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Detrended fluctuation analys{®FA) is a scaling analysis method used to estimate long-range power-law
correlation exponents in noisy signals. Many noisy signals in real systems display trends, so that the scaling
results obtained from the DFA method become difficult to analyze. We systematically study the effects of three
types of trends — linear, periodic, and power-law trends, and offer examples where these trends are likely to
occur in real data. We compare the difference between the scaling results for artificially generated correlated
noise and correlated noise with a trend, and study how trends lead to the appearance of crossovers in the
scaling behavior. We find that crossovers result from the competition between the scaling of the noise and the
“apparent” scaling of the trend. We study how the characteristics of these crossovers depéntherslope
of the linear trendfii) the amplitude and period of the periodic trertii;) the amplitude and power of the
power-law trend, an@v) the length as well as the correlation properties of the noise. Surprisingly, we find that
the crossovers in the scaling of noisy signals with trends also follow scaling laws—i.e., long-range power-law
dependence of the position of the crossover on the parameters of the trends. We show that the DFA result of
noise with a trend can be exactly determined by the superposition of the separate results of the DFA on the
noise and on the trend, assuming that the noise and the trend are not correlated. If this superposition rule is not
followed, this is an indication that the noise and the superposed trend are not independent, so that removing the
trend could lead to changes in the correlation properties of the noise. In addition, we show how to use DFA
appropriately to minimize the effects of trends, how to recognize if a crossover indicates indeed a transition
from one type to a different type of underlying correlation, or if the crossover is due to a trend without any
transition in the dynamical properties of the noise.
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I. INTRODUCTION where the DFA method was applied, there are many issues
that remain unexplained. One of the common challenges is
Many physical and biological systems exhibit complexthat the correlation exponent is not always a constauate-
behavior characterized by long-range power-law correlapendent of scajeand crossovers often exist—i.e., a change
tions. Traditional approaches such as the power-spectrumf the scaling exponent for different range of scales
and correlation analysis are not suited to accurately quantif{5,16,33. A crossover usually can arise from a change in the
long-range correlations in nonstationary signals—e.g., sigeorrelation properties of the signal at different time or space
nals exhibiting fluctuations along polynomial trends. De-scales, or can often arise from trends in the data. In this paper
trended fluctuation analysi®FA) [1-4] is a scaling analy- we systematically study how different types of trends affect
sis method providing a simple quantitative parameter—thehe apparent scaling behavior of long-range correlated sig-
scaling exponentv—to represent the correlation properties nals. The existence of trends in times series generated by
of a signal. The advantages of DFA over many methods arphysical or biological systems is so common that it is almost
that it permits the detection of long-range correlations emunavoidable. For example, the number of particles emitted
bedded in seemingly nonstationary time series, and alsby a radiation source in a unit time has a trend of decreasing
avoids the spurious detection of apparent long-range correldecause the source becomes wedkdr55]; the density of
tions that are an artifact of nonstationarity. In the past fewair due to gravity has a trend at a different altitude; the air
years, more than 100 publications have utilized the DFA asemperature in different geographic locations, rainfall and
the method of correlation analysis, and have uncovered longhe water flow of rivers have a periodic trend due to seasonal
range power-law correlations in many research fields such ashange$49,50,56—-59 the occurrence rate of earthquakes in
cardiac dynamics[5-23], bioinformatics [1,2,24-34,68  certain areas has a trend in different time perip@@. An
economicy 35—47], meteorology[48-50, material science immediate problem facing researchers applying a scaling
[51], ethology[52], etc. Furthermore, the DFA method may analysis to a time series is whether trends in data arise from
help identify different states of the same system according texternal conditions, having little to do with the intrinsic dy-
its different scaling behaviors, e.g., the scaling exporent namics of the system generating noisy fluctuating data. In
for heart interbeat intervals is different for healthy and sickthis case, a possible approach is to first recognize and filter
individuals[14,16,17,53 out the trends before we attempt to quantify correlations in
The correct interpretation of the scaling results obtainedhe noise. Alternatively, trends may arise from the intrinsic
by the DFA method is crucial for understanding the intrinsicdynamics of the system rather than being an epiphenomenon
dynamics of the systems under study. In fact, for all systemsf external conditions, and thus they may be correlated with
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the noisy fluctuations generated by the system. In this caséjnction should be applied for the fitting. We detrend the
careful consideration should be given if trends should bentegrated time serieg(i) by subtracting the local trend
filtered out when estimating correlations in the noise, sincey;;;(i) in each box, and we calculate the detrended fluctua-
such “intrinsic” trends may be related to the local propertiestion function
of the noisy fluctuations.

Here we study the origin and the properties of crossovers Y()=y() = yrie(i). ()]
in the scaling behavior of noisy signals, by applying the DFA ) )
method first on correlated noise and then on noise wit©" & given box size, we calculate the root mean square

trends, and comparing the difference in the scaling resultdM$ fluctuation

To this end, we generate an artificial time series— N

anticorrelated, white, and correlated noise with standard de- _ \/ 12

L ' ’ . o S F(n)= Y(i)]°. 4
viation equal to one—using the modified Fourier filtering (n) Nmax .Zl [Y()] @

method introduced by Makset al. [63]. We consider the

case when the trend is independent of the local properties dihe above computation is repeated for box sizédifferent

the noise(external trengd We find that the scaling behavior scale$ to provide a relationship betweef(n) and n. A

of noise with a trend is a superposition of the scaling of thepower-law relation betweek(n) and the box sizen indi-
noise and the apparent scaling of the trend, and we deriveates the presence of scalirfgfn) ~n“. The parameter,
analytical relations based on the DFA, which we call thecalled the scaling exponent or correlation exponent, repre-
“superposition rule.” We show how this superposition rule sents the correlation properties of the signatri 0.5, there
can be used to determine if the trends are independent of thie no correlation and the signal is an uncorrelated signal
noisy fluctuation in real data, and if filtering these trends outwhite noise; if «<0.5, the signal is anticorrelated; i

will not affect the scaling properties of the data. >0.5, there are positive correlations in the signal.
The outline of this paper is as follows. In Sec. Il we
review the algorithm of the DFA method, and in Appendix A I1l. NOISE WITH LINEAR TRENDS

we compare the performance of the DFA with the classical | _ i _ )
scaling analysis—Hurst's analysisR(S analysi$—and First we consider the simplest case: correlated noise with
show that the DFA is a superior method to quantify the scal@ linéar trend. A linear trend

ing behavior of noisy signals. In Sec. Ill we consider the (D =A, | )
effect of a linear trend and we present an analytic derivation L

of the apparent scaling behavior of a linear trend in Appenis characterized by only one variable — the slope of the
dix C. In Sec. IV we study a periodic trend, and in Sec. V Weyeng A . For convenience, we denote the rms fluctuation

study the effect of a power-law trend. We systematicallygnction for noise without trends by ,,(n), linear trends by
study all resulting crossovers, their conditions of eX|stenceFL(n) and noise with a linear trend B, (n)
; ,7 .

and their typical characteristics associated with the different
types of trends. In addition, we also show how to use DFA
appropriately to minimize or even eliminate the effects of
those trends in cases that trends are not choices of the study, Using the algorithm of Makset al. [63], we generate a
that is, trends do not reflect the dynamics of the system butorrelated noise with a standard deviation one, with a given
are caused by some “irrelevant” background. Finally, Sec.correlation property characterized by a given scaling expo-
VI contains a summary. nenta. We apply DFA-1 to quantify the correlation proper-
ties of the noise and find that only in a certain good fit region
Il. DFA can the rms fluctuation functid,(n) be approximated by a

power-law function(see Appendix A
To illustrate the DFA method, we consider a noisy time

series,u(i) (i=1,... Nma). We integrate the time series F,(n)=bgn®, (6)

u(i),

A. DFA-1 on noise with a linear trend

whereb, is a parameter independent of the saal&Ve find
i that the good fit region depends on the correlation exponent
y(j)=z Lu(i)—(u)], (1) a (see Appendix A We also derive analytically the rms
=1 fluctuation function for a linear trend only for DFA-1 and
find that(see Appendix €

where
Nmax FL(n) = I(O'A\Lnal‘: (7)
(W= Nmax ,Zl u(@), @ wherek, is a constant independent of the length of trend

Nmax, Of the box sizen, and of the slope of the trend, .
and is divided into boxes of equal sineln each box, we fit We obtaina =2.
the integrated time series by using a polynomial function, Next we apply the DFA-1 method to the superposition of
y+i:(1), which is called the local trend. For orderbFA  a linear trend with correlated noise and we compare the rms
(DFA-1if I=1, DFA-2 if|=2, etc), thel-order polynomial  fluctuation functionF, (n) with F,(n) (see Fig. 1L We
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FIG. 1. Crossover behavior of the root-mean-square fluctuation FIG. 2. Comparison of the detrended fluctuation function for
functionF ,, (n) for noise(of length Npax= 2" and correlation ex-  noise Y,(i) and for noise with linear trend, (i) at different
ponent «=0.1) with superposed linear trends of slopg scales(a) and(c) areY,, for noise witha=0.1; (b) and(d) areY
=2712712278 For comparison, we shoW (n) for the noise  for the same noise with a linear trend with slopg=2"'2 (the
(thick solid line andF(n) for the linear trendgdot-dashed line  crossover scale, =320, see Fig. 1 (a) and (b) For scalesn
[Eqg. (7)]. The results show a crossover at a saalefor F, (n). <ny the effect of the trend is not pronounced ang~Y,, (i.e.,
For n<n,, the noise dominates an#, (n)~F,(n). For n Y,>Y). (¢) and(d) For scalem>n,, the linear trend is domi-
>n,, the linear trend dominates arig,, (n)~F (n). Note that  nant andY,<Y,, .
the crossover scalay increases when the slopg of the trend

decreases. . . . . "
noise and a linear trend. We call this relation the “superpo-

sition rule.” This rule helps us understand how the compe-
tition between the contribution of the noise and the trend to
the rms fluctuation functiorF,, (n) at different scalem

observe a crossover ifr, (n) at scalen=n,. For n
<ny, the behavior of,, (n) is very close to the behavior
of F,(n), while for n>n, , the behavior of,, (n) is very
cIosg to the behavior df (n). A similar cross?over behavior leads to appearance of crossovkgs|. ,

is also observed in the scaling of the well-studied biased Next, we ask how the crossover scalg depends orii)
random walk[61,67. It is known that the crossover in the the slope of the linear trendl, , (i) the scaling exponent
biased random walk is due to the competition of the unbiase@f the noise, andiii) the length of the signail,x. Surpris-
random walk and the bigsee Fig. 5.3 of62]). We illustrate ~ ingly, we find that for noise with any given correlation ex-
this observation in Fig. 2, where the detrended fluctuatiorponenta the crossover scale, itself follows a power-law
functions[Eq. (3)] of the correlated noiseY, (i), and of the  scaling relation over several decades:~(A,)? (see Fig.
noise with a linear trendy,, (i), are shown. For the box size 3). We find that in this scaling relation, the crossover expo-
n<n, as shown in Figs. @) and 2b), Y, (i)=Y,(i). For ~ nent¢ is negative and its value depends on the correlation
n>n, as shown in Figs. @) and 2d), Y, (i) has a distin- exponenta of the noise—the magnitude of decreases
guishable quadratic background significantly different fromwhen « increases. We present the values of the “crossover
Y,(i). This quadratic background is due to the integration ofexponent” ¢ for different correlation exponentsin Table I.

the linear trend within the DFA procedure and represents the To understand how the crossover scale depends on the
detrgnded fluctuation functio¥i, of the Iir!ear trend. These correlation exponent of the noise we employ the superpo-
relations between the detrended fluctuation functé(ig at  gjtion rule[Eq. (8)] and estimate, as the intercept between

different time scales explain the crossover in the scaling g (n) and F,(n). From Egs.(6) and (7), we obtain the
behavior ofF,, (n): from very close td=,(n) to very close f07|owing dependence afi,. on a:

to F.(n) (observed in Fig. 1L
The experimental results presented in Figs. 1 and 2 sug-

gest that the rms fluctuation function for a signal which is a Ko\ Ya—ay) k.| V@—2)
superposition of a correlated noise and a linear trend can be n><:<AL_O> :(AL_O) . 9)
expressed as bo bo

[F L (mIP=[FL(mT*+[F,(n)]% (tS) _ _ _
This analytical calculation for the crossover exponent

We provide an analytic derivation of this relation in Appen- —1/(a, — «) is in a good agreement with the observed val-
dix B, where we show that Eq8) holds for the superposi- ues of § obtained from our simulationgsee Fig. 3 and
tion of any two independent signals—in this particular caseTable ).
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FIG. 3. The crossoven, of F, (n) for noise with a linear
trend. We determine the crossover saalebased on the difference
A between lo§,, (noisg and lod=,, (noise with a linear trend The
scale for whichA=0.05 is the estimated crossover scale. For
any given correlation exponeant of the noise, the crossover scale
n, exhibits a long-range power-law behaviog ~ (A,)?, where the
crossover exponert is a function ofa [see Eq(9) and Table ].

FIG. 4. Comparison of the rms fluctuation functién,(n) for
noise with different types of correlatiorines) andF ,, (n) for the
same noise with a linear trend of slopg =22 (symbol$ for
DFA-2. F, (n)=F,(n) because the integrated linear trend can be
perfectly filtered out in DFA-2, thu¥ | (i)=0 from Eq.(3). We
note that to estimate accurately the correlation exponents, one has
to choose an optimal range of scalgswhereF(n) is fitted. For

. . details see Appendix A.
Finally, since the=, (n) does not depend oN,,,x as we PP

show in Eq.(7) and in Appendix C, we find that,, does not
depend orN,,,. This is a special case for linear trends and
does not always hold for higher-order polynomial trefekse
Appendix D.

from DFA-2 for correlated noise without treridee Fig. 4.
These results indicate that a linear trend has no effect on the
scaling obtained from DFA-2. The reason for this is that by
design the DFA-2 method filters out linear trends, i.e.,
Y (i)=0 [Eq. (3)] and thusF,, (n)=F,(n) due to the su-

B. DFA-2 on noise with a linear trend perposition rulg Eq. (8)]. For the same reason, polynomial

Application of the DFA-2 method to noisy signals without €nds of order lower thah superposed on correlated noise
any polynomial trends leads to scaling results identical to th&ill have no effect on the scaling properties of the noise
scaling obtained from the DFA-1 method, with the exceptionWhen DFA{ is applied. Therefore, our results confirm that
of some vertical shift to lower values for the rms fluctuationth€ DFA method is a reliable tool to accurately quantify
function F,(n) (see Appendix A However, for signals correlations in noisy signals e.mbedded in polynomial trends.
which are a superposition of correlated noise and a linealloreover, the reported scaling and crossover features of
trend, in contrast to the DFA-1 results presented in Fig. 1F(n) can be used to determine the order of polynomial
F,.(n) obtained from DFA exhibits no crossovers, and jstrends present in the data.

exactly equal to the rms fluctuation functién,(n) obtained
IV. NOISE WITH SINUSOIDAL TREND

_ TABLE |. The crossover exponerit from the power-law rela- In this section we study the effect of sinusoidal trends on
tion between the crossover scale and the slope of the linear trend 1,4 scaling properties of noisy signals. For a signal which is
Ac, nx~(A)", for different values of the correlation exponents 5 ¢ \harnosition of correlated noise and sinusoidal trend, we
of the noisg(Fig. 3). The values of obtained from our simulations find that based on the superposition r@fppendix B the

are in good agreement with the analytical predictioid/(2— «) - .
[Eq. (9)]. Note that— 1/(2— ) are not always exactly equal # DFA rms fluctuation function can be expressed as

becauser ,(n) in simulations is not a perfect simple power-law

function and the way we determine numericaily is just approxi- [F,s(M1?=[F,(n)]*+[Fgn)]? (10)
mated.
o P —1/(2-a) whereF , 5(n) is the rms fluctuation function of noise with a
sinusoidal trend, anég(n) is for the sinusoidal trend. First
0.1 -0.54 -0.53 we consider the application of DFA-1 to a sinusoidal trend.
0.3 -0.58 -0.59 Next we study the scaling behavior and the features of cross-
0.5 -0.65 -0.67 overs inF,g(n) for the superposition of a correlated noise
0.7 -0.74 -0.77 and a sinusoidal trend employing the superposition [t
0.9 -0.89 -0.91 (10)]. At the end of this section we discuss the results ob-

tained from higher-order DFA.
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A. DFA-1 on sinusoidal trend = .
10

Given a sinusoidal trend u(i)=Agsin(2#i/T) (i
=1,...Nnay, WhereAg is the amplitude of the signal arid
is the period, we find that the rms fluctuation functieg(n) 107
does not depend on the length of the sigNal,,, and has
the same shape for different amplitudes and different periods 100 n 102 n 10°
[Fig. 5]. We find a crossover at scale corresponding to the > nz"

period of the sinusoidal trend

Ny ~T, (11
and it does not depend on the amplitulle. We call this
crossovem, for convenience, as we will see later. For
<n,y, the rms fluctuatiori-g(n) exhibits an apparent scal-
ing with the same exponent &s(n) for the linear trendsee
Eq. (7],

As
Fs(n)= kl?n“S. (12

wherek; is a constant independent of the lendth,,, of the
periodT, of the amplitudeAg of the sinusoidal signal, and of
the box sizen. As for the linear trendEq. (7)], we obtain
ag=2 because at small scal@ox sizen) the sinusoidal
function is dominated by a linear term. Forn,, , due to
the periodic property of the sinusoidal treri€s(n) is a con-
stant independent of the scale

AcT. (13)

1
FS(n)_ 2\/577_

The periodT and the amplitudé\g also affects the vertical
shift of Fg(n) in both regions. We note that in Eq4.2) and
(13), Fg(n) is proportional to the amplitudAg, a behavior
which is also observed for the linear trefiq. (7)].

FIG. 6. Crossover behavior of the root-mean-square fluctuation
function F,g(n) (circles for correlated noise(of length Npax
=2'%) with a superposed sinusoidal function characterized by pe-
riod T=128 and amplitudeAs=2. The rms fluctuation function
F,(n) for noise(thick line) andF g(n) for the sinusoidal trenghin
line) are shown for comparisora) F,g(n) for correlated noise
with a=0.9.(b) F,s(n) for anticorrelated noise wita=0.9. There
are three crossovers ,g(n), at scalesi;, , N,y , andng, [the
third crossover cannot be seen (D) because it occurs at scale
larger than the length of the signaFor n<n;y andn>nsy the
noise dominates ang,g(n)~F,(n) while for ny, <n<ns, the
sinusoidal trend dominates ard,s(n)~Fg(n). The crossovers at
n,;x andns, are due to the competition between the correlated
noise and the sinusoidal treridee Fig. 7, while the crossover at
n, relates only to the period of the sinusoidalEq. (11)].

B. DFA-1 on noise with sinusoidal trend

In this section we study how the sinusoidal trend affects
the scaling behavior of noise with different types of correla-
tions. We apply the DFA-1 method to a signal which is a
superposition of correlated noise with a sinusoidal trend. We
observe that there are typically three crossovers in the rms
fluctuationF, g(n) at characteristic scales denoted oy, ,

Ny, andngy (Fig. 6). These three crossovers divibigg(n)

into four regions, as shown in Fig(& [the third crossover
cannot be seen in Fig.(l® because its scale;, is greater
than the length of the signaWe find that the first and third
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FIG. 7. Comparison of the detrended fluctuation function for

noiseY (i) and noise with sinusoidal treridﬂs(i) in four regions
as shown in Fig. 6. The same signals as in Fig. 6 are used. Pane
(a)—(f) correspond to Fig. ®) for anticorrelated noise with expo-
nent «=0.1, and panelgg) and (h) correspond to Fig. @ for
correlated noise with exponent=0.9. (a) and (b) For all scales
n<n;x, the effect of the trend is not pronounced awg(i)
~Y,(i) leading toF,g(n)~F,(n) [Fig. 6a]. (c) and (d) For
Nyx>Nn>ny the trend is dominanty,g(i)>Y,(i) and F,g(n)
~Fg(n). Sincen,, ~T/2[Eq.(11)], the scalen<T/2 and the sinu-
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trend which is filtered out by the DFA-1 procedur€igs.
7(a) and 7b)]. Note that the behavior of s [Fig. 7(b)] is
identical to the behavior of,, [Fig. 2b)], since both a
sinusoidal with a large perio@l and a linear trend with small
slopeA, can be well approximated by a constant trend for
n<n;y . For small scales;x<n<n,y (region Il), we find
that there is a dominant quadratic background Yo(i)
[Fig. 7(d)]. This quadratic background is due to the integra-
tion procedure in DFA-1, and is represented by the detrended
fluctuation function of the sinusoidal treng(i). It is similar
to the quadratic background observed for linear trén(i)
[Fig. 2(d)]—i.e., for n;,<n<n,, the sinusoidal trend be-
haves as a linear trend ang(i)~Y,(i). Thus in region Il
the “linear trend” effect of the sinusoidal is dominantg
>Y,, which leads toF,g(n)~Fg(n). This explains also
why F,s(n) for n<n,, (Fig. 6) exhibits crossover behavior
similar to the one of-,, (n) observed for noise with a linear
trend. Forn,,<n<nsy (region lll) the sinusoidal behavior
is strongly pronouncedFig. 7f)], Yg(i)>Y, (i), and
Y,s(i)=Y(i) changes periodically with period equal to the
period of the sinusoidal trend. SinceY ,g(i) is bounded
between a minimum and a maximum valle,s(n) cannot
increase and exhibits a flat regiqfig. 6). At very large
scales,n>n3, , the noise effect is again dominahY (i)
remains bounded, whilé, grows when increasing the scale
hich leads toF,s(n)~F,(n) and a scaling behavior that
corresponds to the scalmg of the correlated noise.

First we considem,, . Surprisingly, we find that for
noise with any given correlation exponeatthe crossover
scalen,« exhibits long-range power-law dependence of the
periodT, ny, ~ T, and the amplituddg, N, ~ (Ag) %At of
the sinusoidal trendlsee Figs. &) and &b)]. We find that
the “crossover exponentsy, and 6,5, have the same mag-

soidal behavior can be approximated as a linear trend. This explainsitude but different sign-#¢4 is positive whilef,; is nega-

the quadratic background (i) (d) [see Figs. &) and 2d)]. (¢)
and (f) For n,<n<nsy (i.e.,n>T/2), the sinusoidal trend again
dominates—¥ (i) is periodic function with period. (g) and (h)

tive. We also find that the magnitudes @f; and 6, in-
crease for larger values of the correlation exponents the
noise. We present the values @f, and 0, for the different

F s follows the scaling of, [Fig. 6(a)].

crossovers at scaleg , andns, , respectively(see Fig. 6,
result from the competition between the effectsFop(n) of
the sinusoidal signal and the correlated noise. Fam;
(region ) andn>ns (region 1V), we find that the noise has
the dominating effecfF,(n)>Fg(n)], so the behavior of
F,s(n) is very close to the behavior &f,(n) [Eq.(10)]. For
Ny <n<n,y (region Il) andn,, <n<nsy (region Ill) the
sinusoidal trend dominat¢$ s(n)>F,(n)], thus the behav-
ior of F, 5(n) is close toFg(n) (see Figs. 6 and)7

power-law relations between, . andT betweenn,, and
As, and also how the crossover scalg, depends on the
correlation exponenty, we employ the superposition rule
[Eqg. (10)] and estimata, ,, analytically as the first intercept
of F,(n) andFg(n). From Egs.(12) and(6), we obtain the
following dependence afi,« on T, Ag and «a:
(bo T
Nyx=

1/(2— @)
EA—S) 19

To better understand why there are different regions in thérom this analytical calculation we obtain the following re-
behavior ofF,g(n), we consider the detrended fluctuation lation between the two crossover exponefitgand 65, and

function [Eq. (3) and Appendix B of the correlated noise
Y,(i), and of the noise with sinusoidal treid,s. In Fig. 7
we comparey (i) andY,g(i) for anticorrelated and corre-

the correlation exponeni: 61;=— 051=1/(2— «), which is
in a good agreement with the observed value9gf, 65,
obtained from simulationksee Figs. &) and 8b) and Table

lated noise in the four different regions. For very small scalesl ].

n<n, , the effect of the sinusoidal trend is not pronounced,

Y, s(i)=Y,(i), indicating that in this scale region the signal

Next we considen,, . Our analysis of the rms fluctua-
tion function Fg(n) for the sinusoidal signal in Fig. 5 sug-

can be considered as noise fluctuating around a constagests that the crossover scélg(n) does not depend on the-
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FIG. 8. Dependence of the three crossovers jg(n) for noise with a sinusoidal tren@Fig. 6) on the periodl and amplitudeAs of the
sinusoidal trend(a) Power-law relation between the first crossover soaleand the period for fixed amplitudeAg and varying correlation
exponenta: Ny, ~T9T1, where 6, is a positive crossover expondisee Table Il and Eq.14)]. (b) Power-law relation between the first
crossoven,, and the amplitude of the sinusoidal treAd for fixed periodT and varying correlation exponent an~AgA1 wheref,, is
a negative crossover expongiable Il and Eq(14)]. (c) The second crossover scalg, depends only on the peridd n,, ~ T2, where
A1,~1.(d) Power-law relation between the third crossongg andT for fixed amplitudeAg and varyinge trend:ns, ~ T%73. (e) Power-law
relation between the third crossovey,, andAg for fixed T and varyinga: ngy ~ (Ag) A3, We find thatf 3= 615 [Table 1l and Eq.(15)].

amplitudeAg of the sinusoidal. The behavior of the rms fluc- and Ag are fixed, the crossover scale,, remains un-
tuation functionF,g(n) for noise with a superposed sinu- changed. We find that,, dependsonly on the periodT of
soidal trend in Figs. @) and @b) indicates thah,,, does not the sinusoidal trend and exhibits a long-range power-law be-
depend on the correlation exponendf the noise, since for havior n,, ~T’2 with a crossover exponertir,~1 [Fig.
both correlated 4=0.9) and anticorrelated(=0) noise T 8(c)] which is in agreement with the prediction of E4.1).
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TABLE II. The crossover exponent; and 6, characterizing
the power-law dependence f « on the periodl and amplitudeg
obtained from simulationsy, ,, ~ Tt andn, , ~ (Ag) ’1 for differ-
ent values of the correlation exponemtof noise[Figs. §a) and

8(b)]. The values off;; and 6,4, are in good agreement with the

analytical prediction®t,=— 05,=1/(2— «) [Eq. (14)].

a 011 -Op 1(2—-a)
0.1 0.55 0.54 0.53
0.3 0.58 0.59 0.59
0.5 0.66 0.66 0.67
0.7 0.74 0.75 0.77
0.9 0.87 0.90 0.91

For the third crossover scafe;, , as forn;, we find a
power-law dependence on the periddns,~T%T3, and on
the amplitudeAg, Nz, ~ (Ag) %43, of the sinusoidal trenfsee
Figs. 8d) and 8e)]. However, in contrast to the;, case,
we find that the crossover exponerttg,; and 6,3 are equal

PHYSICAL REVIEW E64 011114
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FIG. 9. Comparison of the results of different order DFA on a
sinusoidal trend. The sinusoidal trend is given by the function
64sin(27i/2'Y) and the length of the signal N,.,=2'". The spu-
rious singularitiegspikes arise from the discrete data we use for
the sinusoidal function.

and positive with decreasing values for increasing correlation

exponents for different correlation exponemt To under-
stand how the scales,, depends o, Ag, and the correla-

trends in data, it is natural to ask how the observed scaling
results will change when we apply DFA of ordedesigned

tion exponentx simultaneously, we again employ the super-to remove polynomial trends of order lower thanin this
position rule[Eq. (10)] and estimaten;, as the second section we first consider the rms fluctuatibg for a sinu-

interceptnghX of F,(n) andFg(n). From Eqs.(13) and(6),
we obtain the following dependence:

1 1la
N3y =| —=Agl . 15
3X (2\/§7Tb0 S ) ( )

From this analytical calculation we obtaifi3= 0,3= 1/

which is in good agreement with the values & and 6,3

observed from simulationéTable 1l). Finally, our simula-
tions show that all three crossover scalgs , N,y , andnsy

do not depend on the length of the sigh&l,, sinceF ,(n)

andF ¢(n) do not depend oNl,,,4 as shown in Eq¥6), (10),

(12), and(13).

C. Higher-order DFA on pure sinusoidal trend

In Sec. IV B we discussed how sinusoidal trends affect
the scaling behavior of correlated noise when the DFA-

TABLE lll. The crossover exponents; and 6,5 for the power-
law relations:ng, ~ T2 and ng, ~ (Ag) %2 for different values of
the correlation exponent of noise[Figs. §c) and &d)]. The values

1

soidal signal and then we study the scaling and crossover
properties ofF g for correlated noise with a superposed
sinusoidal signal when higher-order DFA is used.

We find that the rms fluctuation functioRg does not
depend on the length of the signid|,.x, and preserves a
similar shape when a different ordeFA method is used
(Fig. 9). In particular,F g exhibits a crossover at a scalg,
proportional to the period of the sinusoidal:n,, ~ T2
with #,~1. The crossover scale shifts to larger values for
higher orderl (Figs. 5 and 9 For the scalen<n,, Fg
exhibits an apparent scaling:s~n“s with an effective ex-
ponentag=1+1. For DFA-1, we havd=1 and recover
ag=2 as shown in Eq(12). Forn>n,,, Fgn) is a con-
stant independent of the scal@nd of the ordel of the DFA
method in agreement with E¢L3).

Next, we consideF ,5(n) when DFA{ with a higher or-
derl is used. We find that for all ordets F,g(n) does not
depend on the length of the signid}, ., and exhibits three
crossovers at small, intermediate, and large scales; similar
behavior is reported for DFA-1 in Fig. 6. Since both the
crossover at small scalesy and the crossover at large scale

of 6,3 and 6,5 obtained from simulations are in good agreementngy result from the “competition” between the scaling of

with the analytical predictiong3= 0,3= 1/ [Eq. (15)].

a 01—3 9/_\3 1/(1

0.4 2.29 2.38 2.50
0.5 1.92 1.95 2.00
0.6 1.69 1.71 1.67
0.7 1.39 1.43 1.43
0.8 1.26 1.27 1.25
0.9 1.06 1.10 1.11

the correlated noise and the effect of the sinusoidal trend
(Figs. 6 and 7, by using the superposition rul&q. (10)] we
can estimaten;, andns, as the intercepts of ,(n) and
F4(n) for the general case of DFA-

For ny we find the following dependence on the period
T, amplitudeAg, the correlation exponent of the noise,

and the ordeft of the DFA{ method:
Ny~ (T/IAg Y17, (16)

For DFA-1, we havéd =1 and we recover Eq14). In addi-
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FIG. 10. Crossover behavior of the rms fluctuation functfop(n) (circles for correlated noiséof length Npax= 27 with a super-
posed power-law trend(i) =Agi*. The rms fluctuation functiof ,(n) for noise(solid ling) and the rms fluctuation functidfp(n) (dashed
line) are also shown for comparison. The DFA-1 method is ug®d: ,p(n) for noise with correlation exponeat, =0.9 and the power-law
trend with amplitudeAp=1000/(N4,) ®* and positive powek =0.4. (b) F ,p(n) for Brownian noisg(integrated white noisey, =1.5) and
the power-law trend with amplitudé-=0.01/(N,,.,) ~°7 and negative powex= —0.7. Note that although in both cases there is a “similar”
crossover behavior foF ,p(n), the results in(@ and (b) represent completely opposite situations: whilg@nthe power-law trend with
positive powerk dominates the scaling &f,p(n) at large scales, ifb) the power-law trend with negative powerdominates the scaling
at small scales. The arrow i) indicates a weak crossover ip(n) (dashed linegsat small scales for negative power

tion, n, is shifted to larger scales when higher-order DFA-This behavior results from the fact that at different scales

| is applied, due to the fact that the valueFaf(n) decreases either the correlated noise or the power-law trend is domi-

whenl increases ¢s=1+1, see Fig. 8 nant, and can be predicted by employing the superposition
For the third crossover observedfig(n) at large scale rule

ns» we find for all ordersl of the DFA{ the following

scaling refation: [Fop(MP=[F I+ [Fam? (19

Nax~(TAgM. (17)

Since the scaling functioff ,(n) for correlated noise shifts WhereF,(n) andFg(n) are the rms fluctuation function of
vertically to lower values when higher-order DRAs used ~Noise and the power-law trend, respectively, &ngh(n) is
(see the discussion in Appendix A and Sec. \ Bsy ex- the rms fluctuation function for the superposition of the noise
hibits a slight shift to larger scales. and the power-law trend. Since the behaviorFof(n) is

For the crossoven,, in F,«(n) atF,«(n) at intermedi- known [Eq. (6) anq Appendix A, we can understand the
ate scales, we find,. ~T. This relation is independent of features off ,o(n) if we know howFg(n) depends on the
the orderl of the DFA and is identical to the relation found characteristics of the power-law trend. We note that the scal-

for Fg(n) [Eq. (11)]. n,, also exhibits a shift to larger scales NG behavior ofF,p(n) displayed in Fig. 1@ is to some
when higher-order DFA is use@ee Fig. 9. extent similar to the behavior of the rms fluctuation function
The features reported here of the crossovers ja(n) F,.(n) for correlated noise with a linear treiiBlig. 1)—e.g.,
can be used to identify low-frequency sinusoidal trends irf€ noise is dominant at small scaleswhile the trend is
noisy data and to recognize their effects on the scaling progdominant at large scales. However, the beha¥ign) is
erties of the data. This information may be useful whenMore complex than that df (n) for the linear trend, since

quantifying correlation properties in data by means of a scalthe effective exponentr, for Fg(n) can depend on the
ing analysis. power\ of the power-law trend. In particular, for negative

values of\, Fp(n) can become dominated at small scales
[Fig. 10b)] while F, (n) dominates at large scales—a situ-
ation completely opposite of noise with a linear trérd. 1)

In this section we study the effect of power-law trends onor with a power-law trend with positive values for the power
the scaling properties of noisy signals. We consider the case. Moreover,Fp(n) can exhibit crossover behavior at small
of correlated noise with a superposed power-law treid scalegFig. 10b)] for negativex which is not observed for
=Ad", whenAg is a positive constant=1,... Ny.x and  positive\. In addition,Fp(n) depends on the ordérof the
Nmax i the length of the signal. We find that when the DFA method and the lengtN,, Of the signal. We discuss
DFA-1 method is used, the rms fluctuation functiépe(n) the scaling features of the power-law trends in the following
exhibits a crossover between two scaling regitfig. 10.  three sections, VA-V C.

V. NOISE WITH POWER-LAW TRENDS
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FIG. 11. Scaling behavior of the rms fluctuation functig(n) for

power-law trendsy(i)~i*, wherei=1, ... NpaxandNpy =21 is

the length of the signala) For A<0, Fp(n) exhibits crossover at small scales which is more pronounced with increasing thd afder
DFA-I and decreasing the value &f Such crossover is not observed for-0 whenFy(n)~n“ for all scalesn [see Fig. 1()]. (b)
Dependence of the effective exponent on the power\ for different orderl=1,2,3 of the DFA method. Three regions are observed,
depending on the ordérof the DFA: region | { >1—0.5), wherea, ~I+1; region Il (—1.5<\<I1-0.5), wherea, =\ +1.5; region llI

(N<—1.5), wherea, ~0. We note that for integer values of the po

scaling forFp(n) and a, is not defined, as indicated by the arrous.

A—1 when DFA-2 is used. Even for—1=10"°, we observe at larg
shifted to infinitely large scales when=1.

A. Dependence ofF p(n) on the power A

First we study how the rms fluctuation functiég(n) for
a power-law trendi(i) =Agpi* depends on the power. We
find that

Fp(n)~Apn™, (19

wherea, is the effective exponent for the power-law trend.
For positive A we observe no crossovers p(n) [Fig.
10(a)]. However, for negativa there is a crossover iRp(n)
at small scales [Fig. 10b)], and we find that this crossover
becomes even more pronounced with decreasingr in-
creasing the orddrof the DFA method, and is also shifted to
larger scale$Fig. 11(a)].

Next, we study how the effective exponest for Fp(n)
depends on the value of the powefor the power-law trend.

wer0,1,...|—1, wherel is the order of DFA we used, there is no
Asymptotic behavior near integer valuesxafFg(n) is plotted for
e scalasx region with an effective exponeat ~2.5. This region is

We examine the scaling d¥p(n) and estimatey, for —4
<A <4. In the cases wheRp(n) exhibits a crossover, in
order to obtaina, we fit the range of larger scales to the
right of the crossover. We find that for any ordeof the
DFA-I method there are three regions with different relations
betweena, and\ [Fig. 11(b)]. They are as follows:

(i) ay~I+1 for A>1—0.5 (region ).

(i) ay~N+1.5 for —1.5<A<I-0.5(region ).

(ii) ay~0 for A< —1.5(region IlI).

Note that for integer values of the powex (A
=0,1,...m—1), i.e., polynomial trends of orden—1, the
DFA-l method of ordet>m—1 (I is also an integgrleads
to Fp(n)=~0, since DFA} is designed to remove polynomial
trends. Thus for integer values of the powerthere is no
scaling and the effective exponent, is not defined if a
DFA-I method of ordet>N\ is used(Fig. 11). However, it is
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of interest to examine the asymptotic behavior of the scalingalues. This vertical shift irF,p(n) at large scales, where
of Fp(n) when the value of the power is close to an inte- F,p(n)=Fg(n), appears to be different in magnitude when
ger. In particular, we consider how the scalingFgi{n) ob-  different orderl of the DFA4 method is usedFig. 12a)].
tained from the DFA-2 method changes when-1 [Fig.  We also observe a less pronounced vertical shift at small
11(c)]. Surprisingly, we find that even though the values ofscales wheré ,p(n)~F,(n).

Fp(n) are very small at large scales, there is a scaling for Next, we ask how these vertical shifts depend on the order
Fp(n) with a smooth convergence of the effective exponent of DFA-I. We define the vertical shith as they intercept
ay—2.5 whenh—1, according to the dependeneg~A\ of Fp(n): A=Fp(n=1). We find that the vertical shifk in

+ 1.5 established for region [Fig. 11(b)]. At smaller scales Fp(n) for the power-law trend follows a power lanA
there is a flat region which is due to the fact that the fluctua—~1"™, We tested this relation for orders uplte 10, and we
tion functionY(i) [Eq. (3)] is smaller than the precision of find that it holds for different values of the powgrof the

the numerical simulation. power-law trend Fig. 12b)]. Using Eq.(19) we can write
Fp(n)/Fp(n=1)=n*\, i.e., Fp(n)~Fp(n=1). SinceFp(n
B. Dependence of p(n) on the order | of DFA =1)=A~1"™ [Fig. 12b)], we find that
Another factor that affects the rms fluctuation function of Fp(n)~17M), (20

the power-law trendF(n) is the orderl of the DFA method
used. We first take into account the following.

(1) For integer values of the powar, the power-law trend We also find that the exponents negative and is a decreas-
u(i)=Ag" is a polynomial trend which can be perfectly ing function of the powen [Fig. 12c)]. Because the effec-
filtered out by the DFA method of ordér>\, and as dis- tive exponentx, which characterizesp(n) depends on the
cussed in Secs. IlI B and V Asee Figs. 1(b) and 11c)],  powerA [see Fig. 11b)], we can express the exponenas a
there is no scaling foF(n). Therefore, in this section we function of @, as we show in Fig. 1@). This representation
consider only noninteger values »bf can help us compare the behavior of the vertical shifin

(2) For a given value of the powey, the effective expo- Fp(n) with the shift inF,(n). For correlated noise with a
nenta, can take different values depending on the otdefr  different correlation exponenty, we observe a similar

the DFA method we usésee Fig. 1}1—e.g., for fixed\ >1 power-law relation between the vertical shift i, (n) and
—0.5,a,~|+1. Therefore, in this section we consider only the orderl of DFA-lI: A~17®, wherer is also a negative
the case when <1 —0.5 (regions Il and ). exponent that decreases with In Fig. 12d) we compare

Since higher-order DFA-provides a better fit for the 7(a,) for Fp(n) with 7(«) for F,(n), and find that for any
data, the fluctuation functio (i) [Eq. (3)] decreases with a\=a, 7(a),)<7(a). This difference between the vertical
increasing ordet. This leads to a vertical shift to smaller shift for correlated noise and for a power-law trend can be
values of the rms fluctuation functidf(n) [Eq. (4)]. Such a  utilized to recognize effects of power-law trends on the scal-
vertical shift is observed for the rms fluctuation function ing properties of data.

F,(n) for correlated nois¢see Appendix A as well as for
the rms fluctuation function of power-law treirgh(n). Here
we ask how this vertical shift ifr,(n) andFp(n) depends
on the orded of the DFA method, and if this shift has dif- Here we study how the rms fluctuation functiép(n)

ferent properties foF ,(n) compared td=g(n). This infor-  depends on the lengtN . of the power-law signal(i)

mation can help identify power-law trends in noisy data, and=Aqi* (i=1,...Nnya.,). We find that there is a vertical shift
can be used to differentiate crossovers separating scaling rgr Fp(n) with increasingN,,., [Fig. 13a)]. We observe that
gions with different types of correlations and crossovers thafvhen doubling the lengtN,,, of the signal the vertical shift

are due to effects of power-law trends. in Fp(n), which we define ag:IZDNmax/Fsmax, remains the

We consider correlated noise with a superposed POWelsyme. independent of the value Nf,,,. This suggests a
law trend, where the crossover i, p(n) at large scales

-law d d & the length of the signal:
results from the dominant effect of the power-law trend—pOWer aw dependence 6fr(n) on the length of the signa

F,p(n)~Fg(n) [Eg. (18) and Fig. 10a)]. We choose the Fp(nN)~(Nmay?, (21)
power A<<0.5, a range where for all ordetsof the DFA

method the effective exponent, of Fp(n) remains the

same, i.e.qy =N+ 1.5[region Il in Fig. 11b)]. For a super- wherevy is an effective scaling exponent.

position of an anticorrelated noise and power-law trend with  Next, we ask if the vertical shift depends on the power
A=0.4, we observe a crossover in the scaling behavior obf the power-law trend. When doubling the length, ., of
F,p(n), from a scaling region characterized by the correla-the signal, we find that fox <I — 0.5, wherd is the order of
tion exponente=0.1 of the noise, wher& ,p(n)~F,(n), the DFA method, the vertical shift is a constant independent
to a region characterized by an effective exponept1.9,  of A [Fig. 13b)]. Since the value of the vertical shift when
whereF , p(n)~Fg(n), for all ordersl=1,2,3 of the DFAF  doubling the lengtiN ., is 27 [from Eq.(21)], the results in
method [Fig. 12a)]. We also find that the crossover of Fig. 13b) show thaty is independent ok when\ <|—0.5,
F,p(n) shifts to larger scales when the ordeof DFA-| and that—log2"~—0.15, i.e. The effective exponeni~
increases, and that there is a vertical shifEgb(n) to lower ~ —0.5.

C. Dependence ofp(n) on the signal lengthN .«
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FIG. 12. Effect of higher-order DFA-on the rms fluctuation functiok ,(n) for correlated noise with a superposed power-law trend.
(@ F,p(n) for anticorrelated noise with the correlation exponent0.1 and a power-lavwu(i)=Api, where Ap=25/(Npa %% Nmax
=217 "and\ =0.4. Results for different ordér=1,2,3 of the DFA method sho\i) a clear crossover from a region at small scales where the
noise dominate§ ,p(n)~F, (n) to a region at larger scales where the power-law trend domiffaje@) ~Fg(n), and(ii) a vertical shift
Ain F,p with increasing . (b) Dependence of the vertical shift in the rms fluctuation functiof (n) for a power-law trend on the order
| of DFA-I for different values of\: A~17™, We define the vertical shifh as they intercept ofFp(n): A=Fp(n=1). Note, that we
consider only noninteger values farand that we consider the regian<| —0.5. Thus, for all values of the minimal ordel that can be
used in the DFA method ik>\ +0.5, e.g., forn=1.6 the minimal order of the DFA that can be usedi=s3 [for details see Fig. 1b)].

(c) Dependence of on the powein [error bars indicate the regression error for the fita @) in (b)]. (d) Comparison ofr(a,) for Fp(n)
and 7(«) for F,(n). Faster decay of(«,) indicates larger vertical shifts fdfs(n) compared toF,(n) with increasing ordet of the
DFA-I.

ForA>1—0.5, when doubling the lengtN,,,, of the sig- D. Combined effect onFp(n) of A, I, and Ny
nal, we find that the vertical shift”2exhibits the following
dependence ok: —log;2”=log;;2" ', and thus the effec-
tive exponenty depends orn — y=\—1. For positive in-
teger values ok (A=1), we find thaty=0, and there is no
shift in Fp(n), suggesting thaE(n) does not depend on the
lengthN,, ., Of the signal, when DFA of orddris used(Fig.
13). Finally, we note that depending on the effective expo-
nenty, i.e., on the ordef of the DFA method and the value Fp(n)~Apn®™ M (N ) YN, (22)
of the power\, the vertical shift in the rms fluctuation func-
tion Fp(n) for the power-law trend can be positiva ¥1),
negative §d<I), or zero f=1). For correlated noise, the rms fluctuation functiep(n) de-

We have seen that by taking into account the effects of
the power\ [Eq. (19)], the orderl of DFA-I [Eg. (20)], and
the effect of the length of the sign®l,., [Eq. (21)], we
reach the following expression for the rms fluctuation func-
tion Fp(n) for a power-law trendi(i) =Api*:
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(a) Power—law trend: A=0.4 e (b) Vertical shift due to length doubling
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FIG. 13. Dependence of the rms fluctuation functistn) for a power-law trendi(i) =Api*, wherei=1, ... N, 0n the length of the
trendN,ax- (&) A vertical shift is observed i p(n) for different values ofN,;,3—N1imax@NdN,max. The figure shows that the vertical shift,
defined anglm”(n)/F’SZmax(n), does not depend oN,,x but only on the ratioN;,ax/Nomax, suggesting thatp(n) ~(Npa0 Y- (b)
Dependence of the vertical shift on the powerFor A\ <I—0.5 (I is the order of DFA, we find a flat(constank region characterized with
an effective exponeny= —0.5 and negative vertical shift. Far>1—0.5, we find an exponential dependence of the vertical shift.oim
this region,y=\—1, and the vertical shift can be negati{ie A <I) or positive(if A>1). The slope of- IoglO[FiNmax(n)/Fsmax(n)] VS A\
is —log;o2 due to doubling the length of the sigidl,.,. This slope changes te log,gm whenN,,, is increasedn times whiley remains
independent oN,,,,. For\=1 there is no vertical shift, as marked with. Arrows indicate integer values af<I, for which values the
DFA-I method filters out completely the power-law trend dng=0.

pends on the box size[Eqg. (6)] and on the ordelr of DFA-  scaling. We investigate the features of these crossovers, their
| [Sec. V B and Fig. 1@), (d)], and does not depend on the dependence on the properties of the noise, and the super-
length of the signaN,... Thus we have the following ex- posed trend. Surprisingly, we find that crossovers which are
pression forF ,(n): a result of trends can exhibit power-law dependences on the
parameters of the trends. We show that these crossover phe-
F,(n)~n?l (), (23 nomena can be explained by the superposition of the separate
results of the DFA method on the noise and on the trend,
To estimate the crossover scalg observed in the appar- assuming that the noise and the trend are not correlated, and
ent scaling ofF ,p(n) for a correlated noise superposed with that the scaling properties of the noise and the apparent scal-
a power-law trendFigs. 1Qa), 10(b), and 12a)], we employ  ing behavior of the trend are known. Our work may provide
the superposition rulgEq. (18)]. From Egs.(22) and (23),  some help to differentiate between different types of cross-

we obtainn, as the intercept betwedf(n) andF,(n), overs, e.g., crossovers that separate scaling regions with dif-
. Ve ferent correlation properties may differ from crossovers that
Ny ~[ AT =N e, (24)  are an artifact of trends. The results we present here could be

o ) ) useful for identifying the presence of trends and to accurately
To test the validity of this result, we consider the case ofinterpret correlation properties of noisy data. Related work

correlated noise with a linear trend. For the case of a lineagn trendg64] and other forms of nonstationaritgs] will be
trend \=1) when DFA-1 (=1) is applied, we haver, published separately.
=2 [see Appendix C and Sec. V A, Fig. (l]. Since in this
caseA=1=1>1-0.5 we havey=\—1=0 [see Sec.VC,
Fig. 13b)], and from Eq.24) we recover Eq(9). ACKNOWLEDGMENTS
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behavior of noisy signals for a wide range of correlations,
and we estimate the range of scales where the performance
of the DFA method is optimal. We consider different types
of trends superposed on correlated noise, and we study how The standard signals we generate in our study are uncor-
these trends affect the scaling behavior of the noise. Weelated, correlated, and anticorrelated noise. First we must
demonstrate that there is a competition between a trend andrave a clear idea of the scaling behaviors of these standard
noise, and that this competition can lead to crossovers in theignals before we use them to study the effects from other

APPENDIX A: NOISE
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FIG. 14. Scaling behavior of noise with the scaling exponenthe length of noisé\,.,=2'". (a) Rescaled range analysiR/S). (b)
Order-1 detrended fluctuation analy$i3FA-1). (c) Order-2 detrended fluctuation analy$i3FA-2). We do the linear fitting for th&/S
analysis and the DFA-1 in three regions as shown andvgetr,, andas for estimatedy, which are listed in Tables IV and V. We find that
the estimation ofv is different in the different regions.

aspects. We generate noises by using a modified Fourier filvhere S= \/rrlzjﬂ: J[u(j)—(u)]? is the standard deviation
tering method[63]. This method can efficiently generate in each box. The average of rescaled range in all the boxes of
noiseu(i) (i=1,2,3... Nnay), with the desired power-law equal sizen, is obtained and denoted KR/S). Repeat the
correlation function that asymptotically behaves asgpove computation over different box sipeto provide a
(|ZjZiu(j)[?)~t?*. By default, a generated noise has stan-e|ationship betwee(R/S) andn. According to Hurst's ex-

dard deviationo=1. Then we can test DFA anB/S by  perimental study66], a power-law relation betwee{R/S)
applying it on generated noises since we know the expecteg,q the box size indicates the presence of scalir@/S)
scaling exponent. «

) . . . ~n<.
 petore doing that, we wart (g briefly review the 200%™ Figure 14 shows the results 7S, DFA-1, and DFA-2
0 analysis. For a signal(i) (i=1,... NmaJ, it is di- on the same generated noises. Loosely speaking, we can see

vided into boxes of equal size In each box, theumulative )
. ' . that F(n) (for DFA) and R/S (for R/S analysi$ show a
=kn+1,... + - . .

departure X (for the kih box,i=kn+1,...kn+n) is cal power-law relation withn as expectedF(n)~n® and R/S

culated
~n<“. In addition, there is no significant difference between
i the results of different order DFA except for some vertical
Xi= 2 Lu(j)—(u)], (A1) shift of the curves and the little bend-down for small box size
J=knt1 n. The bend-down for a very small box B{n) from higher-
where(u>=n’12i('fkﬁ)+”lu(i)  and therescaled range FSis ;)(er\(,jvegolijnlf[? is because there are more variables to fit those
defined b ' . .
elined by Ideally, when analyzing a standard noisg(n) (DFA)
R/S=S"! max  X;— min Xi], (A2) andR/S(R/S analysig will be power-law functions with a
kn+1<i<(k+1)n kn+1<i<(k+1)n given power:a, no matter which region of(n) andR/S is
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TABLE IV. Estimation of the correlation exponentfor corre- TABLE V. Estimation of the correlation exponeantfor corre-
lated noise from th&/S analysis in three regions as shown in Fig. lated noise from DFA-1 in the three regions as shown in Figb)14
14(a). « is the input value of the scaling exponent, is the esti-  « is the input value of the scaling exponent, is the estimation
mation from region 1 (4n=<32), a, from region 2 (3Zn from region 1 (& n=<32), a, from region 2 (32n=<3162), and
<3162), andag from region 3 (3126n=<2'"). The same corre- a4 from region 3 (3126&n=<27).
lated noise is used in Table V.

fo a; ay ag
a a; a; as

0.1 0.28 0.15 0.08
0.1 0.44 0.23 0.12 0.3 0.40 0.31 0.22
0.3 0.52 0.37 0.23 0.5 0.55 0.50 0.35
0.5 0.62 0.52 0.47 0.7 0.72 0.69 0.55
0.7 0.72 0.70 0.45 0.9 0.91 0.91 0.69
0.9 0.81 0.87 0.63

chosen. However, a careful study shows that the scaling exn the study of real signals. Otherwise, an inaccurate value
ponenta depends on scale The estimated: is different for ~ for a will be obtained if an inappropriate region is selected.
the different regions oF (n) andR/S as illustrated by Figs. In order to find the best region, we first determine the
14(a) and 14b) and by Tables IV and V. It is very important dependence of the locally estimatad «,., on the scalen.

to know the best fitting region of the DFA afIS analysis  First, generate a standard noise with given scaling exponent
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FIG. 15. The estimated from the local fit(a) R/S analysis, the length of sign&l.,=2* (b) R/S analysis,Ny= 2% (c) DFA-1,
Nias= 2 (d) DFA-1, Njpa= 2% o come from the average of 50 simulations. If a technique is working, then the data for the scaling
exponenta should be a weakly fluctuating horizontal line centered alagyit= «. Note that such a horizontal behavior does not hold for all
the scales. Generally, such an expected behavior begins from soma,ggaleolds for a range, and ends at a larger soglg. For DFA-1,
Nmin IS quite smalla>0.5. For theR/S analysis,ny,, is small only whena~0.7.
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10° : : situation by first integrating the correlated noise and then
applying the DFA to the integrated signal. The resultant ex-
ponenta’ for the integrated signal will bexyg=a+1. We
find thatn,,;, for the integrated signal becomes much smaller
as shown in Fig. 16shaded area>1). Therefore, for cor-
related noise withe<<0.5, it is best to estimate first the scal-
ing exponentr’ of the integrated signal and then to obtain

by a=a'—-1.

r]min

APPENDIX B: SUPERPOSITION LAW FOR THE DFA

For two uncorrelated signals(i) and g(i), their root-
mean-square(rms) fluctuation functions areF(n) and
0 05 1 15 Fg_(n), rgspectively. We vyant to prove that for the signal
a f(i)+g(i), its rms fluctuation function

Fiig(n)=\Fi(n)?+Fy(n)?. (B1)
DFA-1 andR/S analyses. The results are obtained from 50 simula-

tions, in which the length of noise N,,.,= 2%°. The condition for a Consider three signals in the same box first. The inte-

good fit isAa=|a,,.— a|<0.01. The data for>1.0 shown in the ~ 9rated signals fof, g, andf +g arey(i), y%_(')’ andyy . g(i)
shading area are obtained by applying an analysis on the integr@&nd their corresponding trends a}'ét, ygltv and ng (i
tions of noises withw<1.0. It is clear that the DFA-1 works better =1,2,...n, n is the box sizg Since y,4(i)=y;(i)
than theR/S analysis because i, is always smaller than that of +yy(i) and combines the definition of the detrended fluctua-
the R/S analysis. tion function Eq.(3), we have that for all boxes

FIG. 16. The starting point of a good-fit region,,,, for the

«; then calculatd=(n) (or R/S), and obtain(n) by local Yig()=Yi(i)+Yg(i), (B2)
fitting of F(n) (or R/S). The same random simulation is . ) . ,
repeated 50 times for both the DFA aRdS analyses. The whereY; 4 is the detrendgd fluctuation funcnon for the sig-
resultant average,(n), respectively, is illustrated in Fig. nalf+9, Yi(i) is for the signaf, andY,(i) for g. Further-
15 for the DFA-1 and R/S analyses. more, aqcordmg to the definition of the rms fluctuation, we
If a scaling analysis method is working properly, then theCan obtain
result ai,.(n) from simulation witha would be a horizontal
line with a slight fluctuation centered abaut(n) = «. Note 1 Nmax -
from Fig. 15 that such &orizontal behaviordoes not hold Frign)= E [Yisg(D)]
for all the scales but for a certain range from,,;,, t0 Npax-

Nmax i=1

In addition, at small scale, the/S analysis givesy > « if 1 Nmax
a<0.7 anda),.<a if «>0.7, which has been pointed out =V _ [Yf(i)+Yg(i)]2, (B3)
by Mandelbro{67], while DFA givesa >« if «<1.0 and max 1=1

ac<a if a>1.0. i
Itis clear that the smaller the,,;, and the larger the, .y, wherel is the number of boxes arldmeans thekth box. If

the better the method. We also perceive that the expectdd@ndd are not correlated, neither akg(i) andY(i) and,
horizontal behaviorstops because the fluctuations becomehus,
larger due to the undersampling l6tn) or R/S whenn gets

closer to the length of the sign&l,,,,. Furthermore, it can . )
be seen from Fig. 15 thak, .~ 15Nmax independent ofy (if izl Yi(i)Yq(i)=0. (B4)
the best-fit region existswhich is why one-tenth of the sig-

nal length can be considered as the maximum box size wh

using a DFA orR/S analysis. %From Eq.(B4) and Eq.(B3) we have

Nmax

On the contraryn,,, does not depend on th¢,,,, since N
. . max
aoc(n) at smalln hardly changes al,,,,, vVaries but it does Fo.o(n)= \/ 2 [Y(1)2+ Y (i)2]
depend onw. Thus, we obtaim,,, quantitatively as shown f+o max (=1 T 9
in Fig. 16. For theR/S analysis,n, is small only when , .
a~0.7. Whena>0.7 anda<0.7, ny;, becomes very large =\[Fs(n)]?+[Fg(n)1% (BS)
and close ton., indicating that the best-fit region will
vanish and thdr/S analysis does not Wor!< at all. . _ APPENDIX C: DFA-1 ON LINEAR TREND
Compared taR/S, DFA works better sinca,,;, is quite
small for correlated signals withw>0.5. However, for Let us suppose a linear time serieg€)=A,i. The inte-

a<0.5 n.,, is still relatively large. We can improve this grated signay, (i) is
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2+| The dominating term inside the square root i€ &nd then
yu(i)= E ALj=AL—— (C1)  one obtains
Let as callN,,y the size of the series amithe size of the Fu(n)~ @ALHZ, (C6)
box. The rms fluctuatioifr| (n) as a function oh and N«

is leading directly to an exponent of 2 in the DFA. An impor-
F.(n) tant consequence i_s that B$n) does not depend ON 4y, _
for linear trends with the same slope, the DFA must give
1 Nmax/n kn 24 2 exactly the same results for series of different sizes. This is
=A_ 2 E ( —(ay+ bki)) ,  not true for other trends, where the exponent is 2, but the

Nmax K51 i=(Dne1 | 2 factor multiplyingn? can depend ol .

(C2
wherea, andb, are the parameters of a least-squares fit of APPENDIX D: DFA-1 ON A QUADRATIC TREND
the kth box of sizen. a, andb, can be determined analyti- Let us suppose now a series of the tﬂ(e):AQiZ_ The
cally, thus giving integrated time serieg(i) is
a,=1—5n%+ 3n%k+ 5n—3k?n?, (C3) _ ! .2 2i3+3i%+i
y(i)=Ag2 [P=Ag—F . (D1)
by=1—3n+kn+3. (C4) =1

With these valuesi| (n) can be evaluated analytically, As before, let us calN,,,, andn the sizes of the series and

box, respectively. The rms fluctuation functiéip(n) mea-
FL(n)=A_&(5n*+25n3+25n>—25n—30) (C5)  suring the rms fluctuation is now defined as

(A \/ 1 N"ixm § 243241 )’ ©2)
n)= ——F(a ],
? Q Nmax k=1 i=(k—1)n+1 6 K k

wherea, andb, are the parameters of a least-squares fit ofkitnebox of sizen. As before,a, andb, can be determined
analytically, thus giving

a,==n3+n?k?— &ndk+ En%k— &n+ &n—2k3n®— in%k?+ &kn, (D3)
b= 3n%+n%k?—n?k+kn—2n+ . (D4)

Oncea, andb, are known,F(n) can be evaluated, giving

1
Fo(n) :AQFGOJ— 21(n*+5n%+5n2—5n—6)(32n°— 6n— 81— 210N — 140NZ ). (D5)

As Npa,>>n, the dominant term inside the square root is given byl\ﬂfggx 21n4=AQ294014anax, and then one has
approximately

Fo(N)~Agma55\294M*N2 = Agds V15N a0 (D6)

leading directly to an exponent 2 in the DFA analysis. An interesting consequence derived frc(nli)GEqs that Fo(n)
depends on the length of the sigiNg,.«, and the DFA linglogFo(n) vs logn] for the quadratic series(i) = AQI of dlfferent
Nmax does not overlagas is the case for linear trends
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