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Thermophysical properties of gases, liquids, and solids composed of particles interacting
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A short-range polynomial interaction potential is introduced which has both a repulsive core and an attrac-
tive part. It is cut off smoothly such that its first and second derivatives vanish at the cutoff distance. The
potential therefore enables efficient simulation studies of a model material that exhibits similarities to a full
(but computationally expensiyelassical Lennard-Jones system. Thermophysical properties of the model are
calculated by(nonequilibrium) molecular dynamics computer simulations and compared with analytical re-
sults. Among the quantities studied is the pressure as a function of the density for various temperatures.
Equations of state for the fluid and the solid are tested. The coexistence of gdseetastableliquid, and fcc
solid phases is found for a range of temperatures. Bulk and shear moduli are computed. The response of the
system to a shear deformation with a constant shear rate is analyzed. The liquid shows viscoelastic behavior
that can be described with a Maxwell model. The solid behaves as an elastic medium up to a finite deformation
and then undergoes a transition to plastic flow, which is stick-slip-like at small shear rates and continuous at

higher ones.
DOI: 10.1103/PhysRevE.64.011201 PACS nun)er83.50-v, 47.10+g, 64.10:+h, 46.35:+2z
[. INTRODUCTION [5]. Of course others have previously noticed the necessity

for a smooth cutoff, e.g., Hoover and Pod&, who used

Statistical physics aims to explain the thermophysicaltthe potentia[ 1—(r/r)?]%, which, however, is rather differ-
properties of matter and dynamic phenomena occurring int from the LJ potential and has a vanishing force rfor
nonequilibrium processes on the basis of the properties @oing to zero.
atoms and molecules and their interactions. Molecular dy- Recently, it has been demonstrated that the density depen-
namics (MD) and Monte Carlo computer simulations per- dence of the energy and the pressure of the WCA fluid and
formed during recent decades have helped enormously #§¢ Solid are reproduced by a short-range repulsive polyno-
achieve this goal. The study of models plays an importanflidl potential[7]. The smooth cutoff, where the second de-
role. Simple systems composed(effectively) spherical par- rivative of the potential is also continuous, is not only advan-

ticles are modeled with potentials that are linear combinal29eous for the Integration of t_h_e _equaﬂons_of motion, In
tions of the inverse power of the distancebetween two particular for systems in nonequilibrium and with strong gra-

) ; . dients as in shock waves. It is essential for the computation
particles. Both the repulsion at short distances and the attrac—f lasticity coefficients in the solid bhase since the micro-
tion at larger distances are described in this way. The disc-) clasticly coe e p - .
. ~scopic expressions for the elasticity coefficients involve the
, ) : fecond derivative of the potential. The same applies for the
length, the “diameter’r, of a particle. Such potentials were computation of the configurational temperat{igd. Here, a
already used almost a century agd; they are commonly  gmoothly cut-off simple polynomial function is used that has
referred to as Lennard-Jon@s)) potentialg[2]. In computer 4 repulsive and a relatively short-range attracti8eiRAT)
simulations, these potentials are usually cut off at a finitepart (h=1.5r,). Properties of the model system in its gas-
distanceh, e.g.,h=2.5o was popular for some time. Shorter eous,(metastablg liquid, and solid states are computed by
cutoff distances are preferred in many nonequilibrium mo4MD and NEMD simulations and, where possible, compared
lecular dynamic§NEMD) simulations. The potential has to with analytical calculations, as well as with the behavior of
be shifted such that it vanishesrat h and, for MD simula-  real substances.
tions, it is desirable that the force also vanishes at the cutoff The thermophysical properties presented are the pressure
distance. A case favored in many numerical studies is a cutas a function of the density at various temperatures, elasticity
off at the minimum, often referred to as tijeurely repul-  coefficients, non-Newtonian shear viscosity, and viscoelastic
sive) WCA potential[3]. Other amendments of the LJ poten- behavior of the liquid, as well as the elastic behavior under
tial have been proposed, e.g., the LJ potential is used until itshear and the transition to plastic flow in the solid.
point of inflection, and beyond this point it is replaced by a
third order spline function such that the potential and its first Il. THE POTENTIAL CURVES
derivative are continuouf4]. When one does not aim to
mimic a particular substance, but just intends to catch certain The 6-12 Lennard-Jones reference potential restdér)
essential features of the thermophysical behavior within a=4®q[(r/rg) 12— (r/ry) ~®]. The quantitiesbP, andr, set
restricted temperature range, one may use alternative funthe characteristic energy and length scales. The
tional forms for the potential with an even smoother cutoff SHRAT potential to be used here is of the fogTHRAT(r)
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FIG. 1. The short-range attractive potenti8HRAT) function
(thick curve and the Lennard-JondgJ) potential (thinner curve
as functions of the distanee All physical quantities are in standard
LJ units.

0.5 1 1.5 2 2.5 3 35 4
temperature

FIG. 2. The second virial coefficient pertaining to the SHRAT
~3(h—r)4—4(h—r -n)(h—r)3 for r<h and ¢SHRAT(r):0 potential (thick curve and to the LJ potentialthinner curve as
for r>h. This functirgn has a minimum at=r . Its inter- functions of the temperaturé All physical quantities are in stan-

" min *

section with the horizontal axis iso=(4/3)f m,—(1/3)h, ~ 9ard LI units.
This functional form has been recently used for the effective
two-particle interaction in a variant of the embedded atom IIl. PRESSURE VERSUS DENSITY
method for metal$9,10]. A. Dilute gas and ideal solid

If one requires, as if5], that the force at =r, and the , , , ,
depth of the potential at=r ., be equal to the correspond- Simple analytic expressions for the pressure are available,
ing LJ values, one find$h=(113/81),~1.4r, and r,, both for low density gases and for ideal solids. The pressure
— (89/81) o~ 1-}”0- The resulting po(t)entiél Ois 2@0?{‘ of a dilute gas, just one power in the density beyond the ideal
—rirg)[(h=r)/(h—r ). Here we choose the similar val- 98S: IS given byp=nkgT[1+nB,(T)] with the second virial
uesh=(3/2)ry, rmin=(9/8)r, and set the depth of the poten- coeff!c!ent(per pgrt|cle3B?(T)_. In Fig. 2 the secgnd virial
tial equal tod,, in analogy with the LJ potential. The ex- coefficient, in units ofry, is displayed as a function of the

plicit expression for our model potential therefore reads ~ (€mperature for the SHRATupper, thicker curveand for
the LJ (lower, thinner curvg potentials. For spherical par-

ticles, the second virial coefficient is computed according to

512 r re
¢SHRAT(r):Eq)O(1—E)(3—2G), r<21.5,

BZ(T)=27TJOO{1—9XH:—¢(r)/kBT]}r2dr. (2)
(1) 0

and ¢S"RAT(r)=0 for r>1.5r. In units ofdy/r,, the force  In the calculation, the LJ potential is cut off et 8r,. The
atr=r, is 512/2719. The corresponding value for the LJ dashed horizontal line marks the vali’(1). In the
potential is 24. Notice that this potential is finiterat 0, viz, = SHRAT case, this value is reachedTdfl ,~0.6.
$SHRAT(0)=512D,. For temperatures below 49 /kg, this In the limit of low temperatures, one may assume that
is of no practical concern since the Boltzmann factorthe particles occupy ideal lattice sites. Then one calculates
exp(—dy/kgT) governing the fraction of particles that can the “cold” energy per particle=e,q and the “cold” pres-
reach this distance is smaller thax &0~ 23, sure p=peq by inserting the density dependent nearest
In Fig. 1 the short-range potential used here and the Lieighbor distancey..= (12/2)(4h)3r, for a close packed
potential are plotted as functions of the distancka numeri-  cubic (or hexagonal solid into the two-particle energy and
cal calculations and in the graphs displayed here, all physicdhe virial, summed over the 12 nearest neighbors, when
quantities are expressed in the standard LJ unifdbf14, the density does not exceed 32#2%¥.185. Then one
e.g., lengths and energies are given in unitg paind @, has, eg(N)=6¢(a(n)), and Peod(n) =n2decqq/ IN=
Following common practice the dimensionless variables are- 2nas(n) ¢’ (asc(n)). Here ¢ and ¢’ stand for the
denoted by the same symbols as the corresponding physicBHRAT potential and its derivative with respect to the dis-
guantities when no danger of confusion exists. tance. For higher densities, the contributions from the next
In dimensionless notation, the LJ and SHRAT potentialscoordination shells have to be taken into account. The result-
read ¢(r)=4(r 2—r % and ¢S"RAT(r)=(512/27)(1 ing curves are displayed in Fig. 3. The dashed curves show
—r)(3—2r)3, r=<3/2, whereas¢pS"R*AT(r)=0 for r>3/2.  the corresponding results for particles placed on body cen-
Similarly, the number densityn=N/V, where N and tered cubic(bco lattice sites, where the nearest neighbor
V are the number of particles and the volume of the systemgistance is linked with the density bya,.=(1/3/2)
and the temperatur& are expressed in units afg=r,> X(2In)Y% . In that case, the eight first and the six second
and T,.= Py /kg, respectively. The unit for the pressure is nearest neighbors have to be taken into account for densities
Prei=Por o 2. less than 322/27~1.676. Clearly, for densities close to
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FIG. 3. The cold energe (per particl¢ and pressure as func- density Sty

tions of the density for ideal fc€solid curve$ and bcc(dashed

curves solids. All physical quantities are in standard LJ units. . .
3 phy q FIG. 4. The pressure as a function of the density for the tem-

peraturesT/T,=0.6,0.8,1.0,2.0. The dots indicate the results from

Plnref:l’ the.mmlmal_ener(%y is lower in ;hedfcc S_Ol;d' The the MD calculation. Except for the points at high densities, marked
cc energy minimume=—6d, occurs at the density/nrer  wteer for T/T,,=1.0,0.8 and joined by a thick curve faH/T

— 3 . . S
—4/(9\/5/8) ~0.993. =0.6, the MD data pertain to the fluid, gaseous, or liquid state of
the system. The curves stem from theoretical expressions explained
B. Remarks on MD simulations in the text. All physical quantities are in standard LJ units.

Simulations at the constant temperatureb/T
=0.01,0.1,0.4,0.6,0.8,1.0,2.0 and constant number densitiésresT/T = 2.0,1.0,0.8,0.6from top left to bottom right
n=N/V (NVT ensemble simulationsin the rangen/n,  Most data points pertain to the fluid, gaseous, or liquid state
=0.1,...,1.1were performed forN=4x83=2048 par- of the system. Data at higher densities for the temperatures
ticles, where the initial positions were fcc lattice sites. TheT/T,=1.0,0.8,0.6 are for the fcc solid. Al/T,=2.0 a
equations of motion were integrated with the velocity Verletfluid state exists only in the density range shown. On the
algorithm with the time stept/t,=0.005. The LJ reference other hand, afl/T,,=0.6, gaseous, liquid, and solid states
time ist,e=ro(m/®,)*?, andmis the mass of a particle. A exist at small, intermediate, and higher densities.
cubic simulation box with volum& and periodic boundary For the lower temperature$/T,=0.6,0.4,0.1,0.01 the
conditions were used. The temperature was kept constant pressure of the fcc solid, as a function of the density, is
rescaling the magnitude of the particle velocities, which cor-displayed in Fig. 5. Negative values of the pressure, although
responds to the Gaussian constraint of constant kinetic erindicating a mechanically unstable state, reveal that the lig-
ergy. Typically, the system was aged for 2000 or more timeuid, and even more the solid, can withstand some tension due
steps corresponding to 10 or more reduced time units before
the data were extracted as time averages over 4000 or more

time steps corresponding to 20 or more time units. Due to a 4 T =08 Od OL 001
link list procedurd 15], the computational time increases lin- 5 T e
early with the number of particled whenN>500. fee

The pressurg@=nkgT+ pP%is the sum of the “kinetic” #

or “ideal gas” contributionnkgT and the “potential” con-
tribution pP°. The latter quantity is computed according to

Vppot:%<z ri.F‘>=%<2 r”-F”>. 3) 1

pressure

<
0
The angular brackets indicate a time average. HEre P ’
=3;.iF" is the force acting on particle F=F(r") is the | @
force exerted on particle from particle j, and F(r) 0.925 095 0.955 1 1025 105
ensity

=—d ¢(r)/dr. The symbol; _; means a double summation

over pairs of particles, with less tharj.
FIG. 5. The pressure in the fcc solid state, as a function of the

density for the temperaturds=0.6,0.4,0.1,0.04from left to righ?).

The dots mark the results from the MD calculation, and the curves
In the four graphs of Fig. 4 the symbols mark the com-stem from theoretical expressions explained in the text. All physical

puted pressures for given densitigga MD) for the tempera-  quantities are in standard LJ units.

C. Pressure in the fluid and solid states
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to internal attraction. The theoretical pressure isothermsmaller, viz.,~0.35, for the LJ fluid. For simple gases like

shown as curves are explained in the next subsection. argon or nitrogen one hag.~0.31.
A word of caution is in order. For the present system with
D. Equation of state the rather short-range attractive force, the triple point is

rather close to the critical point. No attempt is made here to
determine the complete phase behavior. However, there is a
finite range of temperatures where one has a dalichigh
(H%nsitiess, an at least metastable liquidt intermediate den-
sities, and a gagat small densitigs all at zero pressure.

A modification of the Carnahan-Starlif@S) equation of
state[16] for hard spheres to particles with softer repulsive
interaction has been suggested and tested successfully
[17]. The equation of state involves the second virial coeffi-

\?\;ﬁir:haaz}goa(jrle egﬁggvoen \':r?:au;g?ﬁﬁér;u:): gg:meoctjegtei;?;’th hysical systems where the liquid phase is only metastable
P P ' P re fluids composed ofggand some colloidal solutiorj49].

attraction, an augmented van der Waals approximation has The curves shown in Fig. 5 stem from a modification of

been proposed and tested for the LJ fliid]. A similar : . .

: ; oo the pressur@.q4(n) for particles placed on ideal fcc lattice
approach is used here. The potential contribution to the pres- L . .

sure of the fluid is a sum of the modified CS expressionS'tes' More specifically, the pressure in the solid phagg

involving an effective volume «(T), and terms associated s computed according to

with the attractive part of the interactiopP°'=p™P+ p2",

. 1
with psolid(nuT): n I(BT'I' Epcold(n'l's(nuT))
nBjP (Nvep)? ) 1
rep= n k T + ] 4 - -
P B (1-Nven)?  (I—Nvgy)® ) +2pcold(n s(n,T)), (6)
pA=nZkyT(B,— B[ 1+c(n,T)]. (55 where s(n,T)=(2kgT/e;)** with s(n,0=0, and e,

= §%e.,q/IN? is a density difference that takes into account
that at finite temperatures the particles can approach each
other more closely and can be further apart thah=a0. For

g temperatures beloW/T,=0.5, the expression given above
provides a reasonable approximation for the pressure in the
solid phase.

HereB5Pis the second virial coefficient evaluated according
to Eqg. (2), but with the repulsive par$™P of the SHRAT
potential only, i.e., the potential is cut off at its minimum an
shifted such that it vanishes atr,=9/8. For comparison,
the repulsive part of the LJ potential is the WCA potential.
The second virial coefficient calculated with the full SHRAT
potential is denoted bB,. The correctiorc(n,T), needed at
higher densities, is presented later. The effective volume IV. ELASTICITY COEFFICIENTS
ver(T) is given byvw(T) = (w/G)dgﬁ, with the effective di-
ameterd.s=de(T) determined by the distance where the
repulsive party™® of the binary interaction potential equals gy, modulusB=n(ap/an); and by the shear modullG.
the thermal energyy™(dey) =kgT. At the temperaturél; The Born-Green expressidi20] for this quantity, used in
=Trr, One hasde=ro and consequentlyi=(7/6)ro  MD simulations, is the time average of a two-particle quan-
~0.52368 for both the LJ and the SHRAT interactions. In tity, viz.,
the following, \éve use the relati\//ely/simple LJ expression
vei(T) = (7/6)r5{2[ 1+ (kg T/ ® o) Y21} Y2 for the determina- 1 - y
tion of the effective volume. GBG:@< .2 (r=2(r*¢")"H), (7)
The dashed curves shown in Fig. 4 are the equations of :

state where only the repulsive part of the interaction has beenare the prime denotes the derivative with respect This
taken into account. The thick and thin full curves correspondnigh frequency shear modulus is also nonzero in the fluid
to the augmented van der Waals approximation with0  giate[21]. Sometimes it is referred to as the Maxwell shear
and modulus. The low frequency shear modutiswhich is non-
zero in the solid state but vanishes in the fluid state, is com-
c=(3nv gt 6n2v 5 exp — o /kgT), puted according t@=GB®+G™ [22,23. The (negative
fluctuation contributiorG™ involves a time average of the
respectively. This expression, which fits the MD data quitesquare of a two-particle quantity; thus it contains three- and
well, is based on an educated guess rather than on a propeur-particle contributions. For further details of the expres-
derivation. The temperature and the density at the criticasions used in the MD computations see, €.47] and[24],
point, as inferred from this equation of state, arg/T,,+  where elasticity coefficients are presented for the WCA po-
=0.794 andn./n~=0.32. The pressure at the critical point tential.
IS Ppc/prer=0.0097%0.01. The compressibility factoiz In cubic systems, the anisotropy of the shear modulus is
=p/(nkgT) at the critical point isZ.~0.38, very close to reflected by the fact that one needs two coefficients to char-
the value 3/8-0.375 following from the original van der acterize the shear behavior. These can, e.g., be the largest
Waals equation. For comparison, the last number is slightland smallest value@or fcc and bcg ¢4, (in Voigt notation

The elastic properties of an effectively isotropic solid are
characterized by thé@sothermal bulk modulus or compres-
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andca,=(cy— C10)/2. The modulug,, is associated with a -
displacement and its gradient parallel to the 100 and 010 80 -

directions. The shear modulies, pertains to a deformation
where the displacement and its gradient enclose an angle of .. 60 -
45° with the 100 and 010 directions. The expressions used
for the computation of the Born-Green and fluctuation con-
tributions ofc,, are

ij
ve-(3 [oenon o)

40 e

shear moduli

20 (clI-cl2)/2

i<j

+ < 2 (Xzyzr_l(r_l¢')')ij>’ (8) 085 09 095 1 105 11 115
density

and FIG. 6. The shear moduli,, and (c1;—C12)/2 as functions of

the density for ideal fcc and bcc lattices. All physical quantities are

1 . ;
tandard LJ units.
vV Cgtict: _ kBT[<C‘2‘4>_<C44>2]’ In standar units

. one hasy=0.27 for iron and nickel, and=0.22 for silicon.
with Rather large and small values ave=0.41 for gold andv
=0.07 for diamond.
_ —1 i For low temperatures, the elasticity coefficients can be
C44_i2<j (xyr=—¢")". © inferred from thg change of the energyywhen the ideal lattice
is subjected to the appropriate deformation. Alternatively,
For EAM one uses similar expressions me rep]aced by one may use the Born-Green expression involving the first
(Xz_yz)/z_ A measure for the anisotropy of the shear modu.and second derivatives of the potential to compute the coef-

lus is the ratioc,,i<=C44/Cq4. For an effectively isotropic ficients in the undistorted statg. .
solid one has,=1; for many monocrystalline cubiticc Results ofTMsuch calculatlon_s, _here performed using
and bcg¢ substances one finds values between 2 and 4, p({ATHEMATICA "7, are presented |n~F|gs. 6 and 7. More spe-
both smaller and larger values also occur. cifically, the cold shear modutty,, C44, E, andG are dis-
Alternatively, one describes the shear behavior of a cubi@layed as functions of the density for f¢solid curves and
solid by the orientationally averaged shear modufds bcc (dashed curvgssolids. Notice that,,=(C1;—C1)/2 is
=(3C44+2C40)/5 and the “cubic” modulusG,=C4u—Cy,.  Negative for the bee case when the density is smaller than

The bulk modulus of a cubic system is linked with the Voigt N/Nrer~1.07. Thus the bcc crystal not only has a larger en-
elasticity coefficients byB=(cy;+2cy,)/3. Just like the ergy than the fcc crystakf. Fig. 3), but it is also mechani-

shear moduli, the isothermal bulk modulus is the sum of ally unstable for densities<1.0M. The kink seen in the
Born-Green and anegative fluctuation contribution,B  fcc curves is due to the contributions from the second coor-

=BBC+ BMUet with BB®=5G®B/3+ 2pP° and dination shell starting at the densityn = 1.185. For a less
\Vi Bfluct_ 1 [<BZ> <B>2] 175
9kgT 150
with § 125
£ 100
.. S
B=2 (14")". (10 s 7
i
. . 50
Frequently the elastic behavior of an effectively isotropic  ®
solid is also characterized by the Young elasticity mod&us 25
and the Poisson ratip. These quantities are linked with the 0
bulk modulus and the orientationally averaged shear modu-
lus G by E=9BG/(3B+G) and »=(1/2)(3B—2G)/(3B 085 09 095 1 105 LI 1I5

+G). In the fluid state one ha&=0 and consequentli density

=0 andv=0.5. For two-particle interactions, zero tempera-  F|G. 7. The orientationally averaged shear modutuand the
ture, and zero pressure the Cauchy relaBen5G/3 applies.  elastic modulus€ as functions of the density for particles placed on
Then one ha=5G/2 and »=0.25. Solid argon has the ideal fcc and bcc lattice sites. All physical quantities are in standard
somewhat larger Poisson ratio 0.30. At low temperatured,J units.
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TABLE I. The isothermal bulk moduluB and three shear moduli, all in units of the reference pressure
Pref, @S computed in the MD simulation. The superscript BG refers to the Born-Green expression for the

shear moduli.
B Cas G G, iy (Chss Ge®
44.8+0.5 35.8:0.3 28.650.2 —18.2+0.2 41.0:0.1 32.9:0.1 —20.2£0.1

smooth cutoff such as, e.g., that used in the case of the WCAL1-13). For reviews of NEMD results for rheological prop-
potential, one would have a jump at such a point. erties of simple and complex fluids, sg&l—-33.

The values for elasticity coefficients as inferred from MD  Rheological properties such as tfren-Newtoniai vis-
simulations for the solid at the temperaturér ,~=0.6 and  cosity and the normal pressure differences are obtained from
the densityn/n,~=0.942 are given in Table I, in units of the Cartesian components of the stress tensge= —p,,, or
Prer- At this state point, the average potential energy pewof the pressure tensgr,, which is the sum of kinetic and
particle e® and the pressure am*/®,=—4.950, p/p,s  potential contributionp,,,= p‘;";+ pZOVt
=0.02. The value of the shear modulusg, as inferred from L
G and G, according toc,,=G—2G./5 agrees with the di- Kin__ P ot_ i =i
rectly extracted value within the computational uncertainty. fo”’_<z mdﬂc”>’ fo“’_§< ; rf]‘FVJ>' (12)
The same applies to the Born-Green contributions to these

quantities. For the shear modules, one infers fromc,,  Herec is the specific velocity of particlé i.e., its velocity
=G+3G,/5 the value 17.2.0.3, in units ofp,e. The result-  relative to the flow velocityw(r'), r''=r'—r! is the relative
ing anisotropy coefficient is,= C44/C44~2.0. The elastic position vector of particles,j, andF is the force acting
modulusE and the Poisson ratie as computed from the between them. As before, the greek subscripts, which
values forB and G given in Table | areE~71, in units of assume the values 1,2,3, stand for Cartesian components as-

Prei, @andv~0.24. The ratioG/B is ~0.64. sociated with thex,y,z directions. In the simulations, the
expression for the pressure tensor is averaged over many
V. VISCOELASTIC AND PLASTIC BEHAVIOR (10% to 1C) time steps. For the present flow geometry, the
(non-Newtoniapviscosity 7 is obtained by dividing the long
A. Remarks on none_quililbrti_um molecular dynamics time average of thgx(21) component of the stress or pres-
simulations

sure tensor by the shear ratg= oy, /y=—pyx/ v
Nonequilibrium molecular dynamics has been developed From the simulation, the kinetic and potential contribu-
and applied to various problems during the last three detions to the pressure tensor and to the viscosity can be com-
cades; for books on this subject sgl—14. In order to  puted separately. Only the sum can be measured in a real

demonstrate that the model system exhibits typical liquidlikeexperiment. The kinetic contribution to the viscosity domi-

and solidlike behavior, examples of viscoelastic behavior imates in dilute gasd84]. In dense fluid€liquids) the poten-

the liquid and of elastic and plastic behavior in the solid aretial contribution is more important.

presented next. Normal stress or pressure differences, e@— oy,
Here, we consider a simple shear flow in theirection ~ =p,,—p,,, have also been computed. At small shear rates

with the gradlent of the yelomty in the y direction. The  pe finds—pyx~ 7y and pyy— Py~ ¥2, as well asp,,+ Pyy

shear ratey is given by y=dv,/dy. Such a flow can be —2p,~ '72_

generated either by moving boundaries or fof@&s-27, or

as here, by moving image particles undergoing an ideal Cou-

ette flow with the prescribed shear ré@t®mmogeneous shear

Let the flow be switched on &t=0. Then at time the image The viscoelastic behavior of a fluid is revealed by the

particles abovebelow) the basic(centra) box have moved growth of the shear stress in response to a shear deformation

in the x direction to the right(left) by the distanceytL ~ y=yt that is switched on at=0. In Fig. 8, the shear stress
modulo(L), whereL is the length of the periodicity box in o= o, is shown as a function of the time for the shear rates
they direction. Of course, the periodic boundary conditions'y/'%ef: 0.173,0.346(bottom graph and 0.87,1.73(upper

for the particles leaving and entering the basic box have to b@raph for a liquid. The reference value for the shear rate is
modified (Lees-Edwards boundary conditior{28]). For a - = 1o With toi= g/0 e Wherew o= (o /m) 2 is a ref-
system in a fluid state in equilibrium and for not too large Yref fEfI : re{_h 0/Uref Uref q ho densitvTATE
shear rates, a linear velocity profile typical for a plane Cou—(irgnge V%O(;Ity. N Oe7t2e5mperatur(i ar; tTeh egsn)r/] dQT'f
ette flow is set up in the basic bdgfrom which the data are t?w : r?nthn Mrer= Y. 1. d,' r?Spfﬁ ve E]/ t—t'e %S he nes
extractedl. At high shear rates where pluglike flow also oc- roug .e origin indicate the short-ime - behavior
curs it is essential to use a velocity “profile unbiased ther-=Gmt with the Maxwell shear modulu&y, equal to the
mostat” (PUT, [29,27,30). A shear flow can also be gener- Born-Green valueG®®=15p as inferred from the MD
ated by modifying the equations of moti¢8llod, so named simulation. The full curves are the solutioor= 7y(1
because of its close relationship to the Dolls tensor algorithm-exp(/n,)) of the Maxwell model with theshear rate de-

B. Viscoelastic behavior of the liquid
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FIG. 9. Shear viscosity as a function of the shear rate as ob-
tained in NEMD simulations folf /T, =1 andn/n,=0.75. The
small and large gray dots mark the kinetic and potential contribu-
tions to the viscosity and the black dots represent their sum, viz.,
the “total” shear viscosity. Shear thinning is seen for shear rates
'y/'yref>1. The(solid and dashedhorizontal lines indicate the av-

erages of the data points fé,r/'yrefsl. The meaning of the other

density = 0.725, _temperature = 0.6 ] curves is explained in the text.
0.5 1 15 2 2.5
time ¢ played since they could hardly be seen on the scale of the

FIG. 8. The shear stress in the liquid phase as a function of thgigu_re. _For (_:omparisor_l, some values for the viscpsity of the
time, for four shear rates. Téull) curves correspond to solutions 9 liquid (with cutoff distancer =2.5) at some similar state
of the Maxwell model. The dashed lines through the origin mark the?0ints, all forT/T..=1, as found in the literature, are men-

short-time elastic behavior. All physical quantities are in standardioned. In particular, in Ref[35] for the two densities
LJ units. n/ne=0.70 (0.84) the following extrapolated viscosities

were  obtained: 7,/ 7/=0.16-0.06  (0.1G-0.03),
Npot! Mer=1.1£0.1  (2.5-0.1), and 7/ 7.=1.26+0.16
(2.6£0.13). By evaluating a Green-Kubo formula for the
comparable densityn/n=0.72, the viscosity values

o . . L 7l o= 1.3+ 0.10, andzy/ n,.~= 1.25+0.13 were reported in
=preitres- The dashed horizontal lines indicate the values th . .
shear stress would approach if fien-Newtoniahviscosity q?efs.[SG] and[37], respectively. These data, together with

7, as inferred from the long-time averagex(ry,), did not t_he vall_Je for the shear ratg,se¢at onset of shear thinning
decrease with increasing shear rate. The stress overshoBénset= Yret €Xtracted from the data in Reff35] for the LJ
seen for the highest shear rate still stays below this limit. Fofluid, reveal that the SHRAT fluid exhibits both a zero rate
reason of completeness, the full stationary non-Newtoniaghear viscosity and shear rheological properties very close to
shear viscosity as a function of the shear rate as obtained ifie ones obtained for the LJ fluid. The shear thinning is
NEMD simulations forT/T,=1 andn/n,=0.75, as well ~associated with structural changes in the fluid that have been
as its kinetic and potential contributions, are shown in Fig. 9analyzed previously for other model substani@s.

Shear thinning is seen for shear ratgs/,>1. The values _ _
for the zero rate viscosity at the state point studied are C. Plastic flow of the solid

Min! Mrer=0.120.01, 7p0/ re=1.50=0.07, and 7/ 7yes The elastic response and the plastic yielding of a solid at
=1.61+0.08. The corresponding values computed in anhe temperaturd/T,,=0.6 and the density/n,=0.942,
(adiabati¢ equilibrium simulation(at the same density, with \where the pressure is approximately zero, are presented in
an average temperatuféT = 0.99) from integrals over the Fig. 10. More specifically, the shear stress is plotted as a
relevant time correlation functions areyn/7.~0.10  function of the time for a linearly growing displacement with

£0.02,  7pot/ 17er=1.48+0.09, and 7/7e=1.5820.11. g gheqy rate// y,e7=0.001. The thick and thin curves that

There |shgod0d hagdreement V\gthm th% <t:)or|nputar:t|o|r_1al ?ncehr'stay close to each other correspond to isothermal simulations
tainty. The dashed curves above and below the line for thgpare one starts from an “aged” equilibrium state and from

kinetic contribution(see Fig. 9 indicate the statistical uncer- articles placed on ideal fcc lattice sites, respectively. The
tainty of the viscosity which, for small shear rates, increase$,|| and the dashed straight lines through the origin describe
proportionally to y~ 2 when the averaging time,, over  the elastic behavior with the full shear modulus (labeled
which the data are extracted is chosen, as usualt,as G) and the Born-Green contributiofiabeled BG) to this
=C/+y, with a constantC. Here C=20 was used. For the modulus. The curve where the yield point occurs later, at a
other two viscosities, the corresponding curves are not disdeformationy~0.15 rather than 0.12, also pertains to a star-

shear stress

pendent Maxwell relaxation timery= 7/Gy,. The values
for the viscosity arep/ ,¢=1.73,1.64,1.56,1.26, in increas-
ing order of the shear rate. The reference viscosityis
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time 15 [/
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%] 4
FIG. 10. The shear stress, in the solid phase, as a function of the § 2
time for the shear raté/'yref:0.00I. All physical quantities are in 3 g
standard LJ units. 0
'
. . . . 1 2 4
tup from an ideal lattice but now to an adiabatic rather than 00 00 time 300 00 300
an isothermal simulation. Notice that the elastic behavior as
seen in Fig. 10 lasts about 1000 times longer than that of the s i T 090 Tos
|IC]UId Shown |n Flg. 8. "l enslty— . > temperature— d
For small shear rates, the elastic behavior and the occur- » 4 shear rate = 0.005
rence of the yield point are approximately independent of the & 3
shear rate. The plastic flow behavior beyond this point, how- g 5 J
ever, does depend on This is shown in Fig. 11 where the 2
shear stress is displayed as a function of the time for the * I
shear ratesy/ y,,=0.001,0.002,0.005. The start is from an 0
aged equilibrium state. In all cases the end times are chosen 25 50 75 100 125 150 175 200
such that one has a shear deformatjenl.0. At the smallest time

rate one observes a pronounced stick-slip flow; at higher

shear rates a more continuous plastic flow occurs. The effec- FIG. 11. The shear stress, in the solid phase, as a function of the
tive viscosity inferred from the long-time average of shearijme for the shear rateg=0.001,0.002,0.005. All physical quanti-
stress(or about one-half the maximum stress at the yieldies are in standard LJ units.

point) divided by the shear rate is several hundred times

larger than the viscosities in the liquid state. _ . : .
The stick-slip behavior, seen at the smallest shear rat@,terS of the interaction potential, viz., the well defitp, the

shows eight maxima of the shear stress over a shear defdrharacteristic lengtho, and the masm of the particles. It is
mation y=1. The periodicity box contains>28 layers of stressed again that we do not want to mimic a particular
particles; the displacement between opposite sides of the babstance but to provide a feeling for the order of magnitude
iS Vb= 87. Slips obviously occur wheny,,, exceeds 1. of the reference quantities for various cases of mteregt. As an
Thus the eightfold repetition seems to be associated with thgStimate forbo andr, one can use one-sixth of the binding
size of the system. The initial yielding at deformations just€nergye, of an atom and the inverse of the third root of the
above 0.10, however, occurs for all shear rates shown. ThRUumber density, respectively, in the low temperature solid.
latter phenomenon is an intrinsic property of the solid, and itT rée sets of values are presented in Table II. The first one is
may be expected in view of the Lindemann criterion whichthe fam|l|f_;1r argonlike substance, referred to as Ar. The sec-
says that a crystal will melt when the displacement of atom&nd one is a substance composed @j Molecules where
exceeds about one-tenth of the lattice constant. Of course, Ylues for the well depth and far, were proposed 19,

is desirable to study the plastic flow at longer times and tcflthough for a different, but also short-range, potential. The

analyze the structural changes. This, however, is outside tH8ird set, referred to as SM, for standard material, is copper-
scope of the present article. like since the values for the characteristic energy, distance,

and mass are chosen to match those of copper. As far as the
orders of magnitude are concerned these values are typical
for many solid materials one can touch every day. The coin-
age metals like silver, copper, gold, iron, and nickel have
When one wants to compare properties as computed herather similar binding energies and interparticle distances,
with those of real materials, one has to specify the paramviz., 3.0,3.5,3.8,4.3,4.4 eV and 0.26,0.23,0.26,0.23,0.22 nm,

VI. SCALING AND REFERENCE VALUES
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TABLE Il. The characteristic reference values needed to convert the dimensionless variables used in the calculations to physical
guantities for argon-, &-, and copperlikgthe “standard material)’ substances.

€p ) mass Tret Nref Pref Uref Eret :yref Mref
Substance (eV) (hm) (10727 kg) (K) (nm3)  (1f Pa) (m/9 (1002s) (1 s1) (102 Pas)

Ar 0.08 0.34 66.7 160 254 40.7 182 18.7 53.5 0.76
Ceo 1.66 0.96 1202 3200 1.13 36.4 19.2 49.9 20.0 1.81
SM 3.5 0.23 106 6800 82.2 5590 941 2.45 410 13.7

respectively. The values for germanium and silicon are notong—time behavior of the solid undergoing plastic flow and
much different, viz., 3.9,4.6 eV and 0.28,0.27 nm. Ofthe accompanying structural changes should be analyzed. A
course, a true modeling of these materials requires moreomparison of the present model material with a metal mod-
complicated potential functions, and is therefore not consideled by the embedded atom method is desirable.
ered in this work. As input for Table Il we used either the Colloidal dispersions can be looked upon as macrofluids
binding energy e, or the temperatureT=®q/kg and solids. With appropriate modifications, the present cal-
=e,/(6kg) associated with the potential well depth, eitherculations could be applied to dispersions composed of
the diameterr, or the number densitylref=r53, and the spherical particles. The potential parameters could be
massm. The derived reference quantities which are listed inguessed by the same method as used successfuBgjrio
Table Il arep, for the pressure, the stress, and the elasticitycorrelate results obtained from systems with screened Cou-
coefficientsp f andt, for the velocity and the time, as well lomb and Wilthd soft sphﬁre inée;action_S- A cgm?ari_so?l with

: ; ; experimental data on shear deformation and plastic flow in
as y,ef and 7, for the shear rate and the viscosity. coIFI)oidaI crystalg40] should be rewarding. P

Furthermore, the extension of the present approach to
VIl. CONCLUDING REMARKS fluids composed of nonspherical particles is desirable. Liquid
. . . . . crystals can be treated by using the ideas of Gay and
In this article, a simple polynomial SHRAT potential has Berne[41,47 or of [43]. By introducing additional binding

been introduced. It has a repulsive core, an attractive park . .es between the particles, one models chain molecules

and is rather short ranged. The cutoff is smooth, such that thgnd treats polymeric liquids. As well as using LJ potentials

first and second derivatives vanish at the cutoff distancero bind nearest neighbors along polymeric cha#, it has
These cooperative features produce considerable advantagc% '

in numerical studies; they enable efficient simulation studie§ come standard to use the WCA potenlib] or also
) - run L ntig¥ he interaction between all par-
of a model material that exhibits similarities to a fbut uncated LJ potentigh] as the interaction between all pa

) . . . ticles in the fluid and to combine it with a “finitely exten-
comput_anonally expensiyé.J potential. The thermophysical sible nonlinear elastic’(FENE) potential[45] of the type
properties of the model were calculated by MD and NEMD—(l/Z)k(DO(h/rO)Z In(1—r2h?) for r<h in order to model

computer simulations. From a study of the pressure as f

function of the density for various temperatures, (b@ex- chain molecule. Here the o . -
. o : . quantikyis a spring coefficient,
istence of gaseous, metastable liquid, and stid) phases . frequently chosen as= 30 for polymer melts, together with

was found. Equations of state that fit the simulation data i _1 5 for the cutoff distance and the maximum extension
=15,

certain regions of densities and temperatures were given. Tr}% a bond. Instead of the WCA potential, we propose to
elasticity coefficients and bulk and shear moduli, were deter- . '

mined both from MD and, for low temperature solids, by combine the present SHRAT potential with the FENE poten-

analytic lattice calculations. Particular attention was paid t gial, with k:2.0 andh=1.5. Compared with the p(_)tentials
the response of the system. to an imposed shear deformatigtormerly applied to computations for polymers, this model-
switched on and proceeding with a constant shear rate. In th'ﬂg has the advantage that states at zero pressure can be
- . . . . : Sudied. Yet the computational advantages of the short range
liquid state, typical viscoelastic behavior was observed

: . i .~ of the potential remain. It is expected that the liquid phase
\évr:]cl)?/\?s C:Igs?ii (tj)ii(z:ar\llti)grd f;vrltgrr?a:\l/laci)gfvﬂ:nrz;t?odnes!. Eg?oiod“dawill be bro_ader in the r_nacromolecglar_ systems than in the_
critical deformation, the solid yields and undergdes a transiy e considered here since crysta_llllzatlon b_ecomes more dif-
. ! ' ficult. On the other hand, the liquid state will have to com-
tion to plastic flow. At extremely small shear rates, the mo- :

o . : i o pete with the glassy state.

tion is of stick-slip type; at larger shear rates it is more con-
tinuous. Some examples were given for possible choices of
the relevant model parameters and for the reference values
needed to convert the dimensionless quantities used in the
calculations to physical ones. The measured stationary shear This work has been conducted under the auspices of the
viscosities for the SHRAT fluid compare very well with data collaborative research projects SFB 448 “Mesoskopisch

previously reported for the LJ potenti@utoff atr =2.5). strukturierte Verbundsysteme” and SFB 605 “Elementar-

The SHRAT potential is suitable for further studies of reibereignisse,” financially supported by the Deutsche Fors-

equilibrium and nonequilibrium properties. In particular, the chungsgemeinschafbFG).

e interaction between every two adjacent monomers in a
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