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Lattice Boltzmann equation hydrodynamics
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By inserting position and time dependent “source” or “forcing” terms into the microscopic evolution
equation of a lattice Boltzmann fluid and treating the generalized scheme within the usual Chapman-Enskog
methodology, we show that the emergent dynamics of the lattice fluid may be usefully transformed. Our
method of adjustment is demonstrated by implementing the cylindrical polar coordinate form of the continuity
and momentum equations on a rectangular lattice and generating results for pipe flow. With straightforward
systematic adjustment of the simulation, our approach produces results in excellent agreement with theory.
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[. INTRODUCTION the scheme devised in Sec. Ill and present results. Conclu-
sions are presented in Sec. V.
It was the work of Frisclet al.[1] on lattice gas automata

that first suggested a lattice BoltzmafoB) equation ap-  |I. REPRESENTING FLOW IN A CIRCULAR CHANNEL
proach to hydrodynamics. Essentially LB calculations evolve
a lattice-based momentum distribution functifr,t) and
calculate the emergent lattice fluid’s momentgmnand den-
sity p from this distribution and its moments with the lattice
basisc,. As a model of the Boltzmann equatid@] and

(after a number of crucial innovatior8-8|) as a comple- The remaining radial and axial velocities andv, and pres-

ment to traditional methods of flow computation, the LB g rep satisfy three equations in the two spatial coordinates
method continues to attract the interest of a growing internaznqr. on making the replacements

tional community.

We consider the problem of the laminar flow of an incom-
pressible, isotropic liquid in internal flow with rotational
symmetry around the axis. Accordingly, the azimuthal ve-
locity v, and ¢ coordinate derivatives vanish from the in-
compressible Navier-Stokes and continuity equatipt.

Of the various LB approaches to flow computation the (z,r)—(x,y),
eponymous lattice Bhatnagar-Gross-KrodkBGK) [9] (1)
scheme is the simplest. Indeed it contains only a scalar re- (v7,01)—(vx,0y),

laxation parameter t/and anequilibrium momentum distri-
bution function f(®)(p,v) by which the macrodynamics of We obtain a pseudo-Cartesian representation:
the lattice fluid may be determined—that is, made to con-
form with the incompressible Navier-Stokes and continuity __ Y%
; : ; Iyt dyvy : (2
equations. Referendd 4] provides a particularly useful ac-
count of this analysis

It is the aim of the present work to demonstrate how the Duy 1 ’ 1
i . - X . — =~ —P+vVau,trv-duy, ©)
form of the macroscopic equations describing the lattice fluid Dt p y
can be usefully adjusted by adding variable source terms to
the microscopic evolution equation of the momentum Dv, ) 1 vy
densities—Eq(7) below. Our aim is not, from a fundamen- Dt ;3yp+ vVeuy+ 4 dyvy— v/ (4)

tal standpoint, to incorporate the effects of an external force
upon the lattice fluid; rather, we aim to introduce extra tefrmsthe |ast terms on the right hand sides of E(®—(4) we
self-consistently in the lattice fluid’s momentum equation, inhenceforward designate “nonrectangular.”

our case terms characteristic of, for example, a different ge- e shall show that Eq$2)—(4) may be obtained from a
ometry. For the sake of definiteness, we consider in thgattice Boltzmann scheme simulating incompressible flow,

present work, a forcing strategy to recover, as the macropith the following macroscopic equations for the two un-
scopic equations of the lattice fluid, the cylindrical polar co-known quantities), andv,:

ordinate form of the Navier-Stokes and continuity equations.

In Sec. I, an appropriate form of these equations is set out. 1

In Sec. lll we present a general analysis of forcing, which dip+ dxpvxt dypvy= TyPUy )
proceeds then to focus on the particular problem of Sec. Il.

In Sec. IV we detail the implementation of a test bench for

Dpv v vpUy
Dta‘f't?aP_VVzPUa:}—/ayPUa_75@’ (6)
*present address: Rolls-Royce, P.O. Box 2000, Derby, DE21
7XX, U.K. wherea=Xx,y.
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The right-hand sid¢RHS) terms in continuity and mo- first order gradients in macroscopic observaligs that is,
mentum equationg5) and (6) arise from the particular way in generalh{™ contains 6 — 1)th order gradients ip andv.
in which our simulation has been adapted to cylindrical polar - The guestion now is to determine thé” that give Egs.
coordinates, and not from external, physical acceleration ) and(6) in a consistent fashion. From a Chapman-Enskog
impressed upon the fluid. It should be noted, however, th pe expansion of the Taylor expanded evolution equation

any such momentum equation acceleratigoody force (7), after Houet al. [14], we obtain aO(5,)
terms could be treated phenomenologically with the ap-

proach we discuss in the next section. But, in a manner con- 1

sistent with the analysis of Ref2] extended to apply to the (dro+ Ci,d,) FO=— ;fi(l)+hi(1): €)
Boltzmann equation with an acceleration term, Luo has

shown how external, conservative body forces can emerggng atO( 52)

from an LB schem§12]. We shall return to this issue in Sec.

D. 1 1
at1f$°>+<ato+ciyay>(1—2—7)ff”=—;f$2’+h52’.

IIl. FORCING FLOW IN A LATTICE BOLTZMANN (10

SIMULATION . . . . . .
It is usual, in deriving the macroscopic dynamics, to substi-

A. General considerations tute for f{1) in Eq. (10), using Eq.(9). We then have

In the present work we seek to obtain the macrodynamics 1
in Egs. (5 and (6) from a two-dimensional, nine-velocity ;{04 (g,0+c; y&y)<1_ _)[_T(&toJrCi&aé)fi(O)JrThi(l)]
(2D9Q lattice Bhatnagar-Gross-Krook flu[d 3], which we 27
shall modify. Note, however, that our analysis would gener- 1
alize directly to any particular LB scheme. = ~f@+h®. (11)
For convenience we employ common lattice Boltzmann T
notation and for brevity construct our analysis around the ) ()
formalism of Houet al. [14], for their analysis of Qian, '/&donotuse Eqg9)—(11) to relatef{™ to theh™ . Rather,
d’Humiéres, and Lallemand’s LBGK algorithfii3] and the W& now choose to partition the problem in such a way as to
Chapman-Enskog expansion in particular, provides an appré€cover the R(':)F?L":ns)) terms in the target equation) and
priate basis for present work. (6) from thehi™ (fi") independently.
With the intention of driving the lattice fluid toward a  Writing A, for ¢;, or 1, we take moments of Eqe®) and
nonuniform momentum distribution we incorporatepatial ~ (11) and for thef(" set
and velocity dependemicroscopic ternh;(r,t) into an ad-

justed evolution equation for the lattice fluid’s momentum (0) . A (0) o
distribution: atoZ f (V'p)A'“+C'7ayzi Ve
1 1
fir+adt+8) =fir.t)+ —[H{7(v,p) = f(r,n]+hi(r,b) -5 2 1A, (12
I
(7
s 1 2|£(0)
where 8, is the explicit time step and all other terms have 2 | dut| 57| (9ot Ciydy) | TiT(V.p)Aja
their usual meanin@14]. For purposes of extracting the dy-
namics of this modified schen{&) we perform a Chapman- 1 @)
Enskog type expansion with ttig, like thef;, expanded in = EI fi7Ai,, (13

powers of §,. Bearing in mind that, in the corresponding
unadjusted LBGK schemd3], the 8'f(", n>0, modelde-  \where
parturesfrom equilibrium, we therefore takig to be at least

O(5t): Aia:Cia!l' (14)
hi=8hW+ 2nP+ 53h®+ . .. ®) This, taken with the usual constraints
I I I !
in which, we emphasize, there is no “equilibriun®(s?) > tOv,p)=p,
h; term. '
It is natural to take the lead termh(®) to be zeroth order
in velocity gradients(this ensures consistency with several > fOv,p)ci=pv,, (15)

previous LB applications in which the lattice fluid is body '
forced by a spatially uniform pressure gradient; see, e.g.,
[15] and the references thergimccordingly we takeh(") to FO(y )G Cam 8. G2t
be zeroth order in gradient quantities, ané to contain any 2| - (ViP)CiaCip= POup st PGV,
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corresponds to the unadjusted isothermal LBGK scheme 1
[10,13, which we use without further modification to re- T(l_Z_)[&tOE h(H)+ &72 hi(l)Ciy
cover the LHS terms in the model's macrodynaniEsys. ' !
(5) and(6)].

Implicitly, therefore, the corresponding moments of the\hich, with our target dynamics in view, should vanish. Us-
hi, ing Egs.(19) and(20) therefore

-2 h®?,
i

(21)

(1) 1
S B (s e

1
( 1- 2—)2 (ot Ciy0,)hPAia= 2 h{PAi,, (17 +0,2 tp(gcix— %) Ciy|» (22)

must be used to insert the new terftise RHS'’s of Eqs(5)  which, sinceG is constant in space and time, becomes
and(6) herd. Note that the expressio$6) and(17) operate

at O(5,) andO(&?), respectively. 1 pU
Moments(16) and (17) can now be used to insert target 2. hi(z): [ E) ‘9t02 (_tPTY +0]. (23
terms into the lattice continuity and momentum equations—
for present purposes, the terms in the RHS’s of E§sand  |ance we have a condition on théZ),
(6). Care must be exercised; as is evident from expressions
(16) and (17), the choice oh(® must influence the form of 1 1
h(?) and so forth. Z h{®= (5— T) y SoPvy (24)

For our particular applicatiofof pipe flow) we shall first
select a form for théx{* that yields the desired modification further consideration of which is postponed to the next sec-
of the lattice continuity equatiof6). Thereafter thél® will
be determined from the choséi') and the target modifica-

tion to the lattice fluid’s momentum equations. C. Lattice momentum equation andh(®

With an appropriately modified continuity equation se-
) o _ cured, we proceed to consider the lattice Euler equation,
We proceed to consider the modifications to the lattic&ynich should gain a term, a@(s,), by our choice ofh(®

continuity equation resulting from the inclusion of forcing [Eq. (19)]. To see this, multiply Eq(11) by ¢ and sum ori
termsh™ andh{® into the lattice evolution equation. SUm- {5 optain '

ming oni in Eqg. (9) we obtain atO(6;)

B. Lattice continuity equation and h(®

0
(?tOpUa+ &ﬁngﬁ): EI: hi(l)cia

dop+dgpv g=2, hM, (18)
I
=3 puy D
which, with the target dynamidsf Eqgs.(5) and(6)] in view, T < gcixcia‘T : tCia
motivates the following selection ¢f":
1
=208 0x (29
pu aX
h?”ztp( Geix— 7y> , (19 3

. - o where we have used the resiilit,C;,Cis= J,4/3 [14] for a
whereg is a position and time independent parameter for thepoqQ lattice. Clearly, the lattice fluid’s Euler equation gains
forcing magnitude and,=1/9 fori with |c|=1, 1/36 fori  a body force density term which is widely used to mimic the
with | |= /2, and 4/9 fori =0 [13,14]. With this choice the effect of aspatially uniformbody force(pressure gradient
RHS of Eq.(18) takes the desired form: impressed throughout the lattice fluid:

— 0
S hH=3 tp< Gy ﬂ) dopvy =~ TG, (26)
i i y
But the equilibrium momentum flux tensor
pv pu
IQEI tpCiX_TyEi th—Ty. (20) 1
)= = 3p8us PVavs (27)

We proceed t@)( 5?) now. Summing on in Eqg. (11) we
obtain, in the LHS of the lattice continuity equation, the still contains pressure gradient terms,z/3, we emphasize.
additional expression Using Eq.(26) we can recast conditiof24) as
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@_(1_)1 L i oo @3 Y| L
Z hi = E—T y(?topvy:_ E—T yﬁﬁnyﬁ (28) hi :3tp§5t —§(9yp+(7'3pvlgvy
and substituting folI,,; this becomes +(dypv 5= 35pvy)Cig - (35)
) 1\1 1
Ei hi~= ™5 yaﬁ _§P5yﬁ+PUBUy In summary, to recover lattice fluid macrodynamics

equivalent to pipe flow, while using a regular square lattice
under a uniform applied pressure gradient, we require our
: (29 forcing terms[Eq. (8)] to be of the form

1\1 1
= T_E y —§07yp+(9,3pvﬁvy

At O(6?) now, multiply Eq.(11) by ¢, and sum orni to hD =t (gc- _ ﬂ)
obtain the additional terms generated by our forcing in the ' Py )
LHS of the lattice Navier-Stokes equation:

3v
h?)= tp7[ — 3ypl3+ dypv v+ dypvyvy+ AypU,Cix

-2 hi?e,

1
'T( 1- E’) [ ﬁtozi hi(l)Cia+ 072 hi(l)CiaCiy

— dxpv yCix] . (36)
0+d, _2 hi(Z)Cia For purposes of performing the simulations described in
' the next section, the gradient terms in E(&6) were evalu-
puy @) ate_d using discrete difference approximations_, evaluated on
=317 3 Ja R —Ei hi“Cia lattice, using second order accurate expressions. However,
note that stresses and higher order fluxes such as appear in
pUy 2 (36) can be computed, more in the spirit of the lattice Bolt-
=v(7)d,| — v -2 h%;,, (300 zmann method, from appropriate higher order moments of
' f;, without recourse to such finite differences, thereby avoid-
where we have used the fact thaﬁtozihi(l)cia ing the problems of instability, dissipation, and numerical

= 3,6(G.,,/3)=0, andv(r) denotes the kinematic viscosity inefficiency that finite difference schemes introduce.
of the lattice fluid[13]. Expression(30) is required to supply rll_%efore WE pzjrp(aegdéo ccgn3|der the |mpI|ementa|£|on of .the
additional target terms to match those in the RHS of the(s)C eme embodied in Eqé36) some general remarks are in

Navier-Stokes equatio(6). Hence we write rder

pLy
- T) 2| tpciaciy

=T Z

D. Discussion

v 1
:§ Iy o= yvy(say

In the preceding sections we have shown how different
(31 source terms inserted into the evolution equation can be used
to adjust the final form of the lattice fluid’'s macrodynamics.
At first sight it may seem that a forcing strategy that offers
2Q parametersh™, i=1,...Q, n=1,2, is flexible.
However, one should sound a cautionary note. The strategy
derived in Secs. Il B and Il C is one example of the general
considerations outlined in Sec. Il A. It is, moreover, some-
- Z[&ypva—aapvy] (32  What sanitized. For, in our example, thg"'s andh{*)s in
y expression$16) and(17) may be determined independently,
and in a natural manner—the form Imffl) suggests itself and
therefore it can be used explicitly to determine an appropri-
ate form forh{® . This may not be the case for other appli-
cations and it may well be that, for other problems requiring

and, rearranging,

> h®c=v SR S
- i Cia y yPU o y2 ayPUy T Oq

_P_vy>
y

by the product rule.
From Egs.(29) and(32) we have expressions for the mo-
ments of then® as follows:

3,0 1 more complicated source terms, constraints arise between the
> hP=—|— 3P+ gpv vy |, (33  h{", effectively reducing the number of independéfit’s
' y available.
Clearly the particular forcing terms derived in Secs. 111 B
v . . ) :
h@e =_rg — ’ 34 and II_I C against the example of pipe flow, contain gr_adlent
2i b y[ YPUa™ abVy] 39 quantities. It may well be argued that explicit inclusion of

gradients in this way is contrary to the philosophy of the

where, note, the RHS of the latter is equivalent tolattice Boltzmann method, in that it undermines the distinc-
VX (pv)|;. tion between lattice Boltzmann flow calculations and con-
By inspection, one choice of tf@(&f) forcing term is ventional finite difference Navier-Stokes solvers. However,
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derivative lattice Boltzmann simulations already in the litera-
ture rely upon forcing with gradient quantities to recover
their target dynamics. Indeed, the philosophy of our ap-
proach in Sec. lll reflects the fact that forcing can be applied
as a practical tool, adjusting the form of the macrodynamical O -
equations of a lattice Boltzmann fluid, which is primarily of
the form of the Navier-Stokes equation. So, for such lattice
Boltzmann schemes as do rely upon gradient-forced macro-
dynamics, the way in which we incorporate the necessary
gradients quantities, through the Chapman-Enskog expan-
sion, is, we hope, pertinent. A -
The strategy described in this work is envisaged as a re-

source for adjusting the dynamics ofnaonophasidattice

fluid. While it can, in principle, modify the dynamics of a 0
lattice Boltzmann scheme whatever the physical origin of the 0
additional terms in the momentum/continuity equations

[RHS's of Egs.(5) and(6)], our approach here still incorpo- 0 40" Below (above line AB the lattice fluid is body forced
r.ates Suc.h terms carefully but phenomenologically. In parioward the right(left). Duct axes(broken line$ should be located
,t'cmar' this work does not have the Same,fundamemal bas'éh‘ lattice, which can be achieved by appropriate positioning of the
in the full Boltzmann equation as the forcing strategies thaqriggic boundaries that obtain between left and right and between
have very recently appear¢ti2]. The work reported in Ref. 55 and bottom of the lattice.

[12] formally addresses external acceleration tean¥ .f;

in the LHS of a generalized Boltzmann equation and adoptgnsistent with the Chapman-Enskog analysis. It can be

a satisfyinga priori approach to the problem of forcing lat- ghown that the above analysis leads to the same results as we
tice fluid flow. Probably it would be contrary to the philoso- gptain here.

phy of the work, but the analysis of R¢fL2] can obtain the
effective forcing for our present problem of cylindrical pipe
flow as follows.

In the notation12], those corrections to the lattice conti-
nuity (momentum equation in the RHS of Eq5) are ob-
tained by generalizing constraint equationgalzand 12Zb)

X

FIG. 1. Schematic of our test-bench implementation of uniform

IV. SIMULATION OF PIPE FLOW

In this section we discuss results from a test-bench simu-
lation of forced flow in an infinitely long circular pipe,
driven by a uniform pressure gradief@ffective body force

of Ref.[12] to

J déga VF=F, (39
with
1
FO - ypvyv
v Vpuy
Fla:_yaypva_75ay- (39

Following Ref.[12], the integrations in Eq¥37) and (38)

density parallel with the pipe axis. Figure 1 is a schematic
of our implementation. We shall represent the discrete lattice
coordinates with integers andY; in this figure X represents
the distance along the pipe in the direction of flow. All the
results reported relate to a steady-state lattice initialized with
node densityp=1.0. Convergence was checked by monitor-
ing the time development of the lattice velocity field residu-
als.

Periodic boundaries were installed along vertical lines
X=0 andX=L. We shall return to the issue of horizontal
boundaries shortly. Flow was forcédee below parallel to
the X direction. Thus the overall algorithm is translationally
invariant along the horizontal. Under such circumstances it is
possible to make the lattice lengthconveniently small and
also to avoid any axial lattice fluid density gradient, which
might otherwise lead to compressibility erd6].

Consider the half of the simulation below the horizontal

work through a formal discretization of the Boltzmann equa-line connectingA andB. Here fluid was induced to flow in
tion to generate summations in the emergent LBGK schemdhe direction fromA to B by use of a positive body force

expressing the presence of forcitajrictly, for present pur-
poses, areffectiveforcing) given by

a-Velpty(cO+ce+cPeg+--). (40

constantg, corresponding to an applied pressure gradient of
GI3, G>0 [Eq. (26)]. For this region of the lattice the pipe
axis is the broken line connecting with D, which corre-
sponds toy=0. Since certain of the forcing terms in Egs.
(35 and(36) refer to the reciprocal of (distance from the

The coefficients™ depend on hydrodynamic variables and pipe axig, care must be exercised to avoid any singularity.
their gradients. By substituting the truncated series expanAccordingly the lineCD should be located off lattice, which

sion ofa- V.f into the constraints of Eq$37) and(38), one
can obtain the coefficients(™” up to a certain order i

can be achieved by appropriate positioning of the horizontal
no-slip lattice boundaries.
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FIG. 2. Variation of axial velocity,(Y) with positionY in the ) o
lower half of the simulation latticébelow line AB, Fig. 1). As a FIG. 3. Measured value of Darcy-Weisbach friction factor ex-

result of the particular forcing strategy employed the resulting flowP'€sSed as a ratio with the analytic value. The data presented here

profile is exactly parabolic with on-lattice zeros of velocity in the @€ for constant Reynolds number-R&0. The discontinuity in the -
linesY=0 andY=W/2. region of 1//=0.3 demonstrates the effect of an increase in spatial

resolution between serig$) (+ points, W=50) and seriegll)

The general problem of terminating an LB lattice so as tc)(>< points,W=302). The inset shows yariation of simulation error
impose a no-slip condition on the lattice fluid velocity field is A over the same range of s for seriegl) and (1l).

unsolved. However, a number of methods that closely mimicy .o presented in Fig. 3 correspond to a Reynolds num-

g?gcﬁg;gtnOfségg]ogngnr;peerefrl]%vgsrlﬁ\é?e?ne?hgiv'rsnerg;tfroro?ber Re=10, which was kept constant by varying the simula-
' ' y Y %tion pressure gradient paramet@rin accordance with the

our particular problem can be exploited, however. In fact

periodic boundary conditions were also applied, along the(elatlonshlp

lines Y=0 andY=W, with the upper layer of lattice fluid 64 p(2—w)?

(above the line connectingy with B) forced back by use of a g=—Re——— (43
negative body force constantG [Eg. (26)] for Y>WI/2, 3 Wew?

which, of course, has the effect of forcing this top fluid layer
toward the left. Where our two lattice fluids contact, in the
lines Y=0 (equivalent to the periodic image ling=W
+1) and Y=W/2, a zero of velocity(no-slip boundary
must, on general grounds, occur. Two opposing paraboli
flow profiles were thus established for a range of LBGK
collision parameteflattice fluid kinematic viscosityvalues.

Figure 2 shows the variation of axial velocity, with
positionY in the lower half of the simulation latticbelow
line AB, Fig. 1). As a result of the particular flow forcing
strategy and lattice closure the resulting flow profile is e
actly parabolic with on-lattice zeros of velocity in the lines
Y=0 andY=W/2.

The Darcy-Weisbach friction factor, defined through the A= |Vy(r)—vy(n)], (44)
usual relationship r

derived for pipe flow{11], using Eq.(25) and the fact that
our simulated pipe radius W/4 (Fig. 1). In effect, the lattice
width W not only determines the effective pipe diameter, for
gonstant Re it also determines the spatial resolution of the
simulation.

The data presented in Fig. 3 are in three serfbsfor
0.3=1/7<2.0, W=50 (+ pointy, (II) for 0.2<1/r
=<0.3 with substantially increased spatial resolutiof,
=302 (X pointg, and (lll) 0.0<1/7<0.15, W=102
«(* points). The measured departure from the analytic steady-
state pipe flow profileV,(r),

dp 11 varies as X 10 °<A<3.5x 10 2 over the data serie@).
—=f_——pV? (41  These data are presented in the inset to Fig. 3 over the same
dz Hgq 2 range of 1f covered by serie¢l) and (Il). However, it is
) o ) ) clear from Fig. 3 that this increase in error as &pproaches
whereHy is the hydraulic diametefthe physical diameted  the (arbitrary value of 0.3, in seriedl), can be combated by
for a circular pip¢ andV the average velocityhalf the peak  hcreasing the spatial resolutigmalue of W), as for series
velocity), was measured over the full range of LBGK colli- (1), so the accuracy of the numerical calculationterms of
sion parameter %/ Figure 3 showd expressed as a ratio the velocity field can be maintained at second order, even
with F, the analytical value for a fully developed, laminar, for small values of 1, given sufficient spatial resolution.

pipe flow: Below the value 1#~0.2, an observed instability associated
with the singularity ofy [Egs. (36)] means that the spatial
E— E‘ Re— d_V (42) resolution necessary for convergence greatly increases, and
Re’ v the data shown in serie@ll) of Fig. 3, for values of 1/
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FIG. 5. Convergence behavior. Errdr defined as departure
rom the analytic solutiofEq. (44)] plotted as a function of spatial
resolution. For the data shown here the range of Reynolds number
is 1=Re<100. The spatial resolution is measured by the value of

. . . . R=W/4 (channel radius in lattice unjtsvhich varies over the range
<0.15, were obtained using an analytic expression for thg, g 17 550 5.

terms in Egs.(36) in our code. Note also that the conver-
gence time, assessed in terms of time changes in the velocity V. CONCLUSION
field residual,

FIG. 4. Convergence time data for four lattice sizes correspondf
ing to channels of widtiWw/2=25, 51, 101, and 201 over a range
of relaxation parameter 0s61/7<1.8.

In this work we have shown how a forcing strategy, ap-
plied to the microscopic evolution equation of a lattice Bolt-
R=2, [uy(r,t+1)—v,(r,t)]?, (45  zmann fluid, can correctly modify the emergent macroscopic
r equations toward a particular target form. For purposes of
i i . _.deriving the model's macrodynamicéwithin the usual
varies substar_mally over the range of data represented in F'thapman-Enskog expansjoour strategy treats any forcing
3, and also with Reynolds number. terms(source termsthat are added into the microdynamical
The factor 1y that is attached to certain terms in our eyolution equation in a manner consistent with the momen-
expressiong36) for h{*) andh(?) is, of course, peculiar to tum densities. We find that forcing terms treated in this way
our chosen example problem of adjusting for cylindrical pipeoccur, as it were, “recursively” in the macrodynamifsee
flow, but its singularity clearly affects convergence behaviorEgs.(16) and(17)] and in consequence their inclusion into a
In order to assess convergence time with varying spatidhttice Boltzmann scheme is somewhat more involved than
resolution, data were collected over a range of Reynoldene might naively imagine. For our chosen application, in
number, for channels of widtW/2=25, 51, 101, and 201. which there are no constraints on the forcing problem, it is
In all cases the correct laminar flow profile and friction factor straightforward to determine a set of forcing terms system-
were eventually obtained in good agreement with theoryatically.
The different convergence times for these checks are sum- While we work here with a lattice Bhatnagar-Gross-
marized in Fig. 4. Note that for all the data in Fig. 4 the Krook scheme and consider, for definiteness, the case of flow
lattice collision parameter was confined to the rangen a circular cross-section ductesults from a test-bench
0.6<1/7<1.85. simulation are in excellent agreement with theory, hoter
Figure 5 shows the convergence behavior of the schemmethodology can clearly be generalized to any lattice Boltz-
in terms of the errofdefined in Eq.(44)] as a function of mann scheme(Here we note that any constraints on the
spatial resolution. The Reynolds numbers used in these simtiercing problem will reduce the number of independent forc-
lations varied over the rangesiRe<100 and the spatial ing terms) In this respect the present work should be of
resolution (measured by the value O, the simulation interestto any worker attempting to adjust the macrodynami-
width) over a range corresponding to channel radii 85 cal equations of a lattice Boltzmann scheme for, e.g., appli-
=250.5. cations in nematodynamics or viscoelasticity.
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