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We address the problem of the dynamical foundation of noncanonical equilibrium. We consider, as a s
of divergence from ordinary statistical mechanics, the breakdown of the condition of time scale sepa
between microscopic and macroscopic dynamics. We show that this breakdown has the effect of produ
significant deviation from the canonical prescription. We also show that, while the canonical equilibrium
be reached with no apparent dependence on dynamics, the specific form of noncanonical equilibrium is,
determined by dynamics. We consider the special case where the thermal reservoir driving the sys
interest to equilibrium is a generator of intermittent fluctuations. We assess the form of the noncan
equilibrium reached by the system in this case. Using both theoretical and numerical arguments we d
strate that Le´vy statistics are the best description of the dynamics and that the Le´vy distribution is the correct
basin of attraction. We also show that the correct path to noncanonical equilibrium by means of s
thermodynamic arguments has not yet been found, and that further research has to be done to est
connection between dynamics and thermodynamics.
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I. INTRODUCTION

The problem of the thermodynamic foundation of anom
lous diffusion was raised by Montroll and Shlesinger@1#,
who found that the use of the ordinary method of entro
maximization would yield the process of Le´vy diffusion by
using anad hoc, and so unsatisfactory, logarithmic con
straint. This conclusion seems to leave open the problem
the thermodynamic foundation of Le´vy processes. In fact the
issue of the thermodynamic foundation of strange kine
has been addressed more recently by other authors: this
became more popular in the last few years as a result of
work of Zaslavsky@2#, Zanette and Alemany@3#, Tsallis
et al. @4# and more recently of Buiattiet al. @5#. The paper of
Zaslavsky shows that strange kinetics can be responsible
paradoxical effects. This author shows that two chaotic
liards, coupled to one another through a small hole in
wall separating one billiard from the other, result in so stro
a violation of the condition of equal distribution as to sugg
the occurrence of a Maxwell’s demon effect. Zaslavs
states that these effects, generated by the strange kineti
weak chaos, oblige us to rethink the foundation of therm
dynamics.

The papers of Refs.@3–5# are based on the conjecture th
the nonextensive thermodynamics proposed by Tsallis in
1988 pioneering paper@6# might account for the physica
effects generated by strange kinetics. The intriguing issu
whether the nonextensive thermodynamics of Tsallis mi
also be the proper kind of thermodynamics necessary to
plain the Maxwell’s demon effect of Zaslavsky was a
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dressed by Aquinoet al. @7#. These authors found that th
adoption of nonextensive thermodynamics is not incomp
ible with a slow transition to the final equilibrium condition
but it is not the correct explanation of the Maxwell’s demo
effect. In fact, this striking effect is proved to be possible
a form of genuine equilibrium, a conclusion confirmed b
the more recent work of Ref.@8#.

The present paper deals with the issue of equilibriu
again, from a perspective different from that of the Ma
well’s demon effect of Refs.@2,7,8#, though, which is con-
venient for us to illustrate in detail. According to Tsallis@4#
canonical equilibria are singular in a more general form:
nonical equilibrium, the distributions that form the basis
equilibrium statistical mechanics, are not generic. Rather,
nonical equilibria are singular in a more general form
equilibrium, called a generalized canonical equilibriu
@9,10#. A number of recent papers elaborate on this idea@11–
13#, but we find@13# to be of special interest addressing as
does the foundations of both canonical and noncanon
equilibria. Rajagopal and Abe@13# prove that the equilibrium
described by the canonical distribution is not uniquely det
mined by the microcanonical distribution, as one finds in te
books. In fact if the phase space has a fractal, rather tha
smooth structure, a noncanonical distribution will resu
However, although canonical equilibria are not unique, a
noncanonical equilibria are possible, one might conclude
the basis of the arguments in@13# that the noncanonical dis
tribution is uniquely of the form established by Tsallis an
co-workers@6,9#. As attractive as the probabilistic and en
tropic arguments of Ref.@13# are, they are not indisputabl
and in fact we find herein, using dynamical arguments, t
this is not the case.

We show that the adoption of a dynamical approach
thermodynamical equilibrium yields a different conclusio
First of all, we argue that the nonextensive condition bas
©2001 The American Physical Society07-1
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on memory, and probably that resting on long-range corre
tions as well, has the striking effect of making the role
dynamics much more important than in the case of ordin
statistics. The dynamic approach, in these nonextensive c
ditions, generates a form of noncanonical equilibrium th
however, departs from the generalized canonical form p
scribed by nonextensive thermodynamics. To make it ea
for the reader to follow our arguments and to understand
purpose of the paper, illustrated in Sec. I D, we shall fi
discuss the different natures of the entropic, dynamic, a
stochastic approaches to equilibrium.

A. Nonextensive entropic indicator

The argument for the nonextensive thermodynamics
Tsallis goes as follows. First of all, the conventional entro
of Gibbs,

S~P![2E dxP~x!ln P~x!, ~1!

is replaced by the nonextensive entropic indicator

Sq~P![E dx
12P~x!q

q21
. ~2!

Second, we have to apply a method of entropy maximizat
under given physical constraints to determine the most pl
sible shape of the unknown probability density functio
P(x) @14#. The first constraint is on the normalization of th
distributionP(x),

E dxP~x!51. ~3!

The second constraint is on the first moment of the varia
x itself. According to the most recent prescription of Re
@15# the constraints onx must be applied@16# on the mean
valueUq defined by

Uq[
E dxxP~x!q

E dxP~x!q

. ~4!

It has to be pointed out that in Ref.@15# the physical meaning
of x is that of energy. Here, we shall interpretx as the ‘‘co-
ordinate’’ of an overdamped particle driven by a fluctuatio
dissipation process resulting from the interaction with a no
conventional ‘‘thermal bath.’’ When the friction term can b
neglected we are expected to recover the results of the ea
work of Ref. @5#. Thus, for the same reasons@17# as those
illustrated in Ref.@5# we set a constraint on the first mome
of uxu. The result of entropy maximization subject to th
imposed constraints of Eq.~4! yields

P~x!5F 12
~12q!b̃~x2Uq!

E dxP~x!q G 1/(12q)Y Zq , ~5!
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whereZq is a normalization factor andb is a constant value
stemming from the Lagrange multiplier associated with t
constraint on the variablex. Note that the expression ofP(x)
provided by the authors of Ref.@15# is not explicit. In fact, as
shown by Eq.~5!, it is a functional ofP(x). Thus, in practice
the explicit form ofP(x) has to be established by means
an iteration procedure. It is remarkable, however, that
microcanonical derivation from Ref.@13# results in the same
prescription as that of Eq.~5!. From the point of view of the
issues under discussion here, what matters is the fact th
the end of the iterative procedureUq becomes a well-defined
number. Consequently, the resulting expression forP(x) is a
simple analytical formula that in the asymptotic limit,uxu
→`, with the constraint on the first moment ofuxu, has the
same structure as that derived in Ref.@5#,

P~x!5
b̃~22q!

@11b̃~q21!uxu#1/(q21)
. ~6!

Note that the adoption of a constraint on the second mom
would lead to

P~x!5

F b̃~q21!

p
G G„1/~q21!…

G„~32q!/@2~q21!#…

@11b̃~q21!x2#1/(q21)
. ~7!

Note that both Eqs.~6! and~7! are the result of an earlie
prescription, missing the normalization factor present in E
~4!. Nevertheless, it has to be pointed out that both Eqs.~6!
and ~5! share the characteristic of having long tails wi
Lévy statistics. In fact, it is well known@1# that the anoma-
lous diffusion processes of the Le´vy kind in the one-
dimensional case are characterized by probability distri
tions p(x,t) whose Fourier transform in the symmetric ca
reads

p̂~k,t !5exp~2bukuat !, ~8!

wherea is the Lévy index ranging, in principle, in the inter-
val 0,a<2, andb denotes the diffusion intensity. The in
verse Fourier transform ofp̂(k,t) of Eq. ~8! is characterized
by the tail @18#

lim
uxu→`

p~x,t !}
t

uxu11a , ~9!

which would lead immediately to the anomalous entropy
dex

q5111/~11a!. ~10!

We have to stress, however, that except for the casea51
corresponding to the ballistic limit, the central part of th
distribution produced by the Le´vy process of Eq.~8! cannot
be expressed in an analytical form and can significantly
part from the analytical form of both Eqs.~6! and ~5!. The
adoption of the prescription of Eq.~7! is expected to yield
better agreement, but, as we shall see subsequently, it
not seem to be compatible with the nature of the dynam
7-2
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approach to equilibrium. In Fig. 1 we compare the Le´vy
distribution to both the prediction of Eqs.~6! and~7! and find
that there exists a significant disagreement between Ts
and Lévy statistics, even though some authors@12# refer to
them as equivalent. In this paper we focus our attention
the origin of the difference between the two kinds of sta
tics. Our dynamic approach leads to a form of equilibriu
that is stable, in the sense of the Le´vy-Gnedenko theorem
@19#, while the generalized canonical equilibrium of Eq.~5!
is not. This is evident in the free case, due to the differe
between the Tsallis and the Le´vy structure. In Sec. III we
prove that this is so also in the presence of a feedback,
the system of interest, of the generator of fluctuations.

B. From dynamics to thermodynamics

We are convinced that there are no incontrovertible r
sons why the canonical distribution should be the uniq
form of thermodynamic equilibrium, and on this issue
essentially agree with the point of view of Abe and Rajag
pal @13#. However, we are equally convinced that the gen
alized canonical form of Eq.~5! does not satisfy the stabl
conditions necessary for Le´vy statistics, and the results of th
present paper can be thought of as providing plausible
dence of that. To substantiate this view with dynamical
guments, it is convenient to concisely review the results
an earlier work@20#.

The ambitious purpose of this earlier work was that
reversing the path from thermodynamics to mechanics es
lished by Boltzmann. The main idea behind Ref.@20# is as
follows. The Fokker-Planck equation is a well-known d

FIG. 1. Comparison of a Le´vy distribution~solid line! with dis-
tributions obtained by maximizing Tsallis entropy~dashed lines!.
The Lévy curve is obtained by the inverse Fourier transform Le´vy
characteristic function witha51.5, b54.43104. The asymptote
is proportional to 1/x2.5. The long-dashed line comes from Eq.~6!

with the constraint on the first moment (b̃50.004, q51.4). The
short-dashed line comes from Eq.~7! with the constraint on the

second moment (b̃51.431026, q51.8). The values of the param

eterb̃ are selected, in both cases, so as to fit the asymptotic be
ior of the Lévy distribution. This constraint results in significa
departures from the Le´vy distribution at small and intermediate di
tances.
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scription of the evolution of the probability density in pha
space. Many attempts have been made in the literatur
derive this equation@21–25#. However, all these attempt
rest on the assumption that the bath, responsible for
Brownian behavior of the particle of interest, is given by
set of harmonic oscillators. This means that a statistical
sumption must be made on the initial condition of the ba
which is arbitrarily given a canonical equilibrium distribu
tion, corresponding to a given temperatureT of the thermal
bath.

Consequently, this kind of approach to Brownian moti
is only partially dynamical, since significant use is alrea
made of statistical mechanics and thus of thermodynam
@26#. The authors of Ref.@20# adopted a totally different
approach. They assumed that a given oscillator, playing
role of a stochastic Brownian particle, interacts with anoth
Hamiltonian system, which should play the role of a ba
They called this second system abooster, to stress that the
ensuing approach has to rest only on the dynamical pro
ties of this kind of bath with no use whatsoever of therm
dynamical arguments. After establishing the dynamical c
ditions ensuring the validity of the Fokker-Planck equatio
it is found that the oscillator of interest reaches a canon
equilibrium distribution. Due to the nature of the procedu
adopted the width of this canonical distribution depends o
on the parameters of the Hamiltonian system under stu
Consequently, it is possible to derive a mechanical expr
sion for temperature. This is the key result of Ref.@20#,
which reads

kBT5F ]

]E
ln A~E!1

]

]E
ln$^j2&eqRe@F̂j~v!#%G21

.

~11!

Note thatj denotes thedoorwayvariable, namely, the vari-
able of the booster through which the interaction between
booster and the oscillator of interest is established. The s

bol F̂j(v) denotes the Laplace transform of the correlati
function of j evaluated at the oscillation frequency of th
oscillator. The structure of this expression reflects the ap
cation of linear response theory@20#. The correlation func-
tion whose Laplace transform is in Eq.~11! is evaluated
assuming the booster to be in a microcanonical equilibri
with energyE and this condition is not affected by the inte
action with the oscillator. The symbolA(E) denotes the
number of states of the booster in the same physical co
tion, and consequently, obeys the ordinary prescription@27#

A~E!}EN/2, ~12!

whereN is the number of degrees of freedom in the boost
The authors of Ref.@20# note that forN→`,

]

]E
ln$^j2&eqRe@Fj~v!#%!

]

]E
ln A~E!. ~13!

This means that in the limiting case of infinitely many d
grees of freedom the predictions of Boltzmann are recove
1/(kBT)5(]/]E)@ ln AE#. Note that the condition of Eq.~13!
holds true if the doorway variablej depends on a number o

v-
7-3
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short-range interaction. We can also observe that in this c
the use of dynamical arguments yields the same conclus
as the very simple argument based on the law of large n
bers. The advocates of the law of large numbers for the fo
dation of statistical mechanics@30# might judge the dynami-
cal perspective to be of limited use. We prefer to interpret
conclusion of Ref.@20# as proof that in the extensive case th
canonical distribution description of thermodynamic equili
rium is unique. The numerical work of Ref.@20# shows that
it is very difficult to detect the dynamical corrections to th
Boltzmann principle illustrated by Eq.~11! from within an
extensive perspective. This is so because the dynamical
rections become significant when the booster is small and
clearly pointed out by the recent work of Gross and Voty
kov @31#, a small system is essentially nonextensive. Th
the numerical findings of Ref.@20# refer to a condition very
close to the breakdown of the extensive condition and c
sequently of the canonical equilibrium on which Eq.~11!
rests. This means that the dynamical approach can be
great utility. In the case of nonextensive statistical mech
ics, the dynamic approach is probably the only nonambi
ous way to address the subtle issues posed by the entr
and probabilistic methods.

C. Stochastic dynamics

In this section we explain the nature of our dynamic
approach to the noncanonical equilibrium distribution. Th
approach rests on a stochastic method adapted to the ne
realizing a dichotomous variablej with the two possible
valuesW and2W and with the waiting-time distribution

c~ t !5
~bT̄!b11~b11!

~bT̄1t !21b
, ~17!

where b ranges in the interval of Eq.~16!. Note that the
parameterT̄ is of crucial importance to define the time sca
of our process and corresponds to the mean residence tim
either of the two states of the velocity variablej. In accor-
dance with the prescriptions of Ref.@29# this waiting-time
distribution yields the kind of correlation functionFj(t) that
we plan to study herein@see Eq.~15!#. In fact, as shown in
Ref. @29#, the form of Eq.~17! yields the correlation function

Fj~ t !5
~bT̄!b

~bT̄1t !b
, ~18!

fitting the asymptotic time limit of Eq.~15!. This condition
can be considered as the natural one-dimensional counte
of the two-dimensional billiards of Zaslavsky@32#. From this
point of view, our commitment to the adoption of a mere
dynamical approach is not broken, since the stochastic
proach that will be adopted in Secs. II and III is statistica
equivalent to the adoption of the intermittent map of R
@33#, on which the theoretical work of Ref.@5# is based.

We stress that the equivalence between a dynamical
and a stochastic process is the reason why contact ca
established between the dynamical and the entropic
proaches. In fact, as shown in Ref.@5# the nonextensive Tsal-
particles, which is kept fixed withN→`. In other words, the
condition of Eq.~13!, or equivalently Boltzmann’s principle
rests on an interaction condition, which is crucial for t
extensive statistical mechanics perspective to apply.

Let us see this aspect in detail. In Ref.@20# the booster is
the the well-known Fermi-Pasta-Ulam~FPU! system@28#.
This is a chain of particles interacting with one another
nonlinear interactions. Let us consider two opposite con
tions. In the former, which is the one adopted in Ref.@20#,
the oscillator of interest interacts only with the first partic
of the FPU chain. In the latter the oscillator of interest int
acts with all the particles of the FPU chain with interacti
strength of comparable intensities. The former condition
fers to a short-range interaction, confined to the position
the oscillator of interest and to the first particle of the FP
chain. In the latter condition, the interaction extends over
whole FPU chain. It is evident that the former condition fi
the inequality of Eq.~13!, whereas the latter does not. Th
means that the latter condition results in a nonextensive f
of dynamics, with a consequent breakdown of the presc
tions of ordinary statistical mechanics. The former condit
on the contrary, forN→`, recovers ordinary statistical me
chanics. This suggests that the dynamical corrections to
Boltzmann principle, recorded in Ref.@20# for relatively
small values ofN, are a manifestation of incipient nonexte
sive statistical mechanics, and so are very close to the br
down of the Fokker-Planck treatment on which the analy
of Ref. @20# rests. Note that when we assign to the oscilla
of interest a very low frequency compared to the boos
frequencies, the quantity Re@F̂j(v)# turns out to virtually
coincide with the time scaleTmicro of the variablej defined
by

Tmicro[E
0

`

Fj~ t !dt,`. ~14!

Herein we focus our attention on the case where

lim
t→`

Fj~ t !5const/tb ~15!

with

0,b,1. ~16!

The inverse power law form of the correlation functio
means that we select time memory as the source of viola
of extensivity, rather than long-range spatial interactio
The parameterTmicro denotes the correlation time of th
fluctuating variablej. Here we consider the dichotomou
case, where the variablej has two distinct valuesW and
2W with fluctuating time durations. The correlation functio
Fj(t) is proven@29# to be proportional to the second tim
derivative of the distribution of waiting times in the tw
states of the variablej. This function, as we shall see in Se
I C, depends on another timeT̄ as well as onb.

In conclusion, the work of Ref.@20# establishes the dy
namical conditions necessary to derive canonical equ
rium. The authors prove that canonical equilibrium impl
an interaction with a booster with a finite time scale an
07-4
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lis entropic indicator serves the purpose of guessing the m
convenient form for the transition probabilityP(x), which is
then related to the waiting-time distributionc(t) through the
basic property

P~x!5
1

2
c~x/W!/W. ~19!

The factor of 1/2 takes into account the fact that the pr
ability of making the jumpx is equal to that of making the
jump 2x, namely, the jump in the opposite direction. Th
authors of Ref.@5# show that the left-hand term of this equa
ity, Eq. ~19!, can be predicted using entropic argumen
while the right-hand term of the same equation is dictated
dynamical arguments based on the intermittent map of R
@33#. These dynamical arguments are supplemented by
assumption of random injection of the trajectory from t
chaotic into the laminar region of the intermittent map,
argument leading to an analytical prediction forc(t) in com-
plete agreement with the numerical observation of dynam
@33#.

The earlier work of Ref.@5# established that the adoptio
of the method of entropy maximization applied to the no
extensive entropy of Eq.~2! results in a form ofP(x), which
is compatible with the birth of Le´vy statistics. However, the
P(x) thus derived is not the equilibrium distribution of th
variablex. Rather it is the probability for the random walke
to make a jump of lengthuxu. This is a stationary property
determined by the special kind of booster under study h
The ensuing diffusion process yields a Le´vy form as a result
of the Lévy-Gnedenko theorem@19#. As shown in Fig. 1, the
shape of this distribution departs from the form of the ge
eralized canonical distribution of Eq.~5!, even if we adopt
the constraint on the second moment, in spite of the fact
it does not fit the nature of the dynamical approach illu
trated here.

To account for this discrepancy we might make the co
jecture that the comparison between the Le´vy statistics and
the Tsallis generalized canonical distribution is not approp
ate. The former refers to a diffusion process and the latte
an alleged equilibrium condition. Actually, after explorin
this possibility we shall conclude that the latter, at least
the case of the dynamic model of the present paper, ca
reflect an equilibrium property. However, at the prese
stage, we are forced to develop a picture comparable to
of the earlier work of Ref.@20#. We have to study a cas
where the variablex not only undergoes the influence of th
diffusion producing fluctuations, but it produces a feedba
on its own ‘‘bath,’’ balancing the diffusion process so as
create an equilibrium condition. This is the condition to co
pare to the generalized canonical distribution of Eq.~5!. In
other words, to address, from a dynamical perspective,
issues recently dealt with by Abe and Rajagopal@13# we
cannot disregard the feedback from the system to
‘‘bath.’’

D. Purpose of the present paper

At this stage it is much easier for us to illustrate the ma
purpose of the present paper. We want to explore a cond
01110
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where the booster does not fulfill the key condition of E
~14!, that is, the microscopic relaxation time diverges, a
we want to assess whether or not this divergence leads to
generalized canonical distribution of Eq.~5!. We aim at an-
swering the question: Which is the form of the equilibriu
distribution reached by the system of interest when the ti
scale of theboosteris infinite?

To answer this question we do not adopt, as done in R
@20#, a Hamiltonian approach. This approach is difficult f
obvious reasons. A numerical simulation check of the th
retical prediction would imply technical difficulties cause
by the slowness of the booster itself. This means that
anomalous booster is replaced, as done in earlier pa
@34,35#, by a generator of a dichotomous fluctuation with
inverse power law distribution of waiting times. The esse
tial ingredient of the approach of Ref.@20#, not yet present in
the dynamical derivation of a free Le´vy diffusion, is a feed-
back of the diffusing variable on the generator of the flu
tuations. This aspect has already been considered in the
lier work of Ref.@34#. However, in that paper the dynamica
approach to the feedback was replaced by a phenomeno
cal friction, which did not allow the authors of that paper
keep the promise of resting solely on dynamical argument
any level. In conclusion, we adopt the program of Ref.@20#,
based on the observation of the fluctuation-dissipation p
cess caused by the interaction of a particle with a boo
having no finite time scale. The presence of feedback se
the purpose of balancing the diffusion process with dissi
tion so as to result eventually in an equilibrium condition

With the program of Ref.@20# in mind, we have to refer
ourselves to the correlation function, Eq.~18!, with the index
b fulfilling the condition of Eq.~16!, and so implying the
breakdown of the time-scale separation between the ma
scopic and the microscopic levels. The realization of the p
gram of statistical mechanics requires an accurate defini
of the process of memory erasure associated with the tra
tion from one to the other velocity state@36#. This is more
conveniently defined by the waiting-time distributionc(t) of
Eq. ~17!, than by the correlation function of Eq.~18!. We see
that even if the condition of Eq.~16! applies, the timeT̄
5*0

`tc(t)dt remains finite. Memory of microscopic dynam

ics is lost in timest@T̄.
At this stage it is convenient to support our claim co

cerning memory erasure with arguments borrowed from
earlier investigation of Gaspard and Wang@37#. These au-
thors studied the Kolmogorov complexity of the Mannevil
map and found that in the regime corresponding to the
namical foundation of Le´vy processes, the Kolmogoro
complexity is a linear function of time. This means that a
given timet the number of transitionsM from the one to the
other laminar region is given byM}t/T̄. This means that for
t→` the conditions for the realization of the generaliz
version of the central limit theorem are fulfilled, since th
function defined by

p~x,M ![P~x!* P~x!* •••* P~x!* pin~x!, ~20!

where the asterisk denotes a convolution, forM→` tends to
the Lévy distribution. One might be tempted to make th
7-5
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conjecture that in the presence of feedback the numbeM
cannot increase beyond some limit, and that equilibrium
reached with a relatively low value ofM so as to allow the
distribution to maintain the structure of a generalized cano
cal distribution in the manner of Tsallis. In this paper w
limit our analysis to the case where the linear respo
theory of Sec. III holds true. This forces us to adopt a fe
back so weak that this possibility does not emerge from
simulations.

II. DYNAMICAL MODEL

The dynamical model studied here depends on a pro
of free diffusion with feedback, established through cont
of a dynamical parameter of the booster. This feedback p
cess has the role of balancing diffusion so as to realize
namically the equilibrium condition. We illustrate first th
dynamical model used as the generator of free diffusion, t
we show how the feedback is realized, and finally we illu
trate the numerical technique adopted.

A. Free diffusion

Formally free diffusion is realized using the equation
motion

dx~ t !

dt
5j~ t !. ~21!

Here the dynamical variablex(t) denotes either a spatia
coordinate or a velocity. In the former case the variablej(t)
has to be considered a fluctuating velocity, while in the la
case it is regarded as a fluctuating acceleration. The re
are equivalent, and the reader can adopt either of them, e
if we considerx(t) to be a spatial coordinate so as to ma
the connection with earlier work@5# more natural.

We assume the variablej(t) to be dichotomous, namely
we shall assign to this variable only two distinct values,
ther W or 2W. The motivation for this choice is not only
simplicity, but also has to do with the main purpose of th
paper, that of assessing the specific form the noncanon
equilibrium, and also of course, and prior to this purpo
that of proving that deviations from canonical equilibriu
can be generated as a consequence of the breakdown o
ordinary condition of time-scale separation between mac
scopic and microscopic processes. In the limiting case wh
the variablej(t) is Gaussian, and consequently produce
Gaussian equilibrium distribution@38#, the resulting diffu-
sion process is Gaussian and the final equilibrium distri
tion can turn out to be Gaussian as well@34#, as a result of
having established a seed of ordinary statistics at the mi
scopic level. For this reason the choice of microscopic s
tistics, departing from the ordinary statistical condition
crucial, and the adoption of the dichotomous assumpt
serves the purpose of eventually establishing a noncanon
equilibrium.

The variablej(t) keeps one of the two possible values f
times with a random duration. Thus, a statistical treatm
must be adopted and a waiting-time distributionc(t) is used.
The time intervals of sojourn in a given state are labeled
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an integer indexk running from 1 to1`. At the end of any
sojourn the variable can either change its value, and t
make a transition fromW to 2W or from 2W to W, or it can
keep its original value. The probability of changing value
and that of keeping the same value are equal, and thus e
to 1/2. We can interpret the variablej(t) as a function of the
continuous timet by adopting the following prescription:

j~ t !5(
k

jkx tk ,tk11
~ t !, ~22!

where the timestk and tk11 denote the beginning and the
ending time of thekth sojourn, respectively, and the value
jk are randomly assigned either the valueW or the value
2W with equal probability andx tk ,tk11

(t)51 if tk<t

,tk11. The sequel of the timestk8 is fixed by the waiting-
time density distributionc by selecting a given valuetk of
the interval @tk ,tk1e# with e!1 with the probability
c(tk)e. The waiting-time distributionc is assigned an in-
verse power law form determined by the constraint of yiel
ing the correlation function

Fj~ t !5
~bT̄!b

~bT̄1t !b
, ~23!

whereb is a positive number determining the integrability o
the correlation function. Ifb.1, the correlation function,
Eq. ~23!, is integrable and the microscopic time scale

Tmicro[E
0

`

Fj~ t !dt5
bT̄

b21
~24!

can be defined. According to Refs.@39,29# the form ofc(t)
is determined by that ofFj(t) through the relation

c~ t !5T̄
d2

dt2
Fj~ t !, ~25!

which yields

c~ t !5
~b11!~bT̄!b11

~bT̄1t !b12
. ~26!

We note that the parameterT̄ appearing in both Eqs.~23! and
~26! is the mean sojourn time. Thus, in some sense, when
microscopic time of Eq.~24! becomes infinite, the role of the
microscopic time scale is played byT̄.

By integration of Eq.~21! we get

x~ t !5jn~ t2tn21!1 (
k50

n21

jktk , ~27!

wheret is a time located in the interval@ tn21 ,tn211tn# with
tn215(k50

n21tk , in accordance with the earlier prescription
Furthermore, the transition probability of Sec. I A is obv
ously related to the waiting-time distribution of Eq.~19!.
Note that, as discussed in detail in Refs.@34,35,40#, there are
7-6
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two distinct basins of attraction for the diffusion process
sulting from the repeated occurrence of the transition proc
of Eq. ~19!, the Gauss basin forb.1 and the Le´vy basin for
b,1.

B. The booster linear response and diffusion control

To control diffusion in such a way so as to generate
known equilibrium distribution we adopt a model based
replacing Eq.~21! with

dx~ t !

dt
5jx~ t !, ~28!

which means that the motion of the fluctuating variablejx(t)
also depends on the value of the dynamic variablex. We
make the simplifying assumption that therelaxation timeor
response time of the booster,TB , is shorter than that of the
particle of interest,TR , so as to ensure for the booster atime
dependent equilibrium conditiondetermined by the state o
the system of interest. In other words, the booster is assu
to be in a condition of equilibrium determined by the va
able x. As the variablex moves from an initial condition
x(0) out of equilibrium state, i.e., from a position larger th
the fluctuations ofx itself, to the final equilibrium, the
booster correspondingly moves from an equilibrium to a
other equilibrium condition. All this is illustrated by the fol
lowing mathematical arguments. These arguments do
aim at providing a rigorous mathematical treatment, b
rather a heuristic treatment reflecting the physical condit
that we are assigning to the booster.

To make the analysis in terms of a strictly stochastic p
cess, we build up the following regularized processx̃Tr

(t),
defined by

dx̃Tr
~ t !

dt
[

x~ t !2x~ t2Tr!

Tr
5

1

Tr
E

t2Tr

t

jx~ t8!dt8

[
1

Tr
E

t2Tr

t

j x̃~ t8!dt8, ~29!

whereTr is a regularization time and in the last equivalen
it has been explicited the spatial dependence of the nois
x̃. This new processx̃ has the characteristics ofx(t) in the
mean, but its fluctuations are smoothed by using the tem
ral mean.

If the response timeTB of the bath is fast and ifTr is long
enough, but always smaller than relaxation timeTR of the
variable x, one can suppose that the phase space mea
almost equivalent to the temporal mean,

dx̃Tr
~ t !

dt
5

1

Tr
E

t2Tr

t

j x̃~ t8!dt8;^j x̃&. ~30!

Now, assuming linear response is valid, the mean value
the thermal bath variable depends onx̃ as

^j x̃&52g x̃. ~31!
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With the linear response hypothesis inserted into Eq.~30! the
equation for the regularized process

dx̃Tr
~ t !

dt
;2g x̃Tr

~ t ! ~32!

is obtained. The solutionx̃Tr
(t)5x(0)e2gt shows a relax-

ation toward the equilibriumx.0, on a time scaleTR.1/g.
The analogy with a stochastic equation, such as

Ornstein-Uhlenbeck or its extension to Le´vy noise @41#, is
completed by adding a fictitious stochastic noisedj̃Tr

(t) in
Eq. ~32! that summarizes the fluctuations on the time sc
Tr and that compensates for the approximation inserted
Eq. ~30!,

dx̃Tr
~ t !52g x̃Tr

~ t !dt1dj̃Tr
~ t !. ~33!

Hence, with the assumptions of linear response theory
the relaxation times of the thermal bath faster than of tha
the variable of interest~partial equilibrium!, a diffusive pro-
cess becomes an equilibrium process. We emphasize tha
analogy~33! is true only if

TB!Tr!TR5g21. ~34!

By using this simplified analysis it is also possible to ma
qualitative predictions about the equilibrium distribution.

When x.0, the feedback2g x̃Tr
(t) can be neglected

with respect to the fluctuationsj̃Tr
(t). This limit corresponds

to free diffusion for which the central limit theorem~gener-
alized or not! can be used. The distribution is Gaussian
Lévy’s according to whether the correlation function is int
grable or not.

When uxu@0 the feedback term~31! prevails over fluc-
tuations in Eq.~33!. Then the dynamical variable is pushe
back to values near the equilibriumx;0 as an attractive
field quenching the diffusion. This description correspon
at least for the regionuxu!W/g, to what one could obtain if
in Eq. ~33! the fictitious noisej̃Tr

(t) is simply stochastic
@41#.

The condition~31! is satisfied when the time evolution o
jx is replaced by the stochastic variablejk appearing in Eq.
~22! with the the stochastic variablejk(xk), which has two
distinct values with the same probability,

jk~xk![H W1~xk!5W2gxk,

W2~xk!52W2gxk.
~35!

In the time scaleTr , we can replace the variablejx(t) of Eq.
~28! with its average over the faster bath fluctuations, a
thus with

^jx&5
1

2
@W2gx2~W1gx!#52gx. ~36!

In Fig. 2 we show a sample trajectory corresponding
the dynamic prescriptions of Eq.~35!. In the lateral region,
7-7



o
y
a
a

e

a
i

rt
i
o
e

je
s

e

f

o
e

i-
a
e

by
nd

se
ri-
-

stic

e-
tur-

e
-
e
part,

o-
-
a-
e

ate
as

i-
be-
b-

d
e

rip

MARIO ANNUNZIATO, PAOLO GRIGOLINI, AND BRUCE J. WEST PHYSICAL REVIEW E64 011107
after the end of the state that has pushed the trajectory
side the central region, the slope assigned to the trajector
the ensuing states have always the same sign, either neg
for the top region or positive for the bottom region. This is
consequence of the definition itself of side regions and c
tral stripe, the former being those characterized byuxu
.W/g and the latter referring touxu,W/g. The final effect
is that the trajectories that have exited the central region
steadily brought back to it. We see that, on the contrary,
the central region the trajectory fluctuates back and fo
more or less as it would do in the case of free diffusion. Th
is perhaps the intuitive reason why the linear response the
of Sec. III, referring to a central region of extremely larg
size, makes the system’s statistics fall in the Le´vy basin of
attraction as it does in the free case@35#.

C. Computer simulation

The computer simulations are done generating the tra
tories of Eq. ~27! with the assumption that the value
W1(xk)5W2gxk and W2(xk)52W2gxk have the same
probability. The distribution of sojourn times in one of thes
two states is given by the functionc(t) of Eq. ~26!, which,
in turn, is realized by a suitable nonlinear transformation o
variable with a uniform distribution in the interval@0,1# ob-
tained by a standard routine for the generation of rand
numbers. It has to be pointed out that the value of eith
W1(xk) or W2(xk) is determined by the value that the var
ablex has at the moment when a new state is established
it is kept fixed until the end of the sojourn in this stat
namely, its value is fixed in the interval@ tk ,tk11#. Each tra-
jectory is generated according to the integral of Eq.~28! with
the initial conditionx(0)50 and it is observed until the time
Tf[20/g@TR . At this time the value is recorded in the form
of a histogram. The distribution of the variablex at this final

FIG. 2. Sample trajectory for the diffusion process with fee
back defined in Eq.~28!. The solid and dashed lines denote th
statesW1 andW2 , respectively. See Eq.~35! for the definition of
these two states. The two horizontal lines defining the central st
correspond to the levelsW/g and 2W/g. The parameters used

have the valuesg5531023, W51, b50.5, T̄550.
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time, assumed to correspond to equilibrium, is obtained
generating a sufficiently large number of trajectories a
constructing a histogram.

III. THEORETICAL PREDICTION

We are now in a position to demonstrate that in the ca
of extremely weak feedback the resulting equilibrium dist
bution is Lévy. There are no compelling theoretical predic
tions in the case of strong feedback, except the heuri
arguments used in Sec. I.

According to the strategy adopted in Ref.@20# the theo-
retical approach to friction implies the treatment of the r
sponse of the booster to an abruptly applied external per
bation. Using the notation adopted in Ref.@20#, this has to do
with the solution to the equation of motion

]

]t
r~j,t !5G~K !r~j,t !, ~37!

whereG(K) denotes the operator driving the motion of th
probability distributionr(j,t) in the presence of a perturba
tion of intensity K. We assume that this operator can b
expressed as the sum of an unperturbed and a perturbed

G~K !5G01KG1 , ~38!

whereG0 denotes the operator driving the unperturbed m
tion of the variablej and KG1 denotes the operator corre
sponding to the perturbation. The intensity of this perturb
tion can be freely changed by modifying the size of th
parameterK. We apply the perturbation abruptly at timet
50 to the booster, assumed to be in the equilibrium st
req . The perturbation strength is assumed to be so weak
to make it possible to solve Eq.~37! at the first-order pertur-
bation,

]

]t
r1~j,t !5G0r1~j,t !1KG1r0 , ~39!

wherer0 andr1 denote the zeroth- and the first-order distr
bution density, respectively. We assume that the system
fore the abrupt perturbation is in thermodynamic equili
rium. This means that we identifyr0 with req , which is
assumed to fulfill the following equation:

G0req50. ~40!

The formal solution to Eq.~39! is

r1~j,t !5KE
0

t

dt8exp@G0~ t2t8!#G1r0~j,t8!

5KE
0

t

dt8exp~G0t8!G1r0~j,t2t8!

5KE
0

t

dt8exp~G0t8!G1req . ~41!

-

e
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We assume that at equilibrium the mean value ofj vanishes.
As a consequence, Eq.~41! yields

^j~ t !&5KE
0

t

C~ t8!dt8, ~42!

where

C~ t ![^j exp~G0t !G1&eq . ~43!

This concise expression means a trace overj of the distribu-
tion obtained by applying toreq first the perturbation opera
tor G1, then the unperturbed time evolution operat
exp(G0t) and finally the variablej itself.

In the case of ordinary statistical mechanics one usu
makes the assumption that the variablej has Gaussian sta
tistics. This means a continuous variable driven by both
unperturbed stochastic environment and by the perturba
of intensityK. To define the action of the perturbation on th
time evolution of thej trajectory, let us switch off the influ-
ence of the stochastic environment. In this case the pertu
tion action would be expressed bydj/dt5K. Moving from
the Heisenberg-like to the Schro¨dinger-like representation
we would obtain (]/]t)@r(j,t)#5K(]/]j)@r(j,t)#, which
implies that the perturbation operator is

G15
]

]j
. ~44!

Note that in the Gaussian casereq(j) is a Gaussian distribu
tion proportional to exp@2j2/(2^j2&eq)#. Consequently
C(t) of Eq. ~43! becomes

C~ t !5Fj~ t !. ~45!

Note that

d^x~ t !&/dt5^j~ t !& ~46!

and that, in the absence of perturbations, with all the tra
tories starting atx50,

^x2~ t !&052^j2&eqE
0

t

dt8E
0

t8
dt9Fj~ t9!. ~47!

We adopt the subscript 0 to indicate that the time evolut
of the second moment takes place in the absence of pe
bations. Using Eqs.~46!, ~47!, and~42! supplemented by Eq
~45! and setting equal to zero an arbitrary integration co
stant so as to ensure a response proportional to the pertu
tion strength, we arrive at

^x~ t !&5K^x2~ t !&0 /~2^j2&eq!. ~48!

This equation is a generalized Einstein relation@42#, more
recently discussed by Barkai and Fleurov@43#.

It is evident that the ordinary condition~48! cannot apply
in the case under study here corresponding to the condit
~15! and ~16!. In fact, in this latter case the adoption of th
ordinary linear response relation would yield an infinite cu
rent. Earlier investigation@44# has established that the ord

CANONICAL AND NONCANONICAL EQUILIBRIUM . . .
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nary linear response theory breaks down and a new form
linear response to perturbation shows up, which, howev
cannot be expressed in terms of unperturbed dynamics.
means that the response depends on the dynamical m
adopted and must be established through numerical inte
tion.

In conclusion, using the strategy of Ref.@20# we find that
in the presence of feedback the free diffusion process

dx/dt5j ~49!

must be replaced with

dx/dt5^j~ t !&x1j, ~50!

where we have divided the current, in accordance with lin
response theory into the sum of two terms. The zeroth-or
term is given by the fluctuationj assumed to be in the sam
unperturbed condition as in Eq.~49!. The first-order term is
^j(t)x&. Although the variablej sojourns for long times in
one of the two-velocity states, we assume the feedback to
so weak as to be compatible withj making many jumps
from one velocity state to the other while the value of t
variablex remains essentially unchanged. On the other ha
setting@20#

K52D2x ~51!

whereD2 is a constant, we obtain

dx/dt52gx~ t !1j~ t ! ~52!

and

g5D2x, ~53!

the susceptibilityx being defined by

x[E
0

`

C~ t !dt. ~54!

We are now in a position to address the problem un
discussion here via three approximation steps.

~i! We replace Eq.~52! with

dx/dt52gx~ t !1h~ t !, ~55!

whereh is a Lévy noise@41#. This means that the variableh
in one single time step produces jumps proportional to th
produced by the variablej sojourning for a timet5h/W in
one of the two velocity states@34,35#.

~ii ! We make a numerical simulation of Eq.~52!.
~iii ! We make a completely dynamical treatment of t

whole fluctuation-dissipation process.
We shall refer to approximation~i! as thestochastic ap-

proximation. The advantage of this approximation is that E
~52! is made equivalent to an equation studied years ago
West and Seshadri@41#.The stochastic force results in
phase space operator equivalent to a fractional derivativ
ordera, with

a5b11. ~56!

PHYSICAL REVIEW E 64 011107
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Thus, it is possible to show@41# ~see also Refs.@36,35# for a
more recent discussion of the same problem! that the Fourier
transform of the distribution densitys(x,t), ŝ(k,t) reads

]

]t
ŝ~k,t !52S bukua1gk

]

]kD ŝ~k,t !, ~57!

which yields the following characteristic function

ln ŝ~k,t !52
~12e2agt!

ag
bukua, ~58!

which for no dissipation has the familiar form

lim
g→0

ln ŝ~k,t !52tbukua. ~59!

However, asymptotically, in time we obtain the equilibriu
condition

ŝ~k,`!5expS 2
bukua

ag D5e2bgukua. ~60!

The second equality defines the equilibrium parameterbg of
the Lévy characteristic function. Approximation~ii ! is re-
ferred to as thedissipativeLévy walk, and has already bee
discussed in an earlier work@34,35#, where it was shown tha
in the limiting case ofg→0 it leads to an equilibrium dis-
tribution equivalent to that of Eq.~60!.

IV. THE NUMERICAL SIMULATION

An interesting result of the numerical simulation of th
dynamical model is that the equilibrium distribution is n
uniquely determined. The condition of weak feedback yie
a distribution that has properties different from those of
equilibrium distribution stemming from the condition o
strong feedback.

The numerical simulation of the dynamical model can
done both in the case of weak and strong feedback. Inte
ing new effects are revealed by the simulation of the cas
strong feedback. However, these are left as a subject
future theoretical discussions. Here we illustrate only
simulation results concerning the case of weak feedback.
cording to the program of Ref.@20#, we have developed a
theory resting on the linear response theory, although in
nonconventional form of Sec. III and consequently on
assumption of a very weak feedback. Therefore, the sim
tion results here discussed refer to a case of feedbac
weak as to ensure that the requirements of Sec. III are
filled.

Figure 3 refers to the Le´vy basin of attraction. We notice
that the dissipative Le´vy walk results in pronounced peak
These peaks are produced by the fact that the trajecto
cannot overcross the valuesx56W/l. These peaks signa
the region within which a good agreement among the fu
dynamic treatment, the dissipative Le´vy walk, and the sto-
chastic approximation is expected. Note that, as remarke
Sec. III, the stochastic approximation is equivalent to
equilibrium of the theory of West and Seshadri~WS! @41#,
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where the parameterbg of Eq. ~60! is calculated with the
following formula @35#:

bg5
W~bT̄W!b

g~b11!
sinS p

2
b DG~12b!, ~61!

whereT̄ andb are defined in Eq.~23! andG(•) is the Euler
gamma function. We see that in the region enclosed by
peaks a very good accordance among these three dis
approaches is indeed found.

Figure 4 illustrates the situation in the Gauss basin
attraction. In this case the side peaks of the dissipative w
disappear. The counterpart of the WS statistics here is
Ornstein-Uhlenbeck statistics@41#, already used in an earlie
publication@35# to predict the form of equilibrium distribu-
tion in the Gauss basin of attraction. We use the same
diction where the variances2 is

s25
bW2T̄

g~b21!
~62!

and we find that the agreement with the other two treatme
is again very good.

We are convinced that the simulation results of Fig. 3 a
a reliable numerical evidence of the fact that the dynam
approach to noncanonical equilibrium yields the analyti
form proposed 18 years ago by West and Seshadri@41#, here

FIG. 3. The equilibrium distribution in the Le´vy’s basin of at-
traction. The full line histograms refer to the numerical simulati

with b50.5, g51025, W51, T̄550. We set the bin size equal t
2000. The dashed line histograms illustrate the result of the num
cal simulation of the dissipative Le´vy walk of Eq.~52!. The predic-
tion of the stochastic approximation, or equivalently of the W
statistics, is denoted by means of the heavily dashed line. To m
the figure less heavy we plot only the left part of the distributi
predicted by the WS statistics. The WS equilibrium is obtained
evaluating the inverse Fourier transform of Eq.~60! with bg

5417 771,a51.5, andg51025. This is the value ofbg that ac-
cording to the theoretical prediction of Eq.~61! corresponds to the
parameters of the dynamical treatment. The inset shows, for cla
the enlarged portion of the figure corresponding to thex-axis inter-
val @220 000,20 000#. The enlargement of the ordinates is don
after conversion to a linear scale.
7-10
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referred to as WS statistics. However, Tsallis statistics
WS statistics have in common the analytical shape of
tails, which is an inverse power law. This might suggest t
the accordance between our simulation results and Ts
statistics is as satisfactory as, or more satisfactory than,
accordance with the WS statistics. We now show that i
not so, and that the accordance of our results with Tsa
statistics is much less satisfactory than with the WS sta
tics. According to the spirit of our dynamic approach, t
comparison should be done with the Tsallis form of equil
rium corresponding to a constraint on the first moment ofuxu.
This would produce a more significant departure from
WS statistics, and from our simulation results, the WS s
tistics being, in fact, a Le´vy form of equilibrium statistics.
The reader can easily be convinced about this property
observing Fig. 1. Thus, we decided to discuss the comp
son between our simulation results and Tsallis statis
adopting a condition more favorable to the Tsallis statist
namely, the analytical proposal of Eq.~7!.

In Fig. 5 we establish an exact accordance between Ts
and WS statistics in the region of large distances. We see
the WS statistical prescription yields a very satisfactory
cordance with the results of simulation also in the cen
region, while the Tsallis noncanonical equilibrium does n
In Fig. 6 we organize the comparison in such a way as
produce the best fitting between Tsallis statistics and
simulation in the central part of the equilibrium distributio
We see that this has the effect of making the discrepa
between Tsallis statistics and WS statistics much worse
the region of large distances. We see that our simula
results are much closer to the WS equilibrium than to
Tsallis equilibrium. We have to point out, furthermore, th
the region of large distances in Fig. 6, where the Tsallis fo

FIG. 4. The equilibrium distribution in the Gaussian basin
attraction. The full line histograms refer to the numerical simulat

with b53, g51024, W51, T̄550. We set the bin size equal t
120. The dashed line histograms refer to the numerical solutio
the Gaussian counterpart of Eq.~52!. The heavily dashed line is the
theoretical prediction of the Ornstein-Uhlenbeck process withs2

57.53105 calculated from Eq.~62!. To make the figure less heav
we plot only the left portion of this theoretical prediction.
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of noncanonical equilibrium apparently yields a better agr
ment with our numerical results, is probably a nonstation
region, which depends on the observation time. We do
have yet any theory concerning this region, but we have
result of the numerical observation. The numerical simu

f
n

of

FIG. 5. Tsallis and WS statistics versus the numerical resu
The WS equilibrium is denoted by the heavily dashed line and, a
Fig. 3, only the left part of it is illustrated. It corresponds to th
inverse Fourier transform of the distribution of Eq.~60! with bg

5417 771,a51.5, andg51025. The parameterbg was found as
in Fig. 3. The Tsallis equilibrium, corresponding to the proposal
Eq. ~7!, is illustrated by the dotted line. The dotted line is plotted
as to coincide with the heavily dashed line in the region of lar

distances (b̃5631028, q51.8). The inset shows, for clarity, the
enlarged portion of the figure corresponding to thex-axis interval
@220 000,20 000#. The enlargement of the ordinates is done af
conversion to a linear scale.

FIG. 6. Tsallis and WS statistics versus the numerical resu
The WS equilibrium is denoted by the heavily dashed line and, a
Fig. 3, only the left part of it is illustrated. It corresponds to th
inverse Fourier transform of the distribution of Eq.~60! with bg

5417 771, a51.5, andg51025. The Tsallis equilibrium, corre-
sponding to the proposal of Eq.~7!, is illustrated by the dotted line

(b̃5231028, q51.8). The dotted line is plotted so as to get th
best fitting with the heavily dashed line in the central region. T
inset shows, for clarity, the enlarged portion of the figure cor
sponding to thex-axis interval@220 000,20 000#. The enlargement
of the ordinates is done after conversion to a linear scale.
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tion shows that this region triggers nonstationary effects
to the fact that the trajectories reaching large distances f
the central diffusion region, illustrated in Fig. 2, tend to e
cape forever. This escape process gives rise, in a time s
that becomes infinitely large upon decrease of the feedb
strength, to a diffusion process, namely, to a form of n
equilibrium distribution.

We are convinced that the WS equilibrium is closer to
results of numerical simulation than the Tsallis noncanon
equilibrium. We see, however, that in the case of Fig. 6
departure of the Tsallis prediction from the results of
numerical simulation is not so marked as to rule out t
theoretical proposal. In conclusion, if we use only fitti
arguments, we can select the constraint on the second
ment rather than that on the first, as the adoption of theo
ical arguments would suggest us to do. Eventually, the s
ation would appear as favorable to Tsallis statistics
illustrated in Fig. 6.

V. CONCLUDING REMARKS

The present paper is not just about obtaining the best fi
a numerical simulation. We aim at deriving equilibrium fro
dynamics with no use of thermodynamic arguments. The
sult of our investigation is that equilibrium is dictated by t
WS statistics rather than by the Tsallis statistics. This yie
a satisfactory agreement with the results of numerical si
lation with no fitting parameters. The advocates of Tsa
statistics might reach a result as satisfactory as that prov
by the dynamic theory~even if we think that actually it is
less satisfactory! only by using fitting parameters. This pap
results in two important facts. The first is a numerical sim
lation yielding a noncanonical equilibrium. The second i
theory to account for this noncanonical equilibrium. The t
oretical arguments lead us to conclude that the noncano
equilibrium must correspond to the WS statistics.

If only fitting arguments were to be used, it would
more difficult to make a choice between the Tsallis and
WS statistics. However, if we invoke theoretical argume
also, we find that no room is left for the Tsallis statistics
the case of the dynamic model studied in the present pa
At least within the range of this dynamic model, we sh
that the noncanonical equilibrium is possible in nature, bu
must correspond to the theoretical proposal of West and
shadri @41# rather than to the predictions of nonextens
thermodynamics@6#. It is interesting to remark that in th
limiting case of very weak feedback our model becom
identical to the Le´vy flights subject to the Hookean force o
the recent work of Jespersen, Metzler, and Fogedby@45#, and
that both models are equivalent to that originally studied
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West and Seshadri@41#. Also these authors@45# found the
Tsallis statistics to be incompatible with the non-Gibbs
nature of the corresponding stationary solution.

In a lucid discussion Lebowitz@30# has recently restate
the point of view of Boltzmann, establishing the microsco
origin of irreversible macroscopic behavior. In his view t
adoption of the laws of large numbers is essential, and
role of deterministic chaos becomes important only if it a
plies to a macroscopic number of noninteracting partic
According to Lebowitz, mixing and ergodicity are notio
that are ‘‘unnecessary, misguided, and misleading.’’ In ot
words, this opinion reflects the conviction mirrored by t
handbooks of statistical mechanics that the unification of
chanics and thermodynamics rests on the conditionN→`,
whereN denotes the number of degrees of freedom of
system under study. These statements do not, however,
flict with the results of Ref.@20# reported in Sec. I B. In fact
the signature of the dynamical origin of thermodynamics
expressed by Eq.~11!, is lost in the limiting case of the
thermodynamic limitN→`, thereby making the controvers
between the advocates of mixing and the advocates oN
5` difficult, if not impossible, to substantiate with expe
mental arguments. This means, in other words, that the
nonical equilibrium distribution can be derived using sim
arguments based only on probabilistic concepts and the
of large numbers, or if we wish, also on the dynamical ar
ments of Ref.@20#. If the criterion of simplicity is adopted
one might be tempted to choose the former approach
leads to the wanted result with little or no effort, while t
second approach yields the same conclusion after many
plicated calculations based on assumed dynamical prope
that only in a few cases has been rigorously proved.

The present paper shows how to extend to the cas
boosters with no finite time scale the program of Ref.@20#. In
this new case the dynamical approach to equilibrium yield
noncanonical equilibrium, which is that advocated ma
years ago by West and Seshadri@41#. As pointed out by the
theoretical discussion of Sec. III it must be remarked that
~55!, yielding the form of equilibrium of West and Seshad
is the consequence of a form of linear response depa
from the traditional wisdom behind the generalized Einst
relation@42#. It is remarkable that the only plausible form
linear response, resting on dynamics, yields the same
scription as that suggested by a phenomenological appro
Thus, while we do agree with Abe and Rajagopal about
fact that the canonical equilibrium is not the only accepta
form of equilibrium, we depart from them on the speci
form that this equilibrium will take, since as we have seen
Sec. I A, the Le´vy statistics must not be confused with t
generalized canonical distribution of Tsallis.
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