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Thermodynamically consistent incorporation of the Schneider rate equations
into two-phase models
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~Received 24 February 2001; published 28 June 2001!

We formulate a solid-liquid two-phase model including viscous stresses, heat conduction in the two phases,
as well as heat exchange through the interface, and a phase change in the structure of nonequilibrium thermo-
dynamics described by a general equation for the nonequilibrium reversible-irreversible coupling~GENERIC!.
The evolution of the microstructure is studied in terms of the Schneider rate equations introducing the nucle-
ation rate and the radial growth rate of the solid phase. The application of the GENERIC structure shows that
this radial growth factor is not an additional, independent material function but is to be expressed in terms of
the difference in the chemical potentials, in the temperatures, and in the pressures between the two phases. The
contribution due to the pressure difference appears in conjunction with the surface tension in such a way, that
a driving force results only if deviations from a generalized version of the Laplace equation occur. Further-
more, it is found that for conditions under which the radial growth rate is zero, the nucleation rate must vanish.
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I. INTRODUCTION

It is well accepted that the phase diagram of a mate
can be determined~in principle! from a given thermody-
namic potential. The use of equilibrium thermodynamics,
this context in particular the extremum criteria~and the cri-
teria and constructions derived thereof!, has shown to be o
invaluable help. However, only little is known about thedy-
namicsof the phase change and about its governing eq
tions and criteria. This paper attempts to show how none
librium formalisms can be used as a guideline to close
considerable gap. For this purpose, we unite a continu
two-phase model@1# with the Schneider rate equations@2#,
the latter giving a coarse-grained picture of the structu
changes during phase transformation, in the framework
general equation for the nonequilibrium reversib
irreversible coupling~GENERIC! @3,4#. This paper is orga-
nized as follows. First, a brief overview over the two-pha
model and over the Schneider rate equations is given, be
the essentials of the GENERIC formalism are outline
Then, a model that unifies two-phase flow and the Schne
rate equations is incrementally developed using GENER
as a guideline.

A. Two-phase flow

The description of two-phase flow adopted here cons
of the hydrodynamic variables for both of the two phas
and in addition, of the volume fraction of one phase and
the amount of interface per unit volume. Hence, the mic
structure is characterized on a rather coarse level, having
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advantage that such a model is suitable for finite elem
simulations. A comprehensive introduction to this type
two-phase flow model can be found in the books of Ishii@1#
and Drew and Passman@5#. In the following, we consider the
case of equal velocities of the two phases, thereby redu
the set of variables and of equations. This approximation
justified either by neglecting external forces and relative d
fusion of the two phases or by assuming infinitely high
terfacial friction between the two phases@1,6#. We may
hence choose the following fields as independent varia
for the solid(s)-liquid( l ) two-phase system: the appare
mass densitiesra(r ) (a5s,l ), and the apparent internal en
ergy densitiesea(r ) (a5s,l ) where all apparent densitie
are the intrinsic densities per unit volume of the constitu
times the volume fraction of the respective constituent,
total momentum densityu(r ) of the two phases, as well a
the volume fraction of solidf(r ) and the amount of inter-
face per unit volumec(r ). The velocity fieldv(r ) is given
by u(r )5@rs(r )1r l(r )#v(r ). Since we intend to also in
clude the Schneider rate equations into the model and he
can follow the time evolution of the volume fraction, th
mass transfer during phase change can be related to
change in volume fraction~in contrast to the linear constitu
tive equation on p.172 in Ref.@1#!. If the rate of change of
the volume fractionf due to phase change is denoted
ḟupc, the rate of mass transfer is proportional to the ph
change rate,r̂ḟupc. The governing equations then read wh
neglecting turbulent contributions@1#

] trs1“•~vrs!51 r̂ḟupc, ~1!

] tr l1“•~vr l !52 r̂ḟupc, ~2!

] tu1“•~vu!52“~ps1pl !1“•~ts1tl !1us, ~3!
©2001 The American Physical Society09-1
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] tes1“•~ves!52ps~“•v!1ts :~“v!2“•qs1es
q

1es
Gḟupc, ~4!

] te l1“•~ve l !52pl~“•v!1tl :~“v!2“•ql1e l
q2e l

Gḟupc.
~5!

Let us briefly comment on the various contributions~for
more details the reader is referred to Refs.@1,6#!.

Using fs[f and f l[12f, the pressurespa are given
by pa5fap̃a , p̃a denoting the pressure in phasea, and the
viscous stresses and heat fluxes are expressed as

ta5faha@~“v!1~“v!T#12fak̂a~“"v!1, ~6!

qa52fala•~“Ta!, ~7!

with the effective viscositiesha , the effective dilational vis-
cosities ka , k̂a5ka/22ha/3, and the ~generally aniso-
tropic! effective heat conduction tensorsla ~for details, see
Ref. @6#!. The last term in Eq.~6! is absent in Refs.@1,6# but
in analogy to classical, one-phase hydrodynamics one m
wish to include it. The reader should notice that in the co
text of the two-phase models discussed here, all these
nomenological coefficients also depend on the microstr
ture, i.e., onf and c @1,6#. A detailed discussion of the
different phenomena included in the effective viscosityha is
given, e.g., in Ref.@7#. In particular, the constitutive assump
tion ~6! also holds for the rigid solid phase as long as
crystallites do not merge to form a single big crystal@6,7#.
This peculiarity originates from the fact that the spatial re
lution of the model presented here is larger than the siz
the individual crystallites.

In the momentum balance Eq.~3!, the termus denotes the
effect of the surface tensions given by ~see, e.g., Refs
@1,6#!

us5“~fHs!, ~8!

where the coarse-grained mean curvatureH depends on the
microstructure,H(f,c). It is noteworthy that the interfacia
momentum source~8! is such that it modifies the bulk pres
sure contribution in Eq.~3!. Another effect of the interface is
the possibility to exchange heat through the contact interfa
hence there is a heat-flow proportional to the interfacial a
If la

(0) denotes the microscopic heat conductivity,l a
(0) is a

characteristic microscopic heat conduction length, andTi
stands for the temperature of the interface, the interfa
energy change in phasea due to interfacial heat transfer i
given by Refs.@1,6#

ea
q5c

la
(0)

l a
(0) ~Ti2Ta!. ~9!
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The rate of phase change affects not only the mass
ances~1!,~2! as discussed above, but also the internal ene
balances~4!,~5!. The corresponding contributions are dete
mined by@1,6#

ea
G5 r̂h̄a i2 p̃a i , ~10!

whereh̄a i denotes the enthalpy per unit mass of phasea, and
p̃a i is the pressure of phasea at the interface. Since the
volume element, which defines the resolution of our mod
is larger than the microstructures, it is necessary to introd
two different pressures, namely the bulk pressurep̃a and the
interface pressurep̃a i in order not to lose too much detail. I
general, the interfacial pressures are a subtle issue and
to be discussed for the specific problem at hand. For
ample, in liquid-solid two-phase systems one might assu
p̃l i 5 p̃l due to relatively fast pressure equilibration in th
liquid phase. As far as the solid phase is concerned, i
claimed in some references@6–8# that, as long as the solid
‘‘crystals’’ are completely surrounded by liquid and there a
no contacts between crystals, one hasp̃si5 p̃s . However, if
there is significant contact between the crystals or if the s
forms a continuous structure, additional pressure contri
tions occur in the solid@6–8#. It is commonly assumed tha
the difference of the interfacial pressures relates to the m
curvatureH of the interface and to the surface tensions

throughp̃si2 p̃l i 5sH on which ~8! is based. In the follow-
ing, fast pressure equilibration in the liquid phase and
contact between solid particles is assumed, i.e.,p̃a i5 p̃a .
Similar to the pressures, one also needs to distinguish
tween the bulk enthalpiesh̄a and the interfacial enthalpie
h̄a i . It is well established that the difference between t
interfacial enthalpies~and not the difference between the
bulk counterparts! equals the latent heatL5h̄l i 2h̄si . A dis-
cussion of possible closures for the interfacial enthalpiesh̄a i
can be found in Refs.@1,6#.

It is evident that the above set of Eqs.~1!–~5! is not
closed for two reasons. First, in the above equations,
temperature of the interface enters, both directly troughea

q

given in Eq.~9!, as well as implicitly throughs(Ti). Since it
is desirable to have the interfacial temperature as a dyna
cal variable rather than as a constant, a corresponding e
tion is required. In Ref.@1#, such an equation is presented
some approximations can be made. It will be shown in S
II that the equation describing the dynamics ofTi ~or of an
equivalent variable! naturally arises when using the GE
NERIC formalism. Second, the above set of Eqs.~1!–~5! is
not closed because there are no evolution equations for
microstructural variablesf andc. In order to close the sys
tem of equations, we here consider the Schneider rate e
tions.

B. Schneider rate equations

In 1939–1941, Avrami studied the kinetics of pha
change and developed the well-known Avrami equation@9#
9-2
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THERMODYNAMICALLY CONSISTENT INCORPORATION . . . PHYSICAL REVIEW E64 011209
to follow the time evolution of the volume fractionf of the
solid phase. Since this equation is an integral equation
pending on the whole history of the process and is he
complicated to solve, Schneider, Ko¨ppel, and Berger@2#
transformed the integral equation into a set of four coup
differential equations for the variables$C0 ,C1 ,C2 ,C3% un-
der quiescent conditions, where the physical volume frac
f and the amount of interface per unit volumec can be
expressed in terms of$C0 ,C1 ,C2 ,C3%. When accommo-
dating the original Schneider equations to flow conditio
the convection mechanism for the variabl
$C0 ,C1 ,C2 ,C3% needs special care. The explicit form
the convection shall be addressed when formulating
model in the GENERIC framework. In the following, th
dynamics of the structural variables is split into a convect
and a phase change contribution, which are hereafter den
by the subscripts ‘‘conv’’ and ‘‘pc,’’ respectively,

] tC05Ċ0uconv1Ċ0upc, Ċ0upcªG~T!C1 , ~11!

] tC15Ċ1uconv1Ċ1upc, Ċ1upcªG~T!C2 , ~12!

] tC25Ċ2uconv1Ċ2upc, Ċ2upcªG~T!C3 , ~13!

] tC35Ċ3uconv1Ċ3upc, Ċ3upcª8pa~T!, ~14!

describing the growth of spherulitic structures, whereG(T)
~in units of m s21) is a radial growth rate, and
a(T) @m23 s21# denotes the nucleation rate. The variab
$C0 ,C1 ,C2 ,C3% disregard the fact that, first, nuclei can b
swallowed by other growing crystallites, and, second, t
different crystallites may impinge as crystallization procee
Hence, the above quantities are called ‘‘unrestricted.’’C0
denotes the unrestricted volume fraction,C1 is the unre-
stricted surface per unit volume,C2 is the total length of the
crystallites per unit volume, andC3 represents the number o
nuclei per unit volume. As in the two-phase model, the
stricted ~physical! volume fraction and interfacial area in
stead of their unrestricted counterparts occur, it is essenti
relate the two descriptions. There are two common relati
between the real~i.e., restricted! and the unrestricted volum
fraction of the formf5f(C0) @with df/dC0.0, f(C0
50)50, and lim

C0→`
c(C0)51], namely,

fª12e2C0, i.e., C052 ln~12f! Avrami @9#,
~15!

fª

C0

11C0
, i.e., C05

f

12f
Tobin @10#. ~16!

The coupled Schneider rate equations can be mapped
the set$C0 ,C1 ,C2 ,C3% onto $f,c,C2 ,C3%:
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] tf5ḟuconv1ḟupc, ḟupcªG~T!c, ~17!

] tc5ċuconv1ċupc, ċupcªG~T!L~f,c,C2!, ~18!

] tC25Ċ2uconv1Ċ2upc, Ċ2upc5G~T!C3 , ~19!

] tC35Ċ3uconv1Ċ3upc, Ċ3upc58pa~T!, ~20!

where

cªS dC0

df D 21

C1 , ~21!

L~f,c,C2!5S dC0

df D 21S C22
d2C0

df2
c2D . ~22!

The Schneider rate equations~11!–~14! as given above
have been used by Eder and Janeschitz-Kriegl to study
crystallization of quiescent polymer melts@11–15#. Further-
more, since the Schneider equations allow us to modify
phase change kinetics at different levels, it has even b
possible to capture a number of essential phenomena oc
ring in the crystallization of sheared polymer melts@14,15#.
In their work, the~modified! Schneider rate equations a
solved simultaneously with a temperature equation includ
latent heat effects. In the procedure presented here this
perature equation is replaced by the internal energy bala
and hence arises as a dependent equation. The ab
mentioned applications of the Schneider rate equati
clearly demonstrate their practical use and the strong nee
relate them to a nonequilibrium context.

C. GENERIC structure

Recently, a general equation for the nonequilibriu
reversible-irreversible coupling~GENERIC! has been devel-
oped for describing nonequilibrium systems@3,4#. When try-
ing to formulate a model in the GENERIC framework, th
first step is to choose the variables that describe the sys
Similar to the procedure in equilibrium thermodynamics, t
choice of variables must be such that they are indepen
and sufficient to capture the essential physics. Such a se
variables shall here be denoted byx. Note thatx may have
both discrete indices as well as continuous indices~for field
variables!. According to GENERIC, the time evolution o
the variablesx can be written in the form

dx

dt
5L~x!

dE

dx
1M ~x!

dS

dx
, ~23!

where the two generatorsE and S are the total energy and
entropy functionals in terms of the state variablesx and L
andM are certain matrices~operators!. The matrix multipli-
cations imply not only summations over discrete indices
may also include integration over continuous variables, a
d/dx typically implies functional rather than partial deriva
tives ~for more details see@3,4#!. The GENERIC structure
9-3
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MARKUS HÜTTER PHYSICAL REVIEW E 64 011209
also imposes certain conditions on the building blocks in
~23!. First, Eq.~23! is supplemented by the degeneracy
quirements

L~x!
dS

dx
50, ~24!

M ~x!
dE

dx
50. ~25!

The requirement that the~functional! derivative of the en-
tropy lies in the null space ofL represents the reversibl
nature ofL. Hence, the functional form ofS andL are con-
strained such that the entropy is not affected by the oper
generating the reversible dynamics, i.e., byL. On the other
hand, the requirement that the functional derivative lies
the null space ofM manifests that the total energy is n
altered by theM contribution to the dynamics. In addition t
these degeneracy requirements,L must be antisymmetric an
fulfill the Jacobi identity, whereasM needs to be positive
semidefinite and Onsager-Casimir symmetric. As a resul
all these conditions one may easily show that the GENER
Eq. ~23! implies both the conservation of total energy as w
as a nonnegative entropy production. The two contributi
to the time evolution ofx generated by the total energyE and
the entropyS in Eq. ~23! are called the reversible and irre
versible contributions, respectively.

Both the complementary degeneracy requirements and
symmetry properties are essential for formulating propeL
and M matrices when modeling concrete nonequilibriu
problems. The list of systems, which have already been
pressed in the GENERIC form includes classical hydro
namics, polymer kinetic theory~including hydrodynamic in-
teraction, rigid constraints, reptation models, and polym
heat conductivity!, chemical reactions, Boltzmann’s kinet
equation, and the Doi-Ohta model. These various appl
tions have shown that the two-generator idea and the de
eracy requirements have strong implications. In order to
tify this approach, these elements of GENERIC, origina
discovered by empirical observations, have been derived
projection operator formalisms@16,17#, which strongly en-
courages us to use the GENERIC formalism.

II. GENERIC FORMULATION OF A TWO-PHASE
MODEL

We here unify the two-phase model given by Eqs.~1!–~5!
with the Schneider rate Eqs.~17!–~20! in the GENERIC
framework, thereby also constructing the appropriate eq
tions for the thermodynamic variables of the interface.

A. Set of variables and generating functionals

The solid(s)-liquid( l ) two-phase system is described
terms of the following variables. First, the two phases
characterized by the apparent mass densitiesra(r ) (a5s,l ),
and the apparent internal energy densitiesea(r ) (a5s,l )
where all four apparent densities denote the intrinsic de
ties per unit volume of the constituent times the volume fr
tion of the respective constituent. Second, the correspon
01120
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quantities for the interface are the apparent interfacial m
density, r i(r ), and the apparent internal energy densi
e i(r ). As previously discussed, it is sufficient under the eq
velocity assumption to describe the flow by only one m
mentum density, where in the following the total momentu
density u(r ) accounts for both the momentum of the tw
phases as well as for the momentum of the interface, in c
trast to Sec. I A. And finally, according to the reformulate
Schneider rate Eqs.~17!–~20!, the microstructure shall be
described by the volume fractionf, the interfacial areac per
unit volume, by the unrestricted lengthC2 per unit volume,
and by the unrestricted number of crystallitesC3 per unit
volume. The set of variablesx to describe the system i
therefore

x5$rs ,r l ,r i ,u,es ,e l ,e i ,f,c,C2 ,C3%. ~26!

Natural expressions for the energy functionalE and for
the entropy functionalSare obtained by the local equilibrium
assumption. If the thermodynamics of the solid and of
liquid phase is characterized by the two branchesss andsl of
the entropy density and the thermodynamics of the interf
is given by the entropy densitysi , the generating functionals
E andS read

E@x#5E S 1

2

u2

rs1r l1r i
1es1e l1e i Dd3r , ~27!

S@x#5E @fss~ r̃s ,ẽs!1~12f!sl~ r̃ l ,ẽ l !1csi~ r̃ i ,ẽ i !#d
3r

~28!

where the intrinsic quantities denoted by ‘‘; ’’ for the indi-
ces (s,l ) are densities per volume of the respective ph
~and not with respect to the total volume of the volume e
ment! and for the indexi are densities per amount of inte
face per unit volume. They can be expressed in terms of
corresponding apparent variables contained inx as

r̃s5 r̃s~rs ,f!5
rs

f
, ~29!

r̃ l5 r̃ l~r l ,f!5
r l

12f
, ~30!

r̃ i5 r̃ i~r i ,c!5
r i

c
, ~31!

ẽs5 ẽs~es ,f!5
es

f
, ~32!

ẽ l5 ẽ l~e l ,f!5
e l

12f
, ~33!

ẽ i5 ẽ i~e i ,c!5
e i

c
. ~34!
9-4
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The following assumptions are implied in the above e
pressions for the energy and entropy functionals. The cur
model includes neither the configurational entropy of the
terface nor accounts for the relative arrangement of the c
tallites. Disregarding the latter is in agreement with negle
ing the relative diffusion of the two phases as discussed
Sec. I A. Furthermore, the pressure due to collisions betw
crystallites is not captured in the model presented here
accordance with the comments on the interfacial pressure
Sec. I A, the current GENERIC model hence represents

situation p̃si5 p̃s ~and p̃l i 5 p̃l). Using the following defini-
tions for the temperatures, the chemical potentials per
mass, and the pressures of the two phases and of the inte
~i.e., for a5s,l ,i ),

Ta~r !5S ]sa~ r̃a ,ẽa!

]ẽa
D 21

, ~35!

ma~r !

Ta~r !
52

]sa~ r̃a ,ẽa!

]r̃a

, ~36!

p̃a~r !

Ta~r !
5sa~ r̃a ,ẽa!2 ẽa

]sa~ r̃a ,ẽa!

]ẽa

2 r̃a

]sa~ r̃a ,ẽa!

]r̃a

,

~37!

one finds for the functional derivatives ofE andS
01120
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~38!

where the velocity fieldv(r ) is given by u(r )5@rs(r )
1r l(r )1r i(r )#v(r ).

B. Reversible dynamics

In order to determine the reversible dynamics, we n
construct the operatorL . It has been discussed and illustrat
in Ref. @4# that this operator is closely related to the gene
tor of space transformations on the field variables~scalars,
scalar densities, and vector densities!. As an extension of
classical one-phasic hydrodynamics@4#, we propose the fol-
lowing form for the operatorL
~39!
9-5
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with

L rsu
52“rs Lurs

52rs“, ~40a!

L r lu
52“r l Lur l

52r l“, ~40b!

L r iu
52“r i Lur i

52r i“, ~40c!

Luu52@“u1u“#T, ~40d!

L esu
52“es2ps“ Lues

52es“2“ps , ~40e!

L e lu
52“e l2pl“ Lue l

52e l“2“pl , ~40f!

L e iu
52“e i2

2
3 pi“ Lue i

52e i“2 2
3“pi , ~40g!

Lfu52“f1f“ Luf52f“1“f, ~40h!

Lcu52“c1 2
3 c“ Luc52c“1 2

3“c, ~40i!

LC2u52“C21 1
3 C2“ LuC2

52C2“1 1
3“C2 ,

~40j!

LC3u52“C3 LuC3
52C3“, ~40k!

and with the apparent pressuresps5f p̃s , pl5(12f) p̃l ,
andpi5c p̃i . The derivatives act on all terms to the right
them. The matrixL given by Eqs.~39!, ~40! is antisymmetric
and satisfies the Jacobi identity. Furthermore, the degene
~24! is fulfilled due to the expressions for the pressures~37!.
The elementsL r i ,u and L e i ,u , giving rise to the reversible
dynamics of the mass density~in accordance with Refs
@18,19#! and the internal energy density of the interfa
@which are absent in Eqs.~1!–~5!# are justified on one hand
by analogy with the variablesrs and r l and es and e l , re-
spectively, and on the other hand by the compatibility w
the GENERIC antisymmetry and degeneracy requireme
on L . It can be shown easily thatL (r )•dE/dx(r ) gives rise
to all reversible contributions in Eqs.~1!–~5! and~17!–~20!,
i.e., to the convection mechanisms and the pressure co
butions including a momentum source due to the pressur
the interface. If the surface tensions is defined in terms of
the pressure of the interfacep̃i by s52 p̃i , one obtains for

the momentum source termus52 2
3“pi5“( 2

3 cs) rather
thanus5“(fHs) as given by Eq.~8! where the curvature
H is involved. This discrepancy originates from the fact th
in the generating functionalsE and S only the area of the
interface enters, thereby not accounting for curvature. H
ever, for the specific case of spherical particles, the G
NERIC expression forus coincides with Eq.~8! since
H(f,c)5 2

3 c/f ~see, e.g., p.178 in Ref.@1#!. A further dif-
ference between Eqs.~1!–~5! and the GENERIC formulation
presented here is that the latter accounts for a mass dens
the interface that is absent in Eqs.~1!–~5!, explaining why
the momentum density as used in Eq.~27! includes also an
interface contribution in contrast to the momentum dens
used in Eq.~3!.
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Let us finally comment on the convection of the structu
variables, i.e., on the form of the elementsLfu , Lcu , LC2u ,

and LC3u . The fact that all four structural variables have
different convection mechanism is motivated by the follo
ing argument. Considering the change in the structural v
ables when simply blowing up the volume element isotro
cally, it is easily seen that the volume fraction does n
change, while the other quantities change since the sur
area, the length, and the number scale differently than
volume element under blowing up. This analysis expla
why the volume fractionf is convected as a scalar in acco
dance with literature~see, e.g., Refs.@18–21#!, whereas the
number densityC3 is naturally convected as a scalar densi
The ‘‘intermediate’’ variablesc and C2 accordingly are
found to transform as indicated in the corresponding exp
sions in Eq.~40!. It should be mentioned that the amount
interface per unit volumec is sometimes proposed to b
convected as a scalar density~see, e.g.,@1,8,22#! whereas the
convection mechanism proposed above is in agreement
Ref. @23#. Furthermore, as the Doi-Ohta model for mul
phase flow shows, the shape of the interface enters the
vection of c @23,24#. However, since such detail is not in
cluded in the current description, the elementLcu gives a fair
description of the convection ofc.

C. Irreversible dynamics

In this section, we construct the matrixM representing the
irreversible effects in Eqs.~1!–~5! and ~17!–~20!, i.e., vis-
cous stresses, heat conduction in the bulk of the two pha
and through the interface, and phase change. Due to the
ferent origin of the effects,M will be a sum of different
contributions, each representing one specific phenome
i.e.,

M ~r !5Mh~r !1Ml~r !1Mq~r !1Mpc~r !, ~41!

corresponding to viscous stresses, heat flow in the
phases, heat transport across the interface, and phase ch
respectively. The criteria of GENERIC imposed onM are
such that they can be verified for each contribution individ
ally in order to guarantee the compatibility with GENERI
of the total dissipative dynamics. Hence, in the following, w
will show that each of the contributions is Onsager-Casim
symmetric, is positive-semidefinite and fulfills the dege
eracy requirement~25!.

Before we proceed to the detailed discussion of the ir
versible contributions, we here briefly mention the gene
guideline along which the corresponding matricesM are
constructed. First, one lists the variables that are involved
may either be that the effect under consideration make
contribution in the balance equation of these variables,
that the functional derivatives of the entropy with respect
these variables may help to construct meaningful driv
forces for the effect under consideration. Then, all other
ements inM that are not related to any of these variab
should be set to zero. In order to simplify the notation,
only give the nonzero elements for each of theM contribu-
tions in the following. For that purpose a subscript is
9-6
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tached to the correspondingfIM contribution denoting in
which rows~and columns! the nonzero elements are locate

1. Viscous stress

The matrixMh that reproduces the viscous stress con
butions in Eqs.~3!, ~4!, ~5! with the closure~6! can be de-
termined by comparison with the classical one-phase hy
dynamic case described in detail in Ref.@4#. Realizing that
the contributions in the two-phase model due to visco
stresses are the sum of the single phase contributions,
finds with the aid of Ref.@4#

Mh~r !$u,es ,e l %
5S Muu

h Mues

h Mue l

h

M esu
h M eses

h
0

M e lu
h

0 M e le l

h
D , ~42!

with

Muu
h 52@“~ h̆s1h̆ l !“11“•~ h̆s1h̆ l !“#T22“~ k̆s1k̆ l !“,

~43!

Mues

h 5“•h̆sġ1“k̆s tr ġ, ~44!

M esu
h 52h̆sġ•“2k̆s tr ġ“, ~45!

M eses

h 5
1

2
h̆sġ:ġ1

1

2
k̆s~ tr ġ!2, ~46!

Mue l

h 5“•h̆ l ġ1“k̆ l tr ġ, ~47!

M e lu
h 52h̆ l ġ•“2k̆ l tr ġ“, ~48!

M e le l

h 5
1

2
h̆ l ġ:ġ1

1

2
k̆ l~ tr ġ!2, ~49!

and

ġ5“v1@“v#T, ~50!

h̆s5hsfTs , ~51!

h̆ l5h l~12f!Tl , ~52!

k̆s5k̂sfTs , ~53!

k̆ l5k̂ l~12f!Tl . ~54!

By calculatingMh(r )•dS/dx(r ) one indeed recovers the de
sired terms in Eqs.~3!, ~4!, ~5!. Furthermore, one can sho
that the matrixMh given by Eq.~42! is symmetric, positive
semidefinite and fulfills the degeneracy requirement~25!.
01120
.

-

o-

s
ne

2. Heat conduction: Bulk contribution

Analogously to the discussion for the viscous stress c
tribution, one can determine the irreversible contributio
due to the bulk heat flows in Eqs.~4!, ~5! using the closure
~7!. The resulting matrix

Ml~r !$es ,e l %
52S“•lsfTs

2
•“ 0

0 “•ll~12f!Tl
2
•“

D
~55!

is symmetric, positive semidefinite, respects the degene
~25! and byMl(r )•dS/dx(r ) leads to the desired heat flu
contributions.

3. Heat conduction: Interface contribution

Since the heat flux through the interface is specific
two-phase systems, we cannot here resort to one-phase
drodynamics to find the proper contributionsea

q given by Eq.
~9! to the Eqs.~4!, ~5!. Since the expressionsea

q contain the
temperaturesTs , Tl , andTi , inspection ofdS/dx suggests
that only the elements in the rows and columnses , e l , and
e i are nonzero. Indeed, the matrixMq defined by

Mq~r !$es ,e l ,e i %

5cTiS ls
(0)

l s
(0)

Ts 0 2
ls

(0)

l s
(0)

Ts

0
l l

(0)

l l
(0)

Tl 2
l l

(0)

l l
(0)

Tl

2
ls

(0)

l s
(0)

Ts 2
l l

(0)

l l
(0)

Tl S ls
(0)

l s
(0)

Ts1
l l

(0)

l l
(0)

Tl D D
~56!

is symmetric, positive semidefinite, respects the degene
requirement, and results byMq(r )•dS/dx(r ) in the desired
heat transfer contributions. In addition, the degeneracy
quirement produced a corresponding contribution in
equation for the internal energy of the interfacee i , such that
the total energy is conserved by the interfacial heat trans

4. Phase change contributions

Here, we try to model the contributions to the evolutio
Eqs. ~1!–~5!, ~17!–~20! arising due to phase change. It h
been observed in many applications of the GENERIC fram
work ~and is a fundamental essence thereof! that the appear-
ances of one and the same phenomena in the different
lution equations are interwoven. In order to address t
question for the phase change contribution when unifying
two-phase model with the Schneider rate equations, we
consider a wider class of closures for the phase change
tributions than presented in Sec. I A in a twofold sense. Fi
we allow arbitrary sources for the phase transformation ra
in the structural variablesFm of the form

Ḟmupc5Ym~x! ~m51,2,3,4!, ~57!
9-7
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generalizing the modified Schneider rate Eqs.~17!–~20!,
where we have used$F1 ,F2 ,F3 ,F4% [ $f,c,C2 ,C3% to
simplify the notation. Second, the rate of phase change
any of the structural variablesFm may enter in any othe
balance equation in the sense

]x

]t
5•••1 (

m51

4

amYm~x!. ~58!

It is essential for the further procedure to notice that
virtue of Eqs.~57! and~58!, the set of vectors$a1 ,a2 ,a3 ,a4%,
representing the effect of phase change in terms
$F1 ,F2 ,F3 ,F4% on all variablesx, is linearly independen
as inspection of their four last components shows

a15S A

1

0

0

0

D a25S A

0

1

0

0

D a35S A

0

0

1

0

D a45S A

0

0

0

1

D ~59!

representing the four Eqs.~57!. If we assume that the phas
change terms can be formulated in GENERIC, one m
write

Ḟmupc5Ym5bm•
dS

dx
~m51,2,3,4!. ~60!

Then the matrixMpc describing the phase change contrib
tions becomes due to Eq.~58!

Mpc5 (
m51

4

ambm . ~61!

In the following, we make the basic assumption th
Mpc

•dS/dx is an ordinary matrix multiplication, i.e., that n
part of the operator acts as a derivative or as an integra
Thus, the vectorsam andbm are ‘‘normal’’ vectors. The task
to formulate the phase change terms in GENERIC then
comes a matter of linear algebra. Due to the fact that
vectors $a1 ,a2 ,a3 ,a4% are linearly independent, one ca
show in a mathematically rigorous manner that the ma
Mpc is symmetric and positive semidefiniteif and only if

Mpc5 (
m,n51

4

Amnaman , ~62!

with

A5@Amn#>0, ~63!

AT5A, i.e., Amn5Anm . ~64!

Equation ~62! emphasizes that the driving forces for th
phase change as introduced in Eq.~60! are intimately
coupled to the appearance of the phase change contribu
in the evolution equations, namely to the vectorsam , by
bm5(nAmnan . Furthermore, if we define
01120
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Ln
(E)[an•

dE

dx
~n51,2,3,4!, ~65!

Ln
(S)[an•

dS

dx
~n51,2,3,4!, ~66!

the degeneracy requirement~25! and the equations of motion
for the structural variables read

05 (
n51

4

Amn~x!Ln
(E)~x! ~m51,2,3,4!, ~67!

Ḟmupc5 (
n51

4

Amn~x!Ln
(S)~x! ~m51,2,3,4!. ~68!

The set of Eqs.~62!–~68! contains the necessary and su
ficient conditions for the phase change contributions in E
~58! under the restrictions discussed after Eq.~61!. In the
following, we attempt to specify the matrix@Amn# for the
equations of motions~1!–~5!. First, we identify the vectors
am with the corresponding contributions in Eqs.~1!–~5!. The
fact that the evolution equations for the mass density of
interface and for the internal energy density of the interfa
and hence, also their phase change contributions, are
specified, leaves the corresponding components of the
vectorsam undetermined, apart from the degeneracy requ
ment ~67!. However, as shown in the Appendix, the on
physically meaningful choice of the corresponding comp
nents ofam is such thatL(E)50. If one assumes thatC2 and
C3 have no influence on the balance equations ofr i ande i
@i.e., if (a3)r i

5(a4)r i
5(a3)e i

5(a4)e i
50#, and using total

mass conservation@which by virtue of Eqs.~1!, ~2! results in
(a1)r i

5(a2)r i
50], one concludes fromL(E)50 and Eqs.

~4!, ~5! that (a1)e i
52(es

G2e l
G) and (a2)e i

50. Since, by do-

ing so, all components of the four vectorsam are determined,
one finds

~69!

and hence withdS/dx from Eq. ~38! ands52 p̃i
9-8
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By combining the evolution equation of the volume fracti
~17! with eq. ~68!,

ḟupc5Gc5~A11L1
(S)1A12L2

(S)![c~Ã11L1
(S)1Ã12L2

(S)!,
~71!

and by assuming the same thermodynamic driving forces

ḟupc(5Ḟ1upc), ċupc(5Ḟ2upc), and for Ċ2upc(5Ḟ3upc) as
proposed by the Schneider Eqs.~17!–~19!, the matrixA is
found to be of the form~the star symbols denote elemen
that are not yet determined!

A5S cÃ11 cÃ12 ! !

LÃ11 LÃ12 ! !

C3Ã11 C3Ã12 ! !

! ! ! !

D , ~72!

which, due to symmetry, becomes~settingR[Ã11)

A5
R~x!

c S c2 cL cC3 !

cL L 2 C3L !

cC3 C3L ! !

! ! ! !

D , ~73!

with the rate ‘‘constant’’R(x)@K m4 J21 s21#. The posi-
tive semidefiniteness ofA implies R(x)>0; x. Through
the explicit construction of the Choleski decomposition
the matrixA with the matrix elements already specified
Eq. ~73!, it can be shown rigorously that the relationLA14
5cA24 must hold. The other four elements in the lower-rig
corner, which do not contribute to the dynamics, remain
determined except thatA must be symmetric and positiv
semidefinite. The matrixA then takes the form

A5
R~x!

c S c2 cL cC3 cQ~ fIx!

cL L 2 LC3 LQ~x!

cC3 LC3 ! !

cQ~x! LQ~x! ! !

D , ~74!

whereQ(x) @m24# is an unspecified function. According t
the phase change expressions for the structural varia
given in the modified Schneider rate Eqs.~17!–~20! and with
Eq. ~68! one finds for the radial growth rateG and for the
nucleation ratea
01120
or

r

t
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G5RS L1
(S)1

L
c

L2
(S)D , ~75!

8pa5RQS L1
(S)1

L
c

L2
(S)D . ~76!

Let us first comment on the expression~75! for radial
growth rateG. Using the functional derivatives of the en
tropy given in Eq.~38! and with the definition of the vecto
L(S) ~66! one finds

G

R 5L1
(S)1

L
c

L2
(S)5 r̂h̄siS 1

Ts
2

1

Ti
D1 r̂h̄l i S 1

Ti
2

1

Tl
D

2 r̂S ms

Ts
2

m l

Tl
D1

1

c

1

Ti
~c@ p̃s2 p̃l #2Ls!, ~77!

where we have set the interfacial pressures equal to the
pressures,p̃a i5 p̃a , in agreement with the discussion aft
Eq. ~10! and the comments after Eq.~32!, and the last term in
parentheses is the ‘‘Laplace’’ contribution. It is striking
see that the phase change is equally driven by the ph
differences of all three intensive variables, namely tempe
ture, chemical potential, and pressure. In particular,
‘‘Laplace’’ contribution in Eq.~77! is worth a comment. In a
microscopic description of the interface, the Laplace eq
tion relates the pressure difference to the surface tensio
equating the change in volume times the pressure differe
to the change in surface times the surface tension. Si
according to the Schneider Eqs.~17!, ~18!, c andL are the
relevant quantities for change in volume fraction and in s
face per volume, respectively, the last contribution in E
~77! is the most natural and appropriate formulation of t
Laplace equation for the coarse grained description ado
in this paper. Furthermore, Eq.~77! shows that the beyond
equilibrium situation in terms of a deviation from the reca
Laplace equation is a driving force for phase change. T
expression~77! for the radial growth rate may be used
study the influence of the microstructure on the melting te
peratureT!. If the latter is defined byG50 and Ts5Tl
5Ti[T!, the corresponding criterion reads

2 r̂~ms2m l !1S @ p̃s2 p̃l #2
L
c

s D50. ~78!

We notice that the microstructure enters through the pre
tor L/c @m21# of the surface tension, which becomes impo
L(S)5S es
GS 1

Ts
2

1

Ti
D1e l

GS 1

Ti
2

1

Tl
D2 r̂S ms

Ts
2

m l

Tl
D1S p̃s

Ts
2

p̃l

Tl
D

2
s

Ti

0

0

D . ~70!
9-9
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tant for very small spherulites. If the independent variab
in Eq. ~78! are the melting temperatureT!, the pressuresp̃s
and p̃l , and the inverse lengthL/c, Eq. ~78! predicts the
change in the melting temperature when changing
spherulite size, i.e., the melting temperature depression~see
also, e.g., Ref.@25#!. Finally, one should notice that as far a
temperature and pressure is concerned, the correspon
quantities of the interfaceTi ands enter in Eq.~77!, which
is in clear contrast to the chemical potential, where the in
ence of the interfacial propertym i is absent. This asymmetr
originates from the fact that in the current model, the int
facial mass densityr i is not influenced by the phase chan
of any of the structural variables, i.e., from (am)r i

50 ;m.
However, in view of the procedure presented above, the
fect of phase change contributions in the balance equa
for r i on the radial growth rate~77! may be elaborated
straightforwardly.

A comparison of the expressions for the radial growth r
G ~75! and for the nucleation ratea ~76! results in

8pa5QG. ~79!

It is of fundamental importance to notice that this doesnot
necessarily mean that the nucleation ratea is essentially the
same driving force as the radial growth rateG, since the
function Q5Q(x) introduced in Eq.~74! is an arbitrary
function. Thus, the GENERIC formalism does not impo
any constraint on the form of the nucleation rate except
the roots of the functionG must also be roots of the functio
a in order to have a nondivergingQ, and correspondingly
nondiverging elements in the matricesA ~74! and finallyMpc

~62!. Physically speaking, this implies that for conditio
under which the radial growth rate is zero the nucleation r
must vanish. Hence, the distinction between nucleation
growth becomes obliterate under such ‘‘steady-state’’ con
tions. It is worthwhile to notice that this constraint from th
GENERIC formalism ona is much weaker than the restric
tions imposed on the form ofG as given in Eqs.~75!, ~77!
since in the latter case the functionR must obeyR>0. This
is insofar a severe restriction, as in particular,R cannot ac-
count for the different signs of the radial growth rateG in
melting and crystallization conditions, respectively.

D. Final set of equations

We collect here the previously discussed building bloc
of the GENERIC formalism in order to write down the fin
set of equations describing the two-phase flow, including
interface, in conjunction with the Schneider rate equatio
At this point, the reader should notice the implications of t
GENERIC structure on the equations for the mass densit
the interface and for the internal energy density of the in
face. First, the reversible contributions given by the eleme
L r iu

and L e iu
defined in Eq.~40! emerged not only due to

analogy with$rs ,r l% and$es ,e l%, respectively, but also du
to the GENERIC conditions imposed onL . Second, the irre-
versible contributions due to heat transfer across the inter
and due to phase change naturally~although not completely
rigorously in the latter case! arose from the conditions im
01120
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posed onM . Using the expressions for the functional deriv
tives ofE and ofSgiven in Eq.~38!, and for the operatorsL
~39! and M ~41!, the final and complete set of equation
describing the two-phase flow, including the dynamics of
interface and the Schneider rate equations, reads

] trs1“•~vrs!51 r̂Gc, ~80!

] tr l1“•~vr l !52 r̂Gc, ~81!

] tr i1“•~vr i !50, ~82!

] tu1“•~vu!52“~ps1pl !1“•~ts1tl !1“~ 2
3 cs!,

~83!

] tes1“•~ves!52ps~“•v!1ts :~“v!2“•qs1es
q1es

GGc,
~84!

] te l1“•~ve l !52pl~“•v!1tl :~“v!2“•ql1e l
q2e l

GGc,
~85!

] te i1“•~ve i !5 2
3 cs~“•v!2~es

q1e l
q!2~es

G2e l
G!Gc,

~86!

] tf1v•“f5Gc, ~87!

] tc1v•“c1 1
3 c~“•v!5GL~f,c,C2!, ~88!

] tC21“•~vC2!2 1
3 C2~“•v!5GC3 , ~89!

] tC31“•~vC3!58pa, ~90!

where the expressions forL andG are given in Eqs.~22! and
~77!, respectively, and where the roots of the functionG(x)
needs to be roots ofa(x).

III. SUMMARY

The solid-liquid two-phase model given by the Eqs.~1!–
~5! has been united with the Schneider rate Eqs.~17!–~20!
within the GENERIC framework of beyond-equilibrium
thermodynamics in order to describe the dynamics of sol
fication, resulting in Eqs.~80!–~90!. The dynamic equations
for the thermodynamic variables of the interface have b
constructed using GENERIC as a guideline. It has be
shown that dissipative contributions due to the visco
stresses and to the heat fluxes in both phases, as well a
heat exchange across the interface could be incorpora
Furthermore, according to the GENERIC formalism the
dial growth rate in the Schneider rate equations is not
additional material function but is expressed in terms of
phase differences in temperature, chemical potential,
pressure as shown in Eq.~77!. It has been discussed that th
expression for the radial growth factor naturally incorpora
the dependence on the crystallite size due to the surface
sion in terms of a reformulated Laplace equation. Thus
may be used to examine the dependence of the melting
perature on the microstructure. Finally, it is found that f
conditions under which the radial growth rate is zero t
nucleation rate must vanish.
9-10
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APPENDIX

In this appendix, it is shown why the phase change c
tributions in the equations for the mass densityr i and for the
internal energy densitye i of the interface are most naturall
chosen such thatL(E)[ fI0. If we assume that there is n
contribution in the equation forr i and for e i due to the
change in the structural variablesC2 andC3, it follows from
the form of the functional derivativedE/dx ~38!, from the
two-phase flow Eqs.~1!–~5! and from the definition ofL(E)

~65! that L3
(E)50 andL4

(E)50. In order to fulfill the degen-
eracy condition, four cases then need to be considered:

Case 1: $L1
(E)Þ0, L2

(E)50%,

Case 2: $L1
(E)50, L2

(E)Þ0%,

Case 3: $L1
(E)Þ0, L2

(E)Þ0%,

Case 4: $L1
(E)50, L2

(E)50%.
w

s.

t

se

ym

n,

01120
-

In the first case, one finds that the first column and row in
symmetric matrixA must be zero, resulting inDtF15Dtf
50. Accordingly, the second case leads toDtF25Dtc50.
Hence, the first two cases can be discarded. In the third c
the symmetric matrixA must be of the form

A5S bL2
(E) 2bL1

(E) ! !

2bL1
(E) ! ! !

! ! ! !

! ! ! !

D . ~A1!

However, according to the Schneider Eqs.~17!, ~18!, the
ratio Dtf/Dtc determined via Eq.~68! should only depend
on the microstructure. It is very possible that this can
achieved but only with a very peculiar choice for the mat
elementA22. The fourth case does not put any constraints
the matrixA and is hence considered to be the appropri
condition to determine the missinge i-components of the
vectors$a1 ,a2 ,a3 ,a4%. Physically, the fourth case express
the fact that the total energy is conserved by change in e
of the structural variables individually, whereas the th
case requires a subtle balance of the phase change in vo
fraction and interfacial area to respect total-energy conse
tion.
se
@1# M. Ishii, Thermo-Fluid Dynamic Theory of Two-Phase Flo
~Eyrolles, Paris, 1975!.

@2# W. Schneider, A. Ko¨ppel, and J. Berger, Int. Polym. Proces
2, 151 ~1988!.

@3# M. Grmela and H. C. O¨ ttinger, Phys. Rev. E56, 6620~1997!.
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@16# H. C. Öttinger, Phys. Rev. E57, 1416~1998!.
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