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Computation of the viscosity of a liquid from time averages of stress fluctuations
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The shear viscosity can be calculated from the standard deviation of an equilibrium ensemble of time
averages of the shear stress computed along finite duration phase space trajectory segments. The mean square
of the segment averages of the shear stress is proportional to the shear viscosity and inversely proportional to
the duration of the trajectory segments and the number of particles. We test the fluctuation relation for the shear
viscosity and show that it provides a simple but viable means of computing the zero strain rate shear viscosity.
We decompose the shear viscosity computed using this fluctuation method, into its “kinetic” and “configu-
rational” components. We also calculate the relevant relaxation times. We compare the computed results with
standard nonequilibrium molecular dynamics simulations. Finally we compute the bulk viscosity using an
analogous fluctuation method.
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[. INTRODUCTION In a streaming fluid, the stationary rheological properties
such as thénon-Newtonian viscosity and the normal pres-

According to Green and Kubld], linear transport coeffi- sure differences are obtained from long time averages of the
cients can be expressed as integrals over the appropriate tirf&artesian components of the stress tersgy=—p,, or of
correlation functions. The time correlation functions havethe pressure tensqr,, which is the sum of kinetic und po-
been computed in molecular dynami#4D) simulations and  tential contributionsp,,,= pti';‘+ pﬁ‘it,
transport coefficients were obtained by the Green-Kubo
method for about the last 30 yed&-6]. Without explicitly Kin _
calculating the time correlation function, the integral re- Puv=
quired for the transport coefficient can be computed from an
analysis of time-segment averages of the relevant fluctuating .
quantity. Here we demonstrate that the shear viscosity of &erec' is the peculiar velocity of particlg i.e., its velocity
fluid can be inferred from ensemble averages of the mearelative to the flow velocity(r'), r'Y=r'—r is the relative
square of time averages of the stress fluctuations. For a paposition vector of particles,j and F is the force acting
ticular state point of a Lennard-Jones type model fluid, thébetween them. The Greek subscripts, which assume the
“kinetic” and “potential” (“configurational”) contribu- values 1, 2, 3, stand for Cartesian components associated
tions, as well as the “total” shear viscosity are calculated.with the x,y,z directions.
The numerical values agree, within statistical uncertainties,
with the corresponding results, obtained in the small shear _ _ _
rate limit of nonequilibrium molecular dynamigdNEMD) B. Stress fluctuation formula for the viscosity
simulations. We also present values for correlation or relax- |n an equilibrium situation where one has:0, the shear
ation time coefficients, obtained by dividing the ViSCOSitieSstress, i.e., the off-diagonol components of the stress tensor,
by the relevanthigh frequency elastic moduli, which are e g. o=—p;, and the normal stress differences, ejub;
calculated in the simulation. We use the present method also p, ; fluctuate about zero and their long time averages van-
to determine the bulk viscosity. ish. The mean square average of these fluctuating quantities

depends on the averaging tirhg [7].
More specifically, the definition of a time-segment aver-

- 1 N
-1 i Al pot_\,—1_ ij=ij
\Y El: mc,C,, P, =V 5 %: raFu- (1)

Il. BASICS OF THE METHOD age
A. Pressure and stress tensor _ 1 tav
Consider a system composedNBpherical particles with (tay) =tay fo o(tydt @

massm and position vectors', i=1,... N in a volumeV.
The number density is=N/V. In the molecular dynamics
simulations, periodic boundary conditions and the “mini- is introduced. The time dependencecdt) = — p;,(t) stems
mum image convention” are used in order to avoid boundaryfrom the time dependence of the positions and momenta of
layer effectd5,6]. the particles, cf. Eq(1). It is understood that the integration
limits 0 andt,, can be replaced bty andty+t,, provided
that these times are also within the time span for which the
*Corresponding author. Electronic address: S.Hess@physik.typhase space trajectory is available. The mean square average
berlin.de is given by
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— o[t [ta ) [oP°(t,,)]?, respectively. It is understood that the quantities
(o(tay)) =ty L dtJO dt’(o(t)o(t")) multiplied in the cross term pertain to the same time segment
of a phase space trajectory. The viscositigd" and 7P°!
_q [t which can be computed in NEMD simulations by dividing
=21y, fo di{o(t)a(0)). (3 the kinetic and the potential parts of the shear stress by the
imposed shear rate are, in the small shear rate limit, linked

The angular bracketé. - -) indicate an ensemble averge, With the partial viscosity coefficients*", etc., obtained via

(o(t,,))=0 has been assumed. The second equality of ch.he fluctuation formula, by

(3) applies to a stati_onary situ?tion whefe(t)o(t')) de- Pin= 7KK 4 (kP pot— (PP 1 5 (kP), (5)
pends on the time differende-t’ only. The factor 2 stems
from replacing an integral fromt,, to t,, by two times the
integral from O tot,,, based upon the assumption that the
equilibrium fluctuations cannot distinguish between “past” _ . king _pot_ _(kk (kp) 4 ,(PP)

and “future,” i.e., (o(t)o(0)) =(o(~ 1) #(0)). A charcter- m=m = 2 ©
istic stress relaxation time is defined by/,dt{c(t) o(0))
=7(a(0)a(0)). Provided that the averaging tinhg, is large
compared with the relaxation time the mean square stress
fluctuation is inversely proportional to the averaging time.
Compared with the mean square fluctuation of the instant
neous quantity o(0)?), the mean square fluctuation of the
correponding time averaged quantity is reduced by the fact
27tt [7].

In the same limitt,,> 7, the Green-Kubo formula for the
shear viscosityp=(N/nkgT) [,dt{a(t)o(0)) can be used
to rewrite Eq.(3) as an expression applicable for the compu-
tation of the viscosity from the mean square of the fluctua- In the fluid phase, the mean square average of the instan-

The total viscosity is also given by

Notice thatz, 7Y, and (PP are positive, as inferred from
the stress fluctuation expressions for these quantities. The
coefficient*P, on the other hand, can have either sign. Its
magnitude, however, is bounded according tg®p)?

Az (kk ,(PP) | since positive entropy production requires the
total shear viscosityy to be positive. The kinetic contribu-
%ion to the viscosity dominates in dilute gagéq]. In dense
fluids (liquids) the potential contribution is more important.

D. Shear modulus, relaxation times

tions of the time averaged shear stress: taneous potential part of the shear stress is related to the high
o frequency shear modulu by ((”°{(0))?)=N"1nkgTG.
7=1t,,(2nkgT)  IN(o(t4,)?). (4)  Incidentally, this expression can be derived from standard

thermodynamic fluctuation theory for a linear elastic medium

This is the key formula which is used here to compute vis4with a shear modulu§. When applied to a fluid, where the
cosity coefficients. Recently, it has been derived from a moréow frequency elastic modulus vanishes, one has to use the
general fluctuation theoref@]. high frequency shear modulus, instead. This quantity, some-

As a side remark, it is mentioned that E¢) can also be times referred to as “Maxwell shear modulus,” can also be
looked upon as an “Einstein” relation for the computation computed by the Born-Green expression which is the aver-
of the (total) viscosity, analogous to Einstein’s prescription age of a two-particle quantity, viz.
for the computation of the diffusion coefficient from the
mean square displacement. To see this, notice that the total G 1 S [r2(rég) ] 7
pressure tensg,,,, for v=0, is the time derivative of the 15V \ & [r(re)' ). @
tensor V~'q,, with du,=2Zimr,c,. Thus one has

—taVo(ta,) =012(ta,) —012(0)=AQ1(ts,) and Eq.(4) is  The prime denotes the derivative with respect.tdhe low
equivalent ton=t;vl(2VkBT)‘1<Aq12(tav)2>. Problems as- frequency shear modulus is the difference between the Born-
sociated with the application of Einstein-like expressions forGreen and the fluctuation expressions given above. Both
the computation of transport coefficients are pointed out irhave equal magnitude for a system in the flladt not in the
Ref.[9]. The method presented here is intermediate betweesolid) state[12].

the conventional Green-Kubo and Einstein methods. Einstein Division of the viscosity7(PP by the shear modulu&
relations do not exist for the partial viscosity coefficients, toyields the “Maxwell” relaxation timez(PP). In connection

be discussed next, which are of interest in connection wittwith the kinetic parthkgT plays the role ofG, for the cross
kinetic theory[10]. term it is (nkgTG)*2 thus

C. Kinetic and potential contributions PO =nkgT7KW, kP = (nkgTG)V27kP) - (PP = G 7(PP),

8

As stated above, the stress is the sum of kinetic and po-

tential contributions. In molecular dynamics simulations, the
i

L m 5t Next, the formulas given are tested for a simple model
contributionso™"(a,) and oP°{(t,,) ok ?E )extr?ckged S€P- fluid. First, its verified that the mean square of the time av-
erately. The viscosity coefficientsy™™, n™”=»"", and  graged contributions to the shear stress are inversely propor-
7PP) can be calculated in analogy to E@) with o(t,,)?>  tional to the averaging time. Then the various viscosity and
replaced by [;m(tav)]z, ;k_m(tav)op"‘(tav), and relaxation time coeffiencts are calculated.
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I1l. MOLECULAR DYNAMICS 02
A Th ial 0.15 L density = 0.75, adiabatic, average temperature = 0.99
. The potentia
P I 0.1}
For the test calculations, the short range attractive poten- g ¢ s i bl
tial, referred to as the “SHRAT” potential, i 0 LAUAASLLLAL ! Ol 'ﬂ‘"i ~ ‘l : ,[] LB L
g diih il W/ a U N TRV et " R ) B
SSHRAT ) = (512127 ®o(1—r/r)(3—2r/ro)®, r<1.5,, 5 00 '
(9) -0.1¢
SHRAT . ", =033 averaging time: gray: 0.5, black: 5.0
and ¢ (r)=0 for r>1.5, is used. The quantitie®

50 100 150 200

andr, set the characteristic energy and length scales. The o

intersection with the horizontal axis and the depth of the

potential minimum, occurring at=1.125,, are analogous FIG. 1. The fluctuating shear stre@s units of () as function
to that of the Lennard-Joned.J) potential. In units of of the time(in units oft,), pre-averaged over intervals of length
®y/ry, the force ar =rg is 512/2719. The corresponding 0.5t (gray curve and 5.@,¢ (black curve.

value for the LJ potential is 24. Here, the cutoff is rather

short ranged and smooth, such that not only the potential byle; gensityn/n, .= 0.75, the crystal melts and a fluid state is

also its first and second derivatives vanish at the cutoff disépproached quickly. The system was well equilibrated by

tance. Notice that this potential is finite at=0, viz. P, ; " :
’ running it for 100 LJ time units,.; (corresponding to 25 000
$SHRAT0)=512D,. For temperatures less thandig/kg, time st%p}; ret ( P g

this is of no practical concern since the Boltzmann factor Then the thermostat was turned off and the adiabatic
exp(—d)o./kB'I? governing the fraction of PS‘J“C'GS Wh'c.h can (isoenergetigsimulation was run for 960Q.;, with the quan-
reach this distance is smaller tharx@0™ . In numerical ities of interest computed and recorded in 1920 time inter-

calculations and in the graphs displayed here, all phySiCa(/als; of length 0.8¢¢. Within each time intervall, data were

quantities are expressed in thg sta_ndard LJ units of, e'gazctually extracted at every 25th of the 125 time steps. Aver-
lengths and energies are given in unitg gnd®,. Follow-

. tice the di ionl iabl denot aged over the full runtime, the values for the potential energy
INg common practice the dimensioniess variables are denotegh, naticle, the pressure and tforn-Green shear modu-
by the same symbols as the corresponding physical quan 5

ties when no danger of confusion exists. In dimensionles%S are eP%bo=—2.77+0.01, p/pre=1.63£0.04, and
notation, the SHRAT potentials readseSHRATY) /pres=15.3=0.1. The average temperature, both computed

— (512/27)(1-1)(3—2r)?, r=3/2, whereassSHRATr) =0 by the “kinetic” and the “configurational” expressions

for r>3/2. Similarly, the number density=N/V, whereN [14]. is T/Tres=0.99+0.01.
and V are the number of particles and the volume of the
system, and the temperatuiie are expressed in units of
nref=r53 and T,.;=®y/kg, respectively. The unit for the The fluctuating shear stress, preaveraged ovgr
pressure i9,.;=Dr, >. The reference value for the time is =0.5¢¢, as recorded over the first 240 time units, is dis-
trer="r0/ver Wherev,oi=(Po/m)*?is a reference velocity. played in Fig. 1(gray curve. For comparison, the same
The reference viscosity i%,0:=Preftre - quantity, but now preaveraged over tenfold longer time in-
Thermophysical properties of this model system in its
gaseous, liquid, and solid state have recently been calculated

C. Fluctuating shear stress

5.0

[13]. Here results are presented for a state point with the e
number densityn=0.75,.s and the temperaturd="T,; 2.0
which corresponds to a compressed fluid, somewhat above  ;,
the critical temperaturéwhich is at 0.8 ,.¢), with a density w  OE
of more than twice the critical densitabout 0.38,.;) but g
well below that one where a fcc crystalline solid exists, un- 5 02
der a considerably higher pressure, at the same temperaturei 0.1
g 005
B. Simulation details
0.02 SHRAT
In the simulations, the equations of motion = 4x 83 0.01 |, N=2068
= 2048 particles were integrated with the velocity Verletal- - ® demsity = Qi3 dsabario
. . . . . : o average temperature = 0.99
gorithm with the time stepst/t,.=0.004. A cubic simula-
005 0.1 0.2 0.5 1.0 2.0

tion box with volumeV and periodic boundary conditions
were used. Initially, the particles were placed on fcc lattice
sites and they had random velocities with a mean square FiG. 2. The ensemble average of the square of the fluctuating
corresponding to the desired temperatdvd =1.0. FOr  shear stresgin units of p,es) as function of the inverse averaging
this temperature, kept constant by rescaling the magnitude @ne (in units oft,;). The black, large and small gray dots mark the
the particle velocities which corresponds to the Gaussiafesults for the total shear stress, its potential, and its kinetic parts,
constraint of constant kinetic energy, and the constant nunrespectively.

inverse averaging time
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TABLE II. The relaxation time coefficients, in units of.;.

2.0 total
r (kK 7(kp) )
1.0 pot- pot
0.098£0.006  0.09%0.013 0.005¢0.003 0.09%0.005
e 5 SHRAT
Z N = 2048
Q
T o2 density = 0.75, adiabatic D. Viscosity coefficients
=099 . . -
. . Shear viscosity coefficients, computed from the mean
04 kent-ilk square fluctuations according to Ed) are displayed in Fig.
0.05 LAY ) ‘ e ooo o ¢ e 3 as functions of the inverse averaging titgg (double loga-
rithmic plot). The black dots mark the total viscosity, the
005 0] 02 05 1.0 20 large and small gray dots stand fpt°® and Y. The cross
inverse averaging time term 7P has also been computed, but is not shown in the

he sh . - its of e ; graph for the sake of clarity.
FIG. 3. The shear visCOSityn Units of 7re;=Prertrer) as func- The values for the various viscosity coefficients are given

tion of the inverse averaging timen units of te(). The black, =, 1ape | The averages and deviations have been deter-
large, and small gray dots mark the results for the total viscosity, its_ .

: e - . mined from the relevant time averages with/t,.s rangin
potential and its kinetic contributions, respectively. from 1.0 to 20.0. Also listed are Wﬁqere a\fgilarglfe thge cg(])rre-

sponding values inferred from an NEMD simulati¢b3].
tervals is shown by the thick black curve. Clearly, and asThere the fluid showed an approximate newtonian behavior,
expected, the amplitude of the fluctuations are reduced wheire., the viscosities were practically independent of the shear
ty, is larger. rate for shear rates less than, /. Data were accumulated

In order to analyze the dependence of the mean squaignd used for determination of the viscosities for shear rates

fluctuations of the various contributions to the shear stresgetween 102%% and 1.@;6%_ The viscosities obtained by

the available data are further averaged in blocks of lengtihoth methods agree well, within the computational uncer-
2,3,4,5,6,8,10,12,15,16,20,24,32 @lvisors of 1920 corre-  tainties. Notice that the coefficients which are missing in the
sponding to time segments with NEMD row cannot, in principle, be computed by that
method.
tay /tre=1.0,1.5,2.0. .. 16.0,20.0. Ensemble averages of time averages of the shear stress
could also be evaluated for shorter averaging times, compa-
rable to the relaxation time. A comparison of the resulting

The ensemble average needed to evaluate the mean SAU3iations of the points from the straight lines in Fig. 3, with

fluctuati_on of the shear s_tress is provided by an average OVE'NEMD calculation of the frequency dependence of the vis-
the various blocks. Notice that we have 960 of them Ofcosity[16], for frequencies comparabletﬁl, is of interest.

lengtht,, /t,es= 1.0 but only 48 of length, /t,es=20.0. . . :
In Fig. 2. the(logarithm of thé ensemble averages of the This, however, is outside the scope of the present study.

mean square of the time average of the shear stress fluctua-
tions, multiplied by the number of particlé$=2048, are
displayed as functions of th@gogarithm of the inverse av- The viscosity relaxation time, obtained by dividing the
eraging timet,,. The black dots stand for the total shear shear viscosityy by nkgT+ G, as well as the other relax-
stress, the large and small gray dots for the potential and thation time coefficients defined above, are listed in Table II.
kinetic contributions, respectively. The cross term “kin-pot” Except for the cross correlation timéP, which is smaller
was also computed. It is positive and still smaller than thethan the others by about one order of magnitude, the relax-
“kin-kin” part. For clarity of the presentation, it is not ation time coefficients have rather similar values, of about
shown in the graph. The straight linésith slope—1) indi- 0.1t ..

cate that the mean square fluctuations, tfgr/t,.+=1.0 in- The relaxation timerPP is of particular interest for the
deed decrease inversely proportional to the averaging timkinetic theory, termed “Stokes-Maxwell” approach, used to
ta » Cf. EQ.(3). This proves that the relevant relaxation timesstudy the shear-induced distortions of the structure of a fluid
are definitely shorter than.;. Hence the expressiad) can  as revealed in the pair-correlation function or the static struc-
be applied to the computation of the viscosity coefficients. ture factor[15].

E. Relaxation time coefficients

TABLE I. The viscosity coefficients, in units ofy,.;, obtained by the present method based on the
analysis of stress fluctuatiorikabeled “flct”), and by NEMD simulations.

7 kK 7(kP) 7P 7kin 7Pt
flct 1.58+0.08 0.070.01 0.03:0.01 1.45-0.08 0.16:0.02 1.48-0.09
NEMD 1.61+0.08 0.12:0.01 1.56-0.07
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F. Bulk viscosity laxation time coefficients of a fluid. Preliminary results were
also given for the bulk viscosity. Generalizations to other
transport coefficients, in particular to heat conductivity, as
well as to complex fluids, e.g., liquid crystdl$8—21 and
— — — o 1 ta . polymeric liquids[22], as well as to fluids in restricted ge-
5p(tay) = P(ta,) —(P(ta,)), With p(ta,) =ta, [o“P(t)dt, is ometrieg 23,24, is desirable and feasible. In anisotropic flu-
used in the viscosity expression analogous to(E)q.mitead ids, where preferential directions exist, be it by a spontane-
of the shear stress. Thigreliminary rekskults areny=1.6 45 ordering as in liquid crystals or imposed by external
iko'l* for the total bulk viscosity andy,'=0.01220.001,  fig|gs or by a wall, the fluctuations of the various Cartesian
7/=—0.05+0.05, n{’=1.7+0.1 for the partial coeffi- components of the shear stress will reflect the broken spatial
cients. The small value found for thekk” part may not be  symmetry of the fluid. Then a larger set of coefficients is
Surprising in view of the fact that this coefficient is exactly needed to characterize the anisotropy of the VISCQQI]&’
zero for a dilute gas of particles without internal degrees of A remark on computational demands is in order. Here
freedom. The cross term is also Sma”, but negative. The tot%ata were ana'yzed from a similation run over abou{ 10
bulk viscosity happens to be nearly equal to the shear visre|axation timesr. A run time of 167 is the minimal value
cosity. The relaxation timerP” , seems to be somewhat needed for the determination of a transport coefficient. This
larger (by a factor of~1.5) than the shear relaxation time means the computation becomes more demanding for sys-
PP These results, however, should be considered as préems(complex fluids, e.g., composed of reptating polymers
liminary and a comparison with corresponding NEMD re- with relaxtion times which are several orders of magnitude
sults is needed. For the Lennard-Jones liquid close to thrrger than that one encountered here. On the other hand, the
triple point, the bulk viscosity has been computed previouslyensemble average can also be obtained from shoster
[17] and found to be smaller than the shear viscosity by a(?7) parallel runs starting from statistically independent ini-
factor of about 0.5. The experimentally determined ratio betial states. A computation of the viscosity of systems with a
tween the bulk and the shear viscosity of liquid argon variegelaxation time up to 1,.;, which requires a total of a few
from about 0.6, in the vicinity of the triple point, to over 2, at hundred million MD time steps, seems to be feasible by the
smaller densities and higher temperature8]. So the ratio  present method.
of about 1 for the viscosities found at the state point studied
here is quite plausible. Furthermore, it deserves mentioning
that the occurrence of a negative “cross” contributigff to ACKNOWLEDGMENTS
the bulk viscosity has been predictgti7] for soft spheres.
The ratios between the various contributions found here, This work was conducted under the auspices of the col-
however, differ from the soft spheres valug§<: 2 7XP: 0P Igboraﬂve research project SFB 448 “Mesoskopisch struktu-
= (1/4)v*% —v:1 for an interaction potential proportional to fierte Verbundsysteme,” financially supported by the Deut-
rv [17]. sche ForschungsgemeinschaFG). One of the authors
(S.H) wishes to thank the members of the Liquid State
Chemical Physics group of the Research School of Chemis-
try of the ANU for the help given and for the hospitality
In this paper, it has been demonstrated that the expressi@nhown to him during his stay in Canberra. Furthermore, he
(4) involving an ensemble average of the square of timethanks his coautho{D.J.E) for guidance to points with far
segment averages of the fluctuating shear stress can be ugedching views and a demonstration that reptation can be a
efficiently to compute the shear viscosity and associated refast process.

The bulk viscosity , has been treated by the same
method. Here the deviations of the scalar presgufene-
third of the trace of the pressure tensfvom its average, viz.
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