a subtle balance of the phase change in volume
fraction and interfacial area to respect total-energy conserva-
Case 4: {A{P=0, AP =0}. tion.
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