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Lattice Boltzmann equation hydrodynamics
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By inserting position and time dependent ‘‘source’’ or ‘‘forcing’’ terms into the microscopic evolution
equation of a lattice Boltzmann fluid and treating the generalized scheme within the usual Chapman-Enskog
methodology, we show that the emergent dynamics of the lattice fluid may be usefully transformed. Our
method of adjustment is demonstrated by implementing the cylindrical polar coordinate form of the continuity
and momentum equations on a rectangular lattice and generating results for pipe flow. With straightforward
systematic adjustment of the simulation, our approach produces results in excellent agreement with theory.
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I. INTRODUCTION

It was the work of Frischet al. @1# on lattice gas automat
that first suggested a lattice Boltzmann~LB! equation ap-
proach to hydrodynamics. Essentially LB calculations evo
a lattice-based momentum distribution functionf i(r ,t) and
calculate the emergent lattice fluid’s momentumrv and den-
sity r from this distribution and its moments with the lattic
basis ci . As a model of the Boltzmann equation@2# and
~after a number of crucial innovations@3–8#! as a comple-
ment to traditional methods of flow computation, the L
method continues to attract the interest of a growing inter
tional community.

Of the various LB approaches to flow computation t
eponymous lattice Bhatnagar-Gross-Krook~LBGK! @9#
scheme is the simplest. Indeed it contains only a scalar
laxation parameter 1/t and anequilibriummomentum distri-
bution function f i

(0)(r,v) by which the macrodynamics o
the lattice fluid may be determined—that is, made to c
form with the incompressible Navier-Stokes and continu
equations. Reference@14# provides a particularly useful ac
count of this analysis!.

It is the aim of the present work to demonstrate how
form of the macroscopic equations describing the lattice fl
can be usefully adjusted by adding variable source term
the microscopic evolution equation of the momentu
densities—Eq.~7! below. Our aim is not, from a fundamen
tal standpoint, to incorporate the effects of an external fo
upon the lattice fluid; rather, we aim to introduce extra ter
self-consistently in the lattice fluid’s momentum equation,
our case terms characteristic of, for example, a different
ometry. For the sake of definiteness, we consider in
present work, a forcing strategy to recover, as the ma
scopic equations of the lattice fluid, the cylindrical polar c
ordinate form of the Navier-Stokes and continuity equatio
In Sec. II, an appropriate form of these equations is set
In Sec. III we present a general analysis of forcing, wh
proceeds then to focus on the particular problem of Sec
In Sec. IV we detail the implementation of a test bench

1*Present address: Rolls-Royce, P.O. Box 2000, Derby, D
7XX, U.K.
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the scheme devised in Sec. III and present results. Con
sions are presented in Sec. V.

II. REPRESENTING FLOW IN A CIRCULAR CHANNEL

We consider the problem of the laminar flow of an incom
pressible, isotropic liquid in internal flow with rotationa
symmetry around thez axis. Accordingly, the azimuthal ve
locity vf and f coordinate derivatives vanish from the in
compressible Navier-Stokes and continuity equations@11#.
The remaining radial and axial velocitiesv r andvz and pres-
sureP satisfy three equations in the two spatial coordinatez
and r. On making the replacements

~z,r !→~x,y!,
~1!

~vz ,v r !→~vx ,vy!,

we obtain a pseudo-Cartesian representation:

]xvx1]yvy52
vy

y
, ~2!

Dvx

Dt
52

1

r
]xP1n¹2vx1n

1

y
]yvx , ~3!

Dvy

Dt
52

1

r
]yP1n¹2vy1n

1

y S ]yvy2
vy

y D . ~4!

The last terms on the right hand sides of Eqs.~2!–~4! we
henceforward designate ‘‘nonrectangular.’’

We shall show that Eqs.~2!–~4! may be obtained from a
lattice Boltzmann scheme simulating incompressible flo
with the following macroscopic equations for the two u
known quantitiesvx andvy :

] tr1]xrvx1]yrvy52
1

y
rvy , ~5!

Drva

Dt
1]aP2n¹2rva5

n

y
]yrva2

nrvy

y2
day , ~6!

wherea5x,y.
1
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The right-hand side~RHS! terms in continuity and mo-
mentum equations~5! and ~6! arise from the particular way
in which our simulation has been adapted to cylindrical po
coordinates, and not from external, physical accelerati
impressed upon the fluid. It should be noted, however,
any such momentum equation acceleration~body force!
terms could be treated phenomenologically with the
proach we discuss in the next section. But, in a manner c
sistent with the analysis of Ref.@2# extended to apply to the
Boltzmann equation with an acceleration term, Luo h
shown how external, conservative body forces can eme
from an LB scheme@12#. We shall return to this issue in Se
III D.

III. FORCING FLOW IN A LATTICE BOLTZMANN
SIMULATION

A. General considerations

In the present work we seek to obtain the macrodynam
in Eqs. ~5! and ~6! from a two-dimensional, nine-velocity
~2D9Q! lattice Bhatnagar-Gross-Krook fluid@13#, which we
shall modify. Note, however, that our analysis would gen
alize directly to any particular LB scheme.

For convenience we employ common lattice Boltzma
notation and for brevity construct our analysis around
formalism of Hou et al. @14#, for their analysis of Qian,
d’Humières, and Lallemand’s LBGK algorithm@13# and the
Chapman-Enskog expansion in particular, provides an ap
priate basis for present work.

With the intention of driving the lattice fluid toward
nonuniform momentum distribution we incorporate aspatial
and velocity dependentmicroscopic termhi(r ,t) into an ad-
justed evolution equation for the lattice fluid’s momentu
distribution:

f i~r1cid t ,t1d t!5 f i~r ,t !1
1

t
@ f i

(0)~v,r!2 f ~r ,t !#1hi~r ,t !

~7!

whered t is the explicit time step and all other terms ha
their usual meaning@14#. For purposes of extracting the dy
namics of this modified scheme~7! we perform a Chapman
Enskog type expansion with thehi , like the f i , expanded in
powers ofd t . Bearing in mind that, in the correspondin
unadjusted LBGK scheme@13#, thed t

nf i
(n) , n.0, modelde-

parturesfrom equilibrium, we therefore takehi to be at least
O(d t):

hi5d thi
(1)1d t

2hi
(2)1d t

3hi
(3)1••• , ~8!

in which, we emphasize, there is no ‘‘equilibrium’’O(d t
0)

hi term.
It is natural to take the lead termd thi

(1) to be zeroth order
in velocity gradients~this ensures consistency with seve
previous LB applications in which the lattice fluid is bod
forced by a spatially uniform pressure gradient; see, e
@15# and the references therein!. Accordingly we takehi

(1) to
be zeroth order in gradient quantities, andhi

(2) to contain any
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first order gradients in macroscopic observablesr,v; that is,
in generalhi

(n) contains (n21)th order gradients inr andv.
The question now is to determine thehi

(n) that give Eqs.
~5! and~6! in a consistent fashion. From a Chapman-Ensk
type expansion of the Taylor expanded evolution equat
~7!, after Houet al. @14#, we obtain atO(d t)

~] t01cig]g! f i
(0)52

1

t
f i

(1)1hi
(1) , ~9!

and atO(d t
2)

] t1f i
(0)1~] t01cig]g!S 12

1

2t D f i
(1)52

1

t
f i

(2)1hi
(2) .

~10!

It is usual, in deriving the macroscopic dynamics, to sub
tute for f i

(1) in Eq. ~10!, using Eq.~9!. We then have

] t1f i
(0)1~] t01cig]g!S 12

1

2t D @2t~] t01cid]d! f i
(0)1thi

(1)#

52
1

t
f i

(2)1hi
(2) . ~11!

We do not use Eqs.~9!–~11! to relatef i
(n) to thehi

(n) . Rather,
we now choose to partition the problem in such a way as
recover the RHS~LHS! terms in the target equations~5! and
~6! from thehi

(n) ( f i
(n)) independently.

Writing D ia for cia or 1, we take moments of Eqs.~9! and
~11! and for thef i

(n) set

] t0(
i

f i
(0)~v,r!D ia1Cig]g(

i
f i

(0)~v,r!D ia5

2
1

t (
i

f i
(1)D ia , ~12!

(
i

F] t11S 1

2
2t D ~] t01cig]g!2G f i

(0)~v,r!D ia

52
1

t (
i

f i
(2)D ia , ~13!

where

D ia5cia ,1. ~14!

This, taken with the usual constraints

(
i

f i
(0)~v,r!5r,

(
i

f i
(0)~v,r!cia5rva , ~15!

(
i

f i
(0)~v,r!ciacib5rdab /cs

21rvavb ,
8-2
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corresponds to the unadjusted isothermal LBGK sche
@10,13#, which we use without further modification to re
cover the LHS terms in the model’s macrodynamics@Eqs.
~5! and ~6!#.

Implicitly, therefore, the corresponding moments of t
hi ,

(
i

hi
(1)D ia , ~16!

tS 12
1

2t D(
i

~] t01cig]g!hi
(1)D ia2(

i
hi

(2)D ia , ~17!

must be used to insert the new terms@the RHS’s of Eqs.~5!
and~6! here#. Note that the expressions~16! and~17! operate
at O(d t) andO(d t

2), respectively.
Moments~16! and ~17! can now be used to insert targ

terms into the lattice continuity and momentum equation
for present purposes, the terms in the RHS’s of Eqs.~5! and
~6!. Care must be exercised; as is evident from express
~16! and ~17!, the choice ofhi

(1) must influence the form o
hi

(2) and so forth.
For our particular application~of pipe flow! we shall first

select a form for thehi
(1) that yields the desired modificatio

of the lattice continuity equation~5!. Thereafter thehi
(2) will

be determined from the chosenhi
(1) and the target modifica

tion to the lattice fluid’s momentum equations.

B. Lattice continuity equation and hi
„1…

We proceed to consider the modifications to the latt
continuity equation resulting from the inclusion of forcin
termshi

(1) andhi
(2) into the lattice evolution equation. Sum

ming on i in Eq. ~9! we obtain atO(d t)

] t0r1]brvb5(
i

hi
(1) , ~18!

which, with the target dynamics@of Eqs.~5! and~6!# in view,
motivates the following selection ofhi

(1) :

hi
(1)[tpS Gcix2

rvy

y D , ~19!

whereG is a position and time independent parameter for
forcing magnitude andtp51/9 for i with uci u51, 1/36 for i
with uci u5A2, and 4/9 fori 50 @13,14#. With this choice the
RHS of Eq.~18! takes the desired form:

(
i

hi
(1)5(

i
t pS Gcix2

rvy

y D
5G(

i
t pcix2

rvy

y (
i

t p52
rvy

y
. ~20!

We proceed toO(d t
2) now. Summing oni in Eq. ~11! we

obtain, in the LHS of the lattice continuity equation, th
additional expression
01120
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tS 12
1

2t D F] t0(
i

hi
(1)1]g(

i
hi

(1)cigG2(
i

hi
(2) ,

~21!

which, with our target dynamics in view, should vanish. U
ing Eqs.~19! and ~20! therefore

(
i

hi
(2)5S t2

1

2D F ] t0(
i

t pS Gcix2
rvy

y D
1]g(

i
t pS Gcix2

rvy

y D cigG , ~22!

which, sinceG is constant in space and time, becomes

(
i

hi
(2)5S t2

1

2D F ] t0(
i

S 2tp

rvy

y D10G . ~23!

Hence we have a condition on thehi
(2) ,

(
i

hi
(2)5S 1

2
2t D 1

y
] t0rvy , ~24!

further consideration of which is postponed to the next s
tion.

C. Lattice momentum equation andhi
„2…

With an appropriately modified continuity equation s
cured, we proceed to consider the lattice Euler equat
which should gain a term, atO(d t), by our choice ofhi

(1)

@Eq. ~19!#. To see this, multiply Eq.~11! by ci and sum oni
to obtain

] t0rva1]bPab
(0)5(

i
hi

(1)cia

5(
i

Gcixcia2
rvy

y (
i

t pcia

5
1

3
Gdax, ~25!

where we have used the result( i t pciacib5dab/3 @14# for a
2D9Q lattice. Clearly, the lattice fluid’s Euler equation gai
a body force density term which is widely used to mimic t
effect of aspatially uniformbody force~pressure gradient!
impressed throughout the lattice fluid:

] t0rvy52]bPyb
(0). ~26!

But the equilibrium momentum flux tensor

Pab
(0)[2

1

3
rdab1rvavb ~27!

still contains pressure gradient termsrdab/3, we emphasize
Using Eq.~26! we can recast condition~24! as
8-3
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(
i

hi
(2)5S 1

2
2t D 1

y
] t0rvy52S 1

2
2t D 1

y
]bPyb

(0) ~28!

and substituting forPab
(0) this becomes

(
i

hi
(2)5S t2

1

2D1

y
]bS 2

1

3
rdyb1rvbvyD

5S t2
1

2D 1

y F2
1

3
]yr1]brvbvyG . ~29!

At O(d t
2) now, multiply Eq.~11! by ci and sum oni to

obtain the additional terms generated by our forcing in
LHS of the lattice Navier-Stokes equation:

tS 12
1

2t D F] t0(
i

hi
(1)cia1]g(

i
hi

(1)ciacigG2(
i

hi
(2)cia

5tS 12
1

2t D F01]gS 2
rvy

y D(
i

t pciacigG2(
i

hi
(2)cia

5
1

3 S t2
1

2D ]aS 2
rvy

y D2(
i

hi
(2)cia

5n~t!]aS 2
rvy

y D2(
i

hi
(2)cia , ~30!

where we have used the fact that] t0( ihi
(1)cia

5] t0(Gdax/3)50, andn(t) denotes the kinematic viscosit
of the lattice fluid@13#. Expression~30! is required to supply
additional target terms to match those in the RHS of
Navier-Stokes equation~6!. Hence we write

2Fn]aS 2
rvy

y D2(
i

hi
(2)ciaG5

n

y S ]yva2
1

y
vydayD

~31!

and, rearranging,

(
i

hi
(2)cia5nF1

y
]yrva2

1

y2
dayrvy1]aS 2

rvy

y D G
5

n

y
@]yrva2]arvy# ~32!

by the product rule.
From Eqs.~29! and~32! we have expressions for the mo

ments of thehi
(2) as follows:

(
i

hi
(2)5

3n

y F2
1

3
]yr1]brvbvyG , ~33!

(
i

hi
(2)cia5

n

y
@]yrva2]arvy#, ~34!

where, note, the RHS of the latter is equivalent
“3(rv)u ẑ .

By inspection, one choice of theO(d t
2) forcing term is
01120
e

e

hi
(2)53tp

n

y
d t

2F S 2
1

3
]yr1]brvbvyD

1~]yrvb2]brvy!cibG . ~35!

In summary, to recover lattice fluid macrodynami
equivalent to pipe flow, while using a regular square latt
under a uniform applied pressure gradient, we require
forcing terms@Eq. ~8!# to be of the form

hi
(1)5tpS Gcix2

rvy

y D ,

hi
(2)5tp

3n

y
@2]yr/31]xrvxvy1]yrvyvy1]yrvxcix

2]xrvycix#. ~36!

For purposes of performing the simulations described
the next section, the gradient terms in Eqs.~36! were evalu-
ated using discrete difference approximations evaluated
lattice, using second order accurate expressions. Howe
note that stresses and higher order fluxes such as appe
~36! can be computed, more in the spirit of the lattice Bo
zmann method, from appropriate higher order moments
f i , without recourse to such finite differences, thereby avo
ing the problems of instability, dissipation, and numeric
inefficiency that finite difference schemes introduce.

Before we proceed to consider the implementation of
scheme embodied in Eqs.~36! some general remarks are
order.

D. Discussion

In the preceding sections we have shown how differ
source terms inserted into the evolution equation can be u
to adjust the final form of the lattice fluid’s macrodynamic
At first sight it may seem that a forcing strategy that offe
2Q parameters hi

(n) , i 51, . . . ,Q, n51,2, is flexible.
However, one should sound a cautionary note. The stra
derived in Secs. III B and III C is one example of the gene
considerations outlined in Sec. III A. It is, moreover, som
what sanitized. For, in our example, thehi

(1)’s andhi
(2)’s in

expressions~16! and~17! may be determined independentl
and in a natural manner—the form ofhi

(1) suggests itself and
therefore it can be used explicitly to determine an appro
ate form forhi

(2) . This may not be the case for other app
cations and it may well be that, for other problems requiri
more complicated source terms, constraints arise betwee
hi

(n) , effectively reducing the number of independenthi
(n)’s

available.
Clearly the particular forcing terms derived in Secs. III

and III C, against the example of pipe flow, contain gradie
quantities. It may well be argued that explicit inclusion
gradients in this way is contrary to the philosophy of t
lattice Boltzmann method, in that it undermines the distin
tion between lattice Boltzmann flow calculations and co
ventional finite difference Navier-Stokes solvers. Howev
8-4
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derivative lattice Boltzmann simulations already in the lite
ture rely upon forcing with gradient quantities to recov
their target dynamics. Indeed, the philosophy of our
proach in Sec. III reflects the fact that forcing can be appl
as a practical tool, adjusting the form of the macrodynam
equations of a lattice Boltzmann fluid, which is primarily
the form of the Navier-Stokes equation. So, for such latt
Boltzmann schemes as do rely upon gradient-forced ma
dynamics, the way in which we incorporate the necess
gradients quantities, through the Chapman-Enskog exp
sion, is, we hope, pertinent.

The strategy described in this work is envisaged as a
source for adjusting the dynamics of amonophasiclattice
fluid. While it can, in principle, modify the dynamics of
lattice Boltzmann scheme whatever the physical origin of
additional terms in the momentum/continuity equatio
@RHS’s of Eqs.~5! and~6!#, our approach here still incorpo
rates such terms carefully but phenomenologically. In p
ticular, this work does not have the same fundamental b
in the full Boltzmann equation as the forcing strategies t
have very recently appeared@12#. The work reported in Ref
@12# formally addresses external acceleration termsa•“j f i
in the LHS of a generalized Boltzmann equation and ado
a satisfyinga priori approach to the problem of forcing la
tice fluid flow. Probably it would be contrary to the philos
phy of the work, but the analysis of Ref.@12# can obtain the
effective forcing for our present problem of cylindrical pip
flow as follows.

In the notation@12#, those corrections to the lattice cont
nuity ~momentum! equation in the RHS of Eq.~5! are ob-
tained by generalizing constraint equations 12~a! and 12~b!
of Ref. @12# to

E dja•“jf 5F0 , ~37!

E djja•“jf 5F1 ~38!

with

F052
1

y
rvy ,

F1a52
n

y
]yrva2

nrvy

y2
day . ~39!

Following Ref. @12#, the integrations in Eqs.~37! and ~38!
work through a formal discretization of the Boltzmann equ
tion to generate summations in the emergent LBGK sche
expressing the presence of forcing~strictly, for present pur-
poses, aneffectiveforcing! given by

a•“j f rtp~c(0)1ci
(1)j i1ci j

(2)j ij j1••• !. ~40!

The coefficientsc(n) depend on hydrodynamic variables a
their gradients. By substituting the truncated series exp
sion ofa•“j f into the constraints of Eqs.~37! and~38!, one
can obtain the coefficientsc(n) up to a certain order inu
01120
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consistent with the Chapman-Enskog analysis. It can
shown that the above analysis leads to the same results a
obtain here.

IV. SIMULATION OF PIPE FLOW

In this section we discuss results from a test-bench sim
lation of forced flow in an infinitely long circular pipe
driven by a uniform pressure gradient~effective body force
density! parallel with the pipe axis. Figure 1 is a schema
of our implementation. We shall represent the discrete lat
coordinates with integersX andY; in this figure,X represents
the distance along the pipe in the direction of flow. All th
results reported relate to a steady-state lattice initialized w
node densityr51.0. Convergence was checked by monito
ing the time development of the lattice velocity field resid
als.

Periodic boundaries were installed along vertical lin
X50 andX5L. We shall return to the issue of horizont
boundaries shortly. Flow was forced~see below! parallel to
the X direction. Thus the overall algorithm is translational
invariant along the horizontal. Under such circumstances
possible to make the lattice lengthL conveniently small and
also to avoid any axial lattice fluid density gradient, whi
might otherwise lead to compressibility error@16#.

Consider the half of the simulation below the horizon
line connectingA andB. Here fluid was induced to flow in
the direction fromA to B by use of a positive body force
constantG, corresponding to an applied pressure gradien
G/3, G.0 @Eq. ~26!#. For this region of the lattice the pip
axis is the broken line connectingC with D, which corre-
sponds toy50. Since certain of the forcing terms in Eq
~35! and ~36! refer to the reciprocal ofy ~distance from the
pipe axis!, care must be exercised to avoid any singular
Accordingly the lineCD should be located off lattice, which
can be achieved by appropriate positioning of the horizon
no-slip lattice boundaries.

FIG. 1. Schematic of our test-bench implementation of unifo
pipe flow. Below~above! line AB the lattice fluid is body forced
toward the right~left!. Duct axes~broken lines! should be located
off lattice, which can be achieved by appropriate positioning of
periodic boundaries that obtain between left and right and betw
top and bottom of the lattice.
8-5
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The general problem of terminating an LB lattice so as
impose a no-slip condition on the lattice fluid velocity field
unsolved. However, a number of methods that closely mi
the effect of friction on the flow have been devised; for
discussion, see@16# and references therein. The symmetry
our particular problem can be exploited, however. In f
periodic boundary conditions were also applied, along
lines Y50 andY5W, with the upper layer of lattice fluid
~above the line connectingA with B) forced back by use of a
negative body force constant2G @Eq. ~26!# for Y.W/2,
which, of course, has the effect of forcing this top fluid lay
toward the left. Where our two lattice fluids contact, in t
lines Y50 ~equivalent to the periodic image lineY5W
11) and Y5W/2, a zero of velocity~no-slip boundary!
must, on general grounds, occur. Two opposing parab
flow profiles were thus established for a range of LBG
collision parameter~lattice fluid kinematic viscosity! values.

Figure 2 shows the variation of axial velocityvx with
positionY in the lower half of the simulation lattice~below
line AB, Fig. 1!. As a result of the particular flow forcing
strategy and lattice closure the resulting flow profile is e
actly parabolic with on-lattice zeros of velocity in the line
Y50 andY5W/2.

The Darcy-Weisbach friction factor, defined through t
usual relationship

dP

dz
5 f

1

Hd

1

2
rV2, ~41!

whereHd is the hydraulic diameter~the physical diameterd
for a circular pipe! andV the average velocity~half the peak
velocity!, was measured over the full range of LBGK col
sion parameter 1/t. Figure 3 showsf expressed as a rati
with F, the analytical value for a fully developed, lamina
pipe flow:

F5
64

Re
, Re5

d V

n
. ~42!

FIG. 2. Variation of axial velocityvx(Y) with positionY in the
lower half of the simulation lattice~below line AB, Fig. 1!. As a
result of the particular forcing strategy employed the resulting fl
profile is exactly parabolic with on-lattice zeros of velocity in th
lines Y50 andY5W/2.
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The data presented in Fig. 3 correspond to a Reynolds n
ber Re510, which was kept constant by varying the simu
tion pressure gradient parameterG in accordance with the
relationship

G5
64

3
Re

r~22v!2

W3v2
~43!

derived for pipe flow@11#, using Eq.~25! and the fact that
our simulated pipe radius isW/4 ~Fig. 1!. In effect, the lattice
width W not only determines the effective pipe diameter, f
constant Re it also determines the spatial resolution of
simulation.

The data presented in Fig. 3 are in three series:~I! for
0.3<1/t,2.0, W550 (1 points!, ~II ! for 0.2<1/t
<0.3 with substantially increased spatial resolution,W
5302 (3 points!, and ~III ! 0.0,1/t<0.15, W5102
(* points!. The measured departure from the analytic stea
state pipe flow profile,Vx(r ),

D5(
r

uVx~r !2vx~r !u, ~44!

varies as 331025,D,3.531022 over the data series~I!.
These data are presented in the inset to Fig. 3 over the s
range of 1/t covered by series~I! and ~II !. However, it is
clear from Fig. 3 that this increase in error as 1/t approaches
the ~arbitrary! value of 0.3, in series~I!, can be combated by
increasing the spatial resolution~value of W), as for series
~II !. So the accuracy of the numerical calculation~in terms of
the velocity field! can be maintained at second order, ev
for small values of 1/t, given sufficient spatial resolution
Below the value 1/t'0.2, an observed instability associate
with the singularity ofy @Eqs. ~36!# means that the spatia
resolution necessary for convergence greatly increases,
the data shown in series~III ! of Fig. 3, for values of 1/t

FIG. 3. Measured value of Darcy-Weisbach friction factor e
pressed as a ratio with the analytic value. The data presented
are for constant Reynolds number Re510. The discontinuity in the
region of 1/t50.3 demonstrates the effect of an increase in spa
resolution between series~I! (1 points, W550) and series~II !
(3 points,W5302). The inset shows variation of simulation err
D over the same range of 1/t as for series~I! and ~II !.
8-6
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<0.15, were obtained using an analytic expression for
terms in Eqs.~36! in our code. Note also that the conve
gence time, assessed in terms of time changes in the vel
field residual,

R5(
r

@vx~r ,t11!2vx~r ,t !#2, ~45!

varies substantially over the range of data represented in
3, and also with Reynolds number.

The factor 1/y that is attached to certain terms in o
expressions~36! for hi

(1) and hi
(2) is, of course, peculiar to

our chosen example problem of adjusting for cylindrical p
flow, but its singularity clearly affects convergence behav

In order to assess convergence time with varying spa
resolution, data were collected over a range of Reyno
number, for channels of widthW/2525, 51, 101, and 201
In all cases the correct laminar flow profile and friction fac
were eventually obtained in good agreement with theo
The different convergence times for these checks are s
marized in Fig. 4. Note that for all the data in Fig. 4 th
lattice collision parameter was confined to the ran
0.6,1/t,1.85.

Figure 5 shows the convergence behavior of the sch
in terms of the error@defined in Eq.~44!# as a function of
spatial resolution. The Reynolds numbers used in these s
lations varied over the range 1<Re<100 and the spatia
resolution ~measured by the value ofW, the simulation
width! over a range corresponding to channel radii 12.5<R
<250.5.

FIG. 4. Convergence time data for four lattice sizes correspo
ing to channels of widthW/2525, 51, 101, and 201 over a rang
of relaxation parameter 0.6<1/t<1.8.
.
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V. CONCLUSION

In this work we have shown how a forcing strategy, a
plied to the microscopic evolution equation of a lattice Bo
zmann fluid, can correctly modify the emergent macrosco
equations toward a particular target form. For purposes
deriving the model’s macrodynamics~within the usual
Chapman-Enskog expansion! our strategy treats any forcin
terms~source terms! that are added into the microdynamic
evolution equation in a manner consistent with the mom
tum densities. We find that forcing terms treated in this w
occur, as it were, ‘‘recursively’’ in the macrodynamics@see
Eqs.~16! and~17!# and in consequence their inclusion into
lattice Boltzmann scheme is somewhat more involved th
one might naively imagine. For our chosen application,
which there are no constraints on the forcing problem, i
straightforward to determine a set of forcing terms syste
atically.

While we work here with a lattice Bhatnagar-Gros
Krook scheme and consider, for definiteness, the case of
in a circular cross-section duct~results from a test-bench
simulation are in excellent agreement with theory, note! our
methodology can clearly be generalized to any lattice Bo
mann scheme.~Here we note that any constraints on t
forcing problem will reduce the number of independent fo
ing terms.! In this respect the present work should be
interest to any worker attempting to adjust the macrodyna
cal equations of a lattice Boltzmann scheme for, e.g., ap
cations in nematodynamics or viscoelasticity.

d-
FIG. 5. Convergence behavior. ErrorD defined as departure

from the analytic solution@Eq. ~44!# plotted as a function of spatia
resolution. For the data shown here the range of Reynolds num
is 1<Re<100. The spatial resolution is measured by the value
R5W/4 ~channel radius in lattice units! which varies over the range
12.5 to 250.5.
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