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Observation of single transits in supercooled monatomic liquids
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~Received 17 November 2000; revised manuscript received 27 February 2001; published 20 June 2001!

A transit is the motion of a system from one many-particle potential energy valley to another. We report the
observation of transits in molecular dynamics calculations of supercooled liquid argon and sodium. Each
transit is a correlated simultaneous shift in the equilibrium positions of a small local group of particles, as
revealed in the fluctuating graphs of the particle coordinates versus time. To the best of our knowledge, this is
the first reported direct observation of transit motion in a monatomic liquid in thermal equilibrium. We found
transits involving 2–11 particles, having mean shift in equilibrium position on the order of 0.4R1 in argon and
0.25R1 in sodium, whereR1 is the nearest neighbor distance. The time it takes for a transit to occur is
approximately one mean vibrational period, confirming that transits are fast.
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I. INTRODUCTION

Long ago, Frenkel@1,2# noted that the liquid-solid phas
transition has only a small effect on volume, cohesive forc
and specific heat, while the liquid diffuses much more ra
idly than the solid; and from these facts he argued that
motion of a liquid atom consists of approximately harmon
oscillations about an equilibrium point, while the equilibriu
point itself jumps from time to time. Goldstein@3# pictured
the motion of liquid atoms as primarily controlled by therm
activation over barriers, with a distribution of barrier heigh
From computer simulations, Stillinger and Weber@4,5#
found mechanically stable arrangements of particles, ca
inherent structures. They suggested that the equilibr
properties of liquids result from vibrational excitation
within, and shifting equilibria between, these inherent str
tures. Their simulations showed a range of energies for th
structures, so when Stillinger and Weber formulated a sta
tical mechanics of their system they included a distribut
of inherent structure potential energies@6,7#. Since then, the
picture has developed of a ‘‘rugged potential energy la
scape,’’ with a wide distribution of structural potential ene
gies, separated by barriers having a wide distribution
heights@8–11#. Here we use the term ‘‘structure’’ to indicat
any mechanically stable configuration of particles, cor
sponding to a local minimum in the many-particle potent
surface.

The present study is limited to monatomic liquids, mea
ing elemental liquids that do not have molecular bondi
Monatomic liquids include all elemental liquid metals a
the rare gas liquids, but not the molecular liquids N2 , O2,
etc., and not polyatomic systems such as alkali halides
water. Molecular liquids have translational, rotational, a
internal vibrational degrees of freedom, while monatom
liquids have only translational motion, and the potential e
ergy surface for monatomic liquids is presumably the s
plest of all liquid potential landscapes. We use the wo
‘‘ion’’ as in metals theory, where an ion consists of a nucle
plus a rigid electron core.

The present database of thermodynamic properties
crystals and liquids, much more extensive and accurate
was available to Frenkel, suggests a potential energy sur
for monatomic liquids much simpler than the rugged lan
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scape picture above. Two crucial pieces of experimental
formation, summarized below, lead to this conclusion. Fi
the constant volume specific heat due only to the motion
the ions, denotedCI , is approximately 3kB per ion. This is
true for every liquid metal for which the necessary data
available~see Table I of@12# or Fig. 1 of @13#!, and there is
no experimental indication that this property fails for a
liquid metal in the periodic table. In addition, although liqu
Ar at 1 bar is somewhat gaslike@12#, CI is close to 3kB for
compressed liquid Ar@13#, so it is included in our list of
monatomic liquids. The propertyCI'3kB strongly suggests
that the ions spend most of their time moving within nea
harmonic many-particle potential energy valleys.

The second piece of evidence is the entropy of melti
but before this information can be made quantitative, o
must recognize two categories of melting of elements@14#,
namely~a! normal melting, in which the electronic structur
of crystal and liquid are the same~e.g., metal to metal! and
~b! anomalous melting, in which the electronic structu
changes significantly upon melting~e.g., semiconductor to
metal!. Then the constant volume entropy of melting for t
normal melting elements is found to be a universal const
and again this property holds without exception for all t
elements for which sufficient experimental data exist, inclu
ing compressed liquid Ar@14–16#. Unlike the specific heat
data, the entropy of melting does not compel us to an imm
diate conclusion, but we can construct an interpretation c
sistent with the data. The interpretation proposed in@12# is
that the potential valleys important in the statistical mech
ics of monatomic liquids are all alike, with each having t
same structural potentialF0 and distributiong(v) of har-
monic normal mode frequencies. On the other hand,
know from Stillinger and Weber@6,7# that a distribution of
F0 values can be seen in computer simulations, and we
know that crystalline valleys of different symmetry have d
ferentF0 values, so in@12# we conjecture that the potentia
valleys fall into two classes, namely~a! symmetric valleys,
which have some crystalline short-range order and he
have a distribution ofF0 values, and~b! random valleys,
which have no order parameter and hence all have the s
shape in the thermodynamic limit@sameF0 andg(v)#, and
which are of overwhelming numerical superiority relative
©2001 The American Physical Society05-1
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WALLACE, CHISOLM, AND CLEMENTS PHYSICAL REVIEW E64 011205
the symmetric valleys. Then the statistical mechanics of
liquid state depends only on the random valleys, and
universal entropy of melting is simply related to a very lar
universal number of random valleys. From this description
the potential surface, the Hamiltonian can be written and
partition function evaluated, and an accurate account of t
modynamic properties of monatomic liquids is obtain
@12,13#. More recently@17,18#, computer simulations of so
dium have provided a detailed verification of this descript
of the many-particle potential energy surface.~That all ran-
dom valleys have the sameF0 is shown by Eq.~3.3! of @17#,
and a demonstration that all random valleys have the s
g(v) is found in Fig. 7, and in the discussion surroundi
Eq. ~3.7!, of @17#.! A similar verification, but less detailed
has been obtained for Lennard-Jones argon@19#.

This description of the potential surface has two import
implications for the motion of the system, called atransit,
when it passes from one many-particle valley to anoth
First, because of the role of transits in establishing and m
taining equilibrium, transits must be local; i.e., each tran
must involve only a small localized group of particles@12#
~except for coherent quantum states, not under considera
here!. Second, because the transit motion has little effect
the ion motional specific heat, transits must be sharp, i.e
short time duration. A model of instantaneous transits
been applied to the velocity autocorrelation function a
self-diffusion @20,21#, and the idea that transits are corre
tion controlled, as opposed to thermally activated, has b
applied to the glass transition@22#. The purpose of the
present paper is to report the observation of individual tr
sits in molecular dynamics~MD! calculations for monatomic
systems of argon and sodium. Our procedure and results
given in Sec. II, and a comparison with previous results
given in Sec. III.

To the best of our knowledge, this work is the first obs
vation of individual transits as they appear in the actual
jectory of an equilibrium MD system when it passes fro
one many-particle valley to another. A different techniqu
called ‘‘inherent dynamics,’’ which maps successive co
figurations of an MD calculation onto a time series of inh
ent structures@6,7,23#, has yielded results in some way
complementary to the present study. Inherent dynamics
applied to a binary Lennard-Jones system by Schro”der et al.
@24# to show that as temperature decreases toward a c
over temperatureTx the self part of the intermediate scatte
ing function decays at two distinct relaxation times, a sh
vibrational relaxation time and a long relaxation time as
ciated with transitions between inherent structures. Schro”der
et al. located transitions between inherent structures
monitoring the inherent structure potential, ourF0, and also
the real-space location of the inherent structure as funct
of time. This observation demonstrates that the MD syst
moving in equilibrium, will quench into different inheren
structures at different times, but it does not tell us about
actual system motion during a transit. The present stud
intended to provide insight into that process.

II. OBSERVATION OF TRANSITS

We searched for transits in 500 particle systems with
riodic boundary conditions. To reveal the most detailed a
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precise expression of the transit process, we monitored
Cartesian coordinates of all particles as functions of ti
during an equilibrium MD run. As mentioned in@17#, at a
sufficiently low temperature, the system moves within
single random valley for as long as we can continue the M
run. In this event, the graph of each coordinate of each p
ticle is a fluctuating signal with constant mean, where
mean value locates the particle’s equilibrium position, a
the set of all such graphs constitutes an unambiguous ob
vation that the system is moving in a single potential valle
In the present work, the temperature was chosen so that
sits occur, but rarely, so that the graph of each coordinat
each particle is again a fluctuating signal with constant m
for some time, then a shift appears in the mean coordin
of several particles, and then the graphs continue as flu
ating signals with constant means. These graphs constitu
unambiguous observation that the system moves for a t
within a single potential valley, then transits to a new valle
then continues to move within the new valley. Having th
isolated transits in the equilibrium MD motion, we can stu
their properties, such as how much time they take, how m
particles are involved, and how far their equilibrium pos
tions shift. Certain characteristics of our study should
mentioned at the outset. First, throughout each equilibri
run, those with transits and those without, the mean poten
and kinetic energies of the system showed no percept
change, hence every transit observed is between two ran
valleys.~Recall from Sec. I that all random valleys have t
same depthF0.! Second, the mean Cartesian coordinates
every particle were constant throughout each equilibri
run, except for transits. In other words, no motion other th
equilibrium vibrations and transits occurred. Finally, t
graphs shown are representative of all the graphs we
served, and no selection of ‘‘best examples’’ was necess

During each equilibrium run, we identified a potenti
transit when the running average of any coordinate over
5000 previous time steps moved by a distance equal to
greater than a prescribed criterion~listed below!. Upon in-
spection, we then verified that in every case we identifi
the coordinates of more than one particle moved at the s
time in the manner described above, indicating a genu
transit, and every transit was from one random valley
another.

The density of our Lennard-Jones system
0.9522 particles/s3, with corresponding nearest neighb
distanceR151.095s, taken as the first maximum ofg(r ) in
the liquid state. When applied to argon (s53.405 Å ), the
density is 1.600 g/cm3, the rms normal mode frequency o
the random valleys is 6.8831012 s21, and the mean vibra-
tional period ist5424dt, where the MD time step isdt
52.15634 fs.~For comparison, the density of liquid Ar at
bar is 1.414 g/cm3.! The forces and potentials in the syste
are computed taking into account all pairs of particles, us
the full Lennard-Jones potential. The transit criterion is 0.1s,
or approximately 0.1R1 ~that is, all motions greater tha
0.1R1 in any coordinate averaged over time were tagged
potential transits!, and the lowest temperature where trans
were observed was 17.1 K, roughly comparable to the g
transition temperature.
5-2
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OBSERVATION OF SINGLE TRANSITS IN . . . PHYSICAL REVIEW E64 011205
Figures 1, 2, and 3 show, respectively, some of thex, y,
andz coordinates of an eight-particle transit in argon at 1
K. Only some particles are shown in each figure for the s
of clarity, and different particles are shown in different fi
ures, but those that are shown are representative~the particle
numbers are listed in the figure captions!. While Figs. 2 and
3 suggest that all transiting particles move in the same di
tion, this is not actually the case, and the appearance re
from keeping only a set of clearly distinguishable curv
~When all the curves are plotted together, the motion of
dividual particles is difficult to see.! The dotted lines are
drawn for visual guidance. The vertical line indicates t
transit time, which is the same in all three figures. The s
tem is undergoing harmonic vibrational motion in one ra
dom valley before the transit, and in another random va

FIG. 1. Thex coordinates of~top to bottom! the seventh, fifth,
and second particles involved in an eight-particle transit
Lennard-Jones argon at 17.1 K. The transit time is the same a
Figs. 2 and 3.

FIG. 2. They coordinates of~top to bottom! the first, second,
eighth, and sixth particles involved in an eight-particle transit
Lennard-Jones argon at 17.1 K. The transit time is the same a
Figs. 1 and 3.
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after the transit. The displacement of a Cartesian compon
of the equilibrium position of a particle is given by th
change in the horizontal dotted line. To estimate the dura
of a transit for each particle separately, we draw horizon
lines approximating the upper and lower bounds of ea
fluctuating signal, and find how long the transiting particle
outside of both its pretransit and posttransit bounds. By
measure, many of the graphs in Figs. 1 –3 show zero tra
duration. A close examination reveals that the best choice
the transit time, as well as the transit duration, varies sligh
even among the three coordinates of one particle. Our p
tice is to set the transit time precisely the same for all co
dinates of all particles, and allow the transit duration to co
remaining variations. Let us denote byDR the distance over
which the equilibrium position of a transiting particle move
and byDt its transit duration. Then for the eight particle
involved in the transit,DR varies from 0.3R1 to 0.6R1, with
a mean value of 0.4R1, andDt has an estimated mean valu
of t.

Following the eight-particle transit by a time of 13t, an-
other transit occurred among three entirely different p
ticles. The coordinates of one of these are shown in Fig
There is a small but measurable change in the mean ofz, a
nominal change in the mean ofy, and a large change in th
mean ofx. At the transit there is a slight decrease in thez
vibrational amplitude, and a noticeable increase in both thx
andy amplitudes. Such changes in amplitude are commo
transits we observed, but of course they must average a
over many transits, because these amplitudes are all sele
from a single equilibrium distribution.~Notice Figs. 1–3 also
exhibit a distribution of amplitudes.! Thex coordinate in Fig.
4 shows a significant precursor, unusual but not singu
extending ahead of the transit time, while they coordinate
shows only the hint of a precursor.

Our sodium system has potential energy based on pse
potential theory, and is described in@17,18#. The density
corresponds to liquid sodium atTm5371 K, and the neares

in

in

FIG. 3. Thez coordinates of~top to bottom! the first, seventh,
and second particles involved in an eight-particle transit
Lennard-Jones argon at 17.1 K. The transit time is the same a
Figs. 1 and 2.
5-3
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WALLACE, CHISOLM, AND CLEMENTS PHYSICAL REVIEW E64 011205
neighbor distance isR157.0 bohr. The rms vibrational fre
quency of the random valleys is 1.56231013 s21, and the
mean vibrational period ist5287.25dt, where the MD time
step isdt51.40058 fs. The transit criterion is 1 bohr, o
0.14R1, and the lowest temperature where transits were
served was 30.0 K, roughly 30% of the glass transition te
perature. At this temperature we observed a transit involv
11 particles, and the set of graphs of particle coordina
versus time is qualitatively indistinguishable from the arg
graphs shown in Figs. 1–3. The three coordinates of on
the transiting particles are shown in Fig. 5, and the remain
ten particles exhibit similar and equally striking graph
Again for this 11-particle transit in sodium, every coordina
of every particle transits at the same time. The mean sin
particle transit distance is 0.25R1 while the group center o
mass moves a distance 0.11R1, and the mean single-particl
transit duration is approximatelyt. The 11 transiting par-

FIG. 4. The coordinates of one of three particles involved i
later transit in Lennard-Jones argon at 17.1 K. They andz coordi-
nates have been shifted for clarity.

FIG. 5. The coordinates of one particle in an 11-particle tran
in sodium at 30.0 K.
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ticles occupy a roughly cubical volume, which contains al
gether 23 particles, so that the transiting group has a ra
compact shape.

Recall that in identifying each transit, we find every pa
ticle for which at least one running average coordin
moves as much as the transit criterion. Upon reducing
transit criterion by half in sodium, to 0.07R1, we found many
more particles participating in each transit, but we found
new transits. This suggests there are no transits that h
only very small positional shiftsDR, but when a transit does
occur, many surrounding particles undergo small correla
positional shifts. In Fig. 5, the small shifts inx and z at
approximately 310 000 iterations are associated with
transit of another group of particles.

Figures 6–8 show the Cartesian coordinates of two p
ticles over a common time period. The transits inz, Fig. 6,

a

it

FIG. 6. Thez coordinates of two sodium particles involved
three separate transits over a period of 120 000 iterations. The
sit times are the same as in Figs. 7 and 8.

FIG. 7. They coordinates of two sodium particles involved
three separate transits over a period of 120 000 iterations. The
sit times are the same as in Figs. 6 and 8.
5-4
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OBSERVATION OF SINGLE TRANSITS IN . . . PHYSICAL REVIEW E64 011205
are sharp and perfectly correlated in time. The same h
for the transits iny, Fig. 7, but both particles show a lon
postcursor drift following the third transit. In thex coordi-
nate, Fig. 8, the shift of the lower particle in the first tran
lags the common transit time by 3t, and this lag is included
in our determination of the average transit width. Preced
the second transit by a time of 12t, the lower particle is
involved in a transit with a separate group of other particl
~Since the transit does not involve both particles, its time
not plotted in the figure.! This transit, at approximately
275 000 time steps, produces no discernible shift in the p
ticle’s y and z coordinates. Then at the second transit,
upper particle shows a small shift, while the lower partic
shows none. Of course, both particles move significantlyy
and z at the second transit~Figs. 6 and 7!. Finally, both
particles show a long drift following the third transit. W
have not seen such a long postcursor in any other trans

III. DISCUSSION

For a binary soft sphere mixture, Miyagawaet al. @25#
found correlated jumps in the rms displacement of tim
averaged positions of single particles. Despite initial appe
ances, their results are in fact markedly different from ou
First, they averaged particle positions over a time of sev
vibrational periods, so that motion on a shorter time sc
was not resolved. Second, they found very large jum
around one nearest-neighbor distance, and they found
several atoms jump at successive times by permuting t
positions. Wahnstro¨m @26# studied a binary Lennard-Jone
mixture, and observed sharp jumps in the magnitude of
displacement of a single particle as a function of time. Th
jumps also do not appear to be related to the transits
observe. In Wahnstro¨m’s system, the jumping particle wa
almost always one of the smaller particles, the jump dista
was at least as large as the nearest-neighbor distance,
jumping particle had a tendency to jump back to its origin

FIG. 8. Thex coordinates of two sodium particles involved
three separate transits over a period of 120 000 iterations. The
sit times are the same as in Figs. 6 and 7.
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position after a short time. It is possible that the nature of
jumps seen by Miyagawaet al. and by Wahnstro¨m is more
characteristic of a dense gas than a liquid.

An observation of cooperative particle motion, via com
puter simulation, was reported by Donatiet al. @27#. They
worked with a binary mixture of Lennard-Jones particles,
temperatures well above the glass transition temperature,
observed particle positions at two different times, separa
by a long period compared tot. Between the two observa
tion times, groups of particles moved a distance on the or
of R1 along stringlike paths, with each particle tending
move into the original position of its next neighbor along t
string. In comparison, in our transits the particles move
distance noticeably less thanR1. Oligschleger and Schobe
@28# studied a system with a soft repulsive potential at ve
low temperatures, down to 2.5% of the glass transition te
perature, where they observed jumps in the system rms
placement versus time. These jumps corresponded to the
tion of particles in chainlike configurations, where ea
particle moved only a fraction of the nearest-neighbor d
tance. In contrast, our systems do not exhibit transits at s
low temperatures. Again for a binary mixture of Lennar
Jones particles, Schro”der et al. @24# used the technique o
inherent dynamics to find transitions between inherent str
tures that correspond to cooperative stringlike rearran
ments of groups of particles moving distances smaller t
the nearest-neighbor distance~their Fig. 8!. These authors
also found that the distribution of displacements of the eq
librium positions in such transitions contains a large num
of particles that move a very small distance~their Fig. 7!. It
is possible that a similar distribution applies to the mo
atomic systems studied here. An important difference
tween our transits and the motion reported in@24#, @27#, and
@28# is that our transiting groups do not have stringlike co
figurations, but are more isotropic, albeit still quite irregula

In summary, we have observed transits as they appea
the fluctuating graphs of the particle coordinates in equi
rium monatomic MD systems. Each transit is a correla
simultaneous shift in the equilibrium positions of a sm
local group of particles. The average shift of the equilibriu
position of a single particle is around 0.4R1 in our Ar system
and around 0.25R1 in our Na system. Occasionally a grap
of coordinate versus time for a single particle will show
precursor, or postcursor, extending severalt away from the
main-group transit time. The average transit duration, fo
single particle or for the entire group, is roughlyt in either
Ar or Na, and the precursors and postcursors are include
this average.

Each precursor or postcursor appears as a segment o
particle coordinate graph where the mean of the coordin
drifts for a time of severalt. In all our calculations, no such
drift occurred except in connection with a transit. In ou
view, the transit itself is the primary step of diffusive motio
Nevertheless, the precursors and postcursors, when
appear, are a part of the equilibrium diffusive motion, and
would be interesting to study further their role.

The transits we have observed are isolated eve
their duration is short compared to the time betwe
them. At higher temperatures the transits will occur

n-
5-5
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WALLACE, CHISOLM, AND CLEMENTS PHYSICAL REVIEW E64 011205
higher rates. An important assumption of liquid dynam
theory is that the motion between random valleys is acco
plished by the same kind of transits observed here, at lea
a first approximation, even though the transit rate in the
v

01120
s
-
to
-

uid state is so high that each particle is involved in a tran
approximately once in every time intervalt. This hypothesis,
as well as other more detailed properties of transits, will
investigated in future work.
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