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We address the problem of the dynamical foundation of noncanonical equilibrium. We consider, as a source
of divergence from ordinary statistical mechanics, the breakdown of the condition of time scale separation
between microscopic and macroscopic dynamics. We show that this breakdown has the effect of producing a
significant deviation from the canonical prescription. We also show that, while the canonical equilibrium can
be reached with no apparent dependence on dynamics, the specific form of noncanonical equilibrium is, in fact,
determined by dynamics. We consider the special case where the thermal reservoir driving the system of
interest to equilibrium is a generator of intermittent fluctuations. We assess the form of the noncanonical
equilibrium reached by the system in this case. Using both theoretical and numerical arguments we demon-
strate that [y statistics are the best description of the dynamics and that te distribution is the correct
basin of attraction. We also show that the correct path to noncanonical equilibrium by means of strictly
thermodynamic arguments has not yet been found, and that further research has to be done to establish a
connection between dynamics and thermodynamics.
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I. INTRODUCTION dressed by Aquinet al. [7]. These authors found that the
adoption of nonextensive thermodynamics is not incompat-
The problem of the thermodynamic foundation of anoma-ible with a slow transition to the final equilibrium condition,
lous diffusion was raised by Montroll and Shlesindéi, but it is not the correct explanation of the Maxwell’'s demon
who found that the use of the ordinary method of entropyeffect. In fact, this striking effect is proved to be possible as
maximization would yield the process of wediffusion by  a form of genuine equilibrium, a conclusion confirmed by
using anad hog and so unsatisfactory, logarithmic con- the more recent work of Ref8].
straint. This conclusion seems to leave open the problem of The present paper deals with the issue of equilibrium
the thermodynamic foundation of g processes. In fact the again, from a perspective different from that of the Max-
issue of the thermodynamic foundation of strange kineticsvell’'s demon effect of Refd2,7,8, though, which is con-
has been addressed more recently by other authors: this issuenient for us to illustrate in detail. According to Tsalli4]|
became more popular in the last few years as a result of theanonical equilibria are singular in a more general form: ca-
work of Zaslavsky[2], Zanette and Alemany3], Tsallis  nonical equilibrium, the distributions that form the basis of
et al.[4] and more recently of Buiatgt al.[5]. The paper of equilibrium statistical mechanics, are not generic. Rather, ca-
Zaslavsky shows that strange kinetics can be responsible fewonical equilibria are singular in a more general form of
paradoxical effects. This author shows that two chaotic bilequilibrium, called a generalized canonical equilibrium
liards, coupled to one another through a small hole in th¢9,10]. A number of recent papers elaborate on this {dda-
wall separating one billiard from the other, result in so strongl3], but we find[13] to be of special interest addressing as it
a violation of the condition of equal distribution as to suggestdoes the foundations of both canonical and noncanonical
the occurrence of a Maxwell’'s demon effect. Zaslavskyequilibria. Rajagopal and AHd.3] prove that the equilibrium
states that these effects, generated by the strange kinetics @dscribed by the canonical distribution is not uniquely deter-
weak chaos, oblige us to rethink the foundation of thermo-mined by the microcanonical distribution, as one finds in text
dynamics. books. In fact if the phase space has a fractal, rather than a
The papers of Ref$3-5] are based on the conjecture that smooth structure, a noncanonical distribution will result.
the nonextensive thermodynamics proposed by Tsallis in hislowever, although canonical equilibria are not unigue, and
1988 pioneering papdi6] might account for the physical noncanonical equilibria are possible, one might conclude on
effects generated by strange kinetics. The intriguing issue ahe basis of the arguments [ih3] that the noncanonical dis-
whether the nonextensive thermodynamics of Tsallis mightribution is uniquely of the form established by Tsallis and
also be the proper kind of thermodynamics necessary to exco-workers[6,9]. As attractive as the probabilistic and en-
plain the Maxwell’s demon effect of Zaslavsky was ad-tropic arguments of Ref.13] are, they are not indisputable
and in fact we find herein, using dynamical arguments, that
this is not the case.

*Email address: annunzia@df.unipi.it We show that the adoption of a dynamical approach to
"Email address: grigo@unt.edu thermodynamical equilibrium yields a different conclusion.
*Email address: WestB@aro-emh1.army.mil First of all, we argue that the nonextensive condition based
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on memory, and probably that resting on long-range correlawhereZ, is a normalization factor ang is a constant value
tions as well, has the striking effect of making the role of stemming from the Lagrange multiplier associated with the
dynamics much more important than in the case of ordinargonstraint on the variabbe Note that the expression bF(x)
statistics. The dynamic approach, in these nonextensive coprovided by the authors of RgfL5] is not explicit. In fact, as
ditions, generates a form of noncanonical equilibrium thatshown by Eq(5), it is a functional offlI(x). Thus, in practice
however, departs from the generalized canonical form prethe explicit form ofII(x) has to be established by means of
scribed by nonextensive thermodynamics. To make it easiean iteration procedure. It is remarkable, however, that the
for the reader to follow our arguments and to understand thenicrocanonical derivation from Reff13] results in the same
purpose of the paper, illustrated in Sec. 1D, we shall firstprescription as that of Eq5). From the point of view of the
discuss the different natures of the entropic, dynamic, anissues under discussion here, what matters is the fact that at

stochastic approaches to equilibrium. the end of the iterative proceduly, becomes a well-defined
number. Consequently, the resulting expressiod¢x) is a
A. Nonextensive entropic indicator simple analytical formula that in the asymptotic limjx|

. , —o, with the constraint on the first moment jof|, has the
The argument for the nonextensive thermodynamics of . .

X . ; same structure as that derived in Ré&,
Tsallis goes as follows. First of all, the conventional entropy

of Gibbs, B2—q)

Heo= 1+b(g—1)[x|]¥@=1" ©

S(H)E—J dxIT(x)INTI(x), (1) [1+b(a=1)[x]
Note that the adoption of a constraint on the second moment
is replaced by the nonextensive entropic indicator would lead to
1-TI(x) b(g—1 r'a/(qg-1
sim=[ a2 @ e e
II(x)= : (7)

Bla—1)y21a-1)
Second, we have to apply a method of entropy maximization [1+b(g=1)x7]

u.nder given physical constraints to det_e_rmine th_e most plau— Note that both Eqs(6) and(7) are the result of an earlier
sible shape of the unknown probability density functionrescription, missing the normalization factor present in Eq.
I1(x) [14]. The first constraint is on the normalization of the (4). Nevertheless, it has to be pointed out that both Egjs.
distributionTI(x), and (5) share the characteristic of having long tails with
Lévy statistics. In fact, it is well knowfl] that the anoma-
f dxIT(x)=1. 3) Io_us diffusion processes of th_e"L)e kind in t_h_e one-
dimensional case are characterized by probability distribu-
tions p(x,t) whose Fourier transform in the symmetric case

The second constraint is on the first moment of the variabl(f,e‘,idS

x itself. According to the most recent prescription of Ref.
[15] the constraints o must be applied16] on the mean f)(k,t)zexp(—b|k|“t), @)
valueU,, defined by

wherea is the Lery index ranging, in principle, in the inter-

f dxxI1(x) val 0<a<2, andb denotes the diffusion intensity. The in-
U.= 4) verse Fourier transform qf(k,t) of Eq. (8) is characterized
q ' by the tail[18]
dxIT(x)4
t
lim t , 9
It has to be pointed out that in Réf.5] the physical meaning |X||_m POt [x|1He ©

of x is that of energy. Here, we shall interprets the “co-
ordinate” of an overdamped particle driven by a fluctuation-which would lead immediately to the anomalous entropy in-
dissipation process resulting from the interaction with a nondex

conventional “thermal bath.” When the friction term can be

neglected we are expected to recover the results of the earlier q=1+1U1+a). (10
work of Ref.[5]. Thus, for the same reasofk7] as those
illustrated in Ref[5] we set a constraint on the first moment
of |x|. The result of entropy maximization subject to the
imposed constraints of E@4) yields

We have to stress, however, that except for the easd
corresponding to the ballistic limit, the central part of the
distribution produced by the Mg process of Eq(8) cannot
be expressed in an analytical form and can significantly de-
-~ 1(1-q) part from the analytical form of both Eqé&) and (5). The
M(x)=| 1— (1=q)b(x—=U,) / Z,, (5) adoption of the prescription of Eq7) is expected to yie_Id
f AXIT(x)0 better agreement, but, as we shall see subsequently, it does
not seem to be compatible with the nature of the dynamical
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FIG. 1. Comparison of a lwy distribution(solid line) with dis-
tributions obtained by maximizing Tsallis entrogglashed lines
The Levy curve is obtained by the inverse Fourier transfornvle
characteristic function witlv=1.5, b=4.4x10". The asymptote
is proportional to 425, The long-dashed line comes from H@)
with the constraint on the first momenb+0.004,q=1.4). The

short-dashed line comes from E() with the constraint on the
second momentb(=1.4x10"%, q=1.8). The values of the param-

eterb are selected, in both cases, so as to fit the asymptotic beha

jor of the Levy distribution. This constraint results in significant
departures from the vy distribution at small and intermediate dis-
tances.

approach to equilibrium. In Fig. 1 we compare thévye
distribution to both the prediction of Eq&®) and(7) and find

that there exists a significant disagreement between Tsallis

and Levy statistics, even though some authptg] refer to

them as equivalent. In this paper we focus our attention on
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scription of the evolution of the probability density in phase
space. Many attempts have been made in the literature to
derive this equatiorj21-25. However, all these attempts
rest on the assumption that the bath, responsible for the
Brownian behavior of the particle of interest, is given by a
set of harmonic oscillators. This means that a statistical as-
sumption must be made on the initial condition of the bath,
which is arbitrarily given a canonical equilibrium distribu-
tion, corresponding to a given temperatdref the thermal
bath.

Consequently, this kind of approach to Brownian motion
is only partially dynamical, since significant use is already
made of statistical mechanics and thus of thermodynamics
[26]. The authors of Ref[20] adopted a totally different
approach. They assumed that a given oscillator, playing the
role of a stochastic Brownian particle, interacts with another
Hamiltonian system, which should play the role of a bath.
They called this second systembaoster to stress that the
ensuing approach has to rest only on the dynamical proper-
ties of this kind of bath with no use whatsoever of thermo-
dynamical arguments. After establishing the dynamical con-
ditions ensuring the validity of the Fokker-Planck equation,
it is found that the oscillator of interest reaches a canonical
equilibrium distribution. Due to the nature of the procedure
adopted the width of this canonical distribution depends only
on the parameters of the Hamiltonian system under study.
Consequently, it is possible to derive a mechanical expres-
sion for temperature. This is the key result of REZ0],
which reads

J J . o
kgT= [E InA(E) + E |n{<§2>eq Rq@§(w)]}}
(1)

the origin of the difference between the two kinds of statis-Ngte that¢ denotes theloorwayvariable, namely, the vari-
tics. Our dynamic approach leads to a form of equilibriumapje of the booster through which the interaction between the

that is stable, in the sense of théweGnedenko theorem
[19], while the generalized canonical equilibrium of E§)

is not. This is evident in the free case, due to the differenc

between the Tsallis and the e structure. In Sec. Il we

prove that this is so also in the presence of a feedback, wit

the system of interest, of the generator of fluctuations.

B. From dynamics to thermodynamics

booster and the oscillator of interest is established. The sym-

$ol <i>§(w) denotes the Laplace transform of the correlation

unction of ¢ evaluated at the oscillation frequency of the
Rscillator. The structure of this expression reflects the appli-
cation of linear response theof20]. The correlation func-
tion whose Laplace transform is in E@ll) is evaluated
assuming the booster to be in a microcanonical equilibrium
with energyE and this condition is not affected by the inter-

We are convinced that there are no incontrovertible rea@ction with the oscillator. The symbdk(E) denotes the

sons why the canonical distribution should be the uniquéUmber of states of the booster in the same physical condi-
form of thermodynamic equilibrium, and on this issue we!ion, and consequently, obeys the ordinary prescrip

essentially agree with the point of view of Abe and Rajago-
pal [13]. However, we are equally convinced that the gener-

alized canonical form of Eq5) does not satisfy the stable
conditions necessary for kg statistics, and the results of the

A(E)=<EN?, (12

whereN is the number of degrees of freedom in the booster.
The authors of Ref20] note that forN— oo,

present paper can be thought of as providing plausible evi-

dence of that. To substantiate this view with dynamical ar-
guments, it is convenient to concisely review the results of

an earlier worl 20].

d d
JEIM(EeaREP (@)} < 2 INAE). (13

The ambitious purpose of this earlier work was that of This means that in the limiting case of infinitely many de-
reversing the path from thermodynamics to mechanics estalgrees of freedom the predictions of Boltzmann are recovered:

lished by Boltzmann. The main idea behind Re&X0] is as

follows. The Fokker-Planck equation is a well-known de-

1/(kgT)=(0/9E)[In AE]. Note that the condition of E{13)
holds true if the doorway variablg depends on a number of
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particles, which is kept fixed witN— oo, In other words, the short-range interaction. We can also observe that in this case
condition of Eqg.(13), or equivalently Boltzmann'’s principle, the use of dynamical arguments yields the same conclusions
rests on an interaction condition, which is crucial for theas the very simple argument based on the law of large num-
extensive statistical mechanics perspective to apply. bers. The advocates of the law of large numbers for the foun-
Let us see this aspect in detail. In REZ0] the booster is  dation of statistical mechani¢80] might judge the dynami-
the the well-known Fermi-Pasta-UlaffFPU) system[28].  cal perspective to be of limited use. We prefer to interpret the
This is a chain of particles interacting with one another viaconclusion of Ref{20] as proof that in the extensive case the
nonlinear interactions. Let us consider two opposite condi€anonical distribution description of thermodynamic equilib-
tions. In the former, which is the one adopted in Re0], rium is unique. The numerical work of R¢R0] shows that
the oscillator of interest interacts only with the first particleit is very difficult to detect the dynamical corrections to the
of the FPU chain. In the latter the oscillator of interest inter-Boltzmann principle illustrated by Eq11) from within an
acts with all the particles of the FPU chain with interactionextensive perspective. This is so because the dynamical cor-
strength of comparable intensities. The former condition refections become significant when the booster is small and as
fers to a short-range interaction, confined to the positions o€learly pointed out by the recent work of Gross and Votya-
the oscillator of interest and to the first particle of the FPUkov [31], a small system is essentially nonextensive. Thus,
chain. In the latter condition, the interaction extends over thehe numerical findings of Ref20] refer to a condition very
whole FPU chain. It is evident that the former condition fits close to the breakdown of the extensive condition and con-
the inequality of Eq(13), whereas the latter does not. This sequently of the canonical equilibrium on which E4l)
means that the latter condition results in a nonextensive formests. This means that the dynamical approach can be of
of dynamics, with a consequent breakdown of the prescripgreat utility. In the case of nonextensive statistical mechan-
tions of ordinary statistical mechanics. The former conditionics, the dynamic approach is probably the only nonambigu-
on the contrary, foN— o, recovers ordinary statistical me- ous way to address the subtle issues posed by the entropic
chanics. This suggests that the dynamical corrections to thend probabilistic methods.
Boltzmann principle, recorded in Ref20] for relatively
small values oN, are a manifestation of incipient nonexten- C. Stochastic dynamics
sive statistical mechanics, and so are very close to the break-

down of the Fokker-Planck treatment on which the analysis In this section we expla_un the nature of_ou_r dY”am'C"?"
approach to the noncanonical equilibrium distribution. This

of Ref.[20] rests. Note that when we assign to the oscillator .
of inter[est] a very low frequency compa?e d to the boosteFlpproach rests on a stochastic method adapted to the need of

) ) -~ . realizing a dichotomous variablé with the two possible
frequencies, the quantity Re(w)] turns out to virtually 5465w and — W and with the waiting-time distribution
coincide with the time scal&,,., Of the variable¢ defined

by (BT H(B+1)
- #) (BT+1)2*F 40
TmicroEJ Dy (t)dt<<oe. (14
0 where 8 ranges in the interval of Eq.16). Note that the
Herein we focus our attention on the case where parametei is of crucial importance to define the time scale
of our process and corresponds to the mean residence time in
lim @ .(t) = constt? (15  either of the two states of the velocity varialdleln accor-
te dance with the prescriptions of RgR9] this waiting-time
with distribution yields the kind of correlation functich(t) that
we plan to study hereifsee Eq.(15)]. In fact, as shown in
0<pB<1. (16) Ref.[29], the form of Eq.(17) yields the correlation function
The inverse power law form of the correlation function (BT)?
means that we select time memory as the source of violation (1) = (ﬁ?—ﬂ)ﬁ’ (18)

of extensivity, rather than long-range spatial interactions.

The parametefncr, denotes the correlation time of the fitting the asymptotic time limit of Eq(15). This condition
fluctuating variable¢. Here we consider the dichotomous can be considered as the natural one-dimensional counterpart
case, where the variabl¢ has two distinct valueSV and  of the two-dimensional billiards of Zaslavskg2]. From this

—W with ﬂuctuating time durations. The correlation function point of VieW, our commitment to the adoption of a mere'y
®(t) is proven[29] to be proportional to the second time gynamical approach is not broken, since the stochastic ap-
derivative of the distribution of waiting times in the two proach that will be adopted in Secs. Il and IIl is statistically
states of the variablé. This fu_nction, as we shall see in Sec. equiva|ent to the adoption of the intermittent map of Ref.

I C, depends on another timieas well as ong. [33], on which the theoretical work of Reff5] is based.

In conclusion, the work of Ref20] establishes the dy- We stress that the equivalence between a dynamical map
namical conditions necessary to derive canonical equiliband a stochastic process is the reason why contact can be
rium. The authors prove that canonical equilibrium impliesestablished between the dynamical and the entropic ap-
an interaction with a booster with a finite time scale and gproaches. In fact, as shown in REF] the nonextensive Tsal-
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lis entropic indicator serves the purpose of guessing the mosthere the booster does not fulfill the key condition of Eq.
convenient form for the transition probabilify(x), whichis  (14), that is, the microscopic relaxation time diverges, and
then related to the waiting-time distributi@f(t) through the  we want to assess whether or not this divergence leads to the
basic property generalized canonical distribution of E¢). We aim at an-
swering the question: Which is the form of the equilibrium
distribution reached by the system of interest when the time
scale of theboosteris infinite?

To answer this question we do not adopt, as done in Ref.
The factor of 1/2 takes into account the fact that the prob{20], a Hamiltonian approach. This approach is difficult for
ability of making the jumpx is equal to that of making the obvious reasons. A numerical simulation check of the theo-
jump —x, namely, the jump in the opposite direction. The retical prediction would imply technical difficulties caused
authors of Ref[5] show that the left-hand term of this equal- by the slowness of the booster itself. This means that the
ity, Eq. (19), can be predicted using entropic arguments.anomalous booster is replaced, as done in earlier papers
while the right-hand term of the same equation is dictated by34 35, by a generator of a dichotomous fluctuation with an
dynamical arguments based on the intermittent map of Refnverse power law distribution of waiting times. The essen-
[33]. These dynamical arguments are supplemented by thgal ingredient of the approach of R¢R0], not yet present in
assumption of random injection of the trajectory from thethe dynamical derivation of a free g diffusion, is a feed-
chaotic into the laminar region of the intermittent map, anback of the diffusing variable on the generator of the fluc-
argument leading to an analytical prediction #ft) in com- tuations. This aspect has already been considered in the ear-
plete agreement with the numerical observation of dynamictier work of Ref.[34]. However, in that paper the dynamical
[33]. approach to the feedback was replaced by a phenomenologi-

The earlier work of Ref[5] established that the adoption cal friction, which did not allow the authors of that paper to
of the method of entropy maximization applied to the non-keep the promise of resting solely on dynamical arguments at
extensive entropy of Eq2) results in a form ofI(x), which  any level. In conclusion, we adopt the program of R,
is compatible with the birth of Ly statistics. However, the based on the observation of the fluctuation-dissipation pro-
II(x) thus derived is not the equilibrium distribution of the cess caused by the interaction of a particle with a booster
variablex. Rather it is the probability for the random walker having no finite time scale. The presence of feedback serves
to make a jump of lengthx|. This is a stationary property the purpose of balancing the diffusion process with dissipa-
determined by the special kind of booster under study hereion so as to result eventually in an equilibrium condition.
The en§uing diffusion process yields aviydform as a result With the program of Ref[20] in mind, we have to refer
of the Levy-Gnedenko theoreifl9]. As shown in Fig. 1, the ourselves to the correlation function, E@8), with the index
shape of this distribution departs from the form of the gen-g fulfilling the condition of Eq.(16), and so implying the
eralized canonical distribution of E¢5), even if we adopt breakdown of the time-scale separation between the macro-
the constraint on the second moment, in spite of the fact thascopic and the microscopic levels. The realization of the pro-
it does not fit the nature of the dynamical approach illus-gram of statistical mechanics requires an accurate definition
trated here. of the process of memory erasure associated with the transi-

To account for this discrepancy we might make the contion from one to the other velocity staf86]. This is more
jecture that the comparison between thevy statistics and  conveniently defined by the waiting-time distributigt) of
the Tsallis generalized canonical distribution is not appropri£q. (17), than by the correlation function of E(L8). We see
ate. The former refers to a diffusion process and the latter t5¢ even if the condition of Eq(16) applies, the timeT

an alleged equilibrium condition. Actually, after exploring _ (., dtr e i : :
. L ' ) = emains finite. Memory of microscopic dynam-
this possibility we shall conclude that the latter, at least in Jotw (V) — y pic dy

the case of the dynamic model of the present paper, cann&ﬁsp'\s lﬁfSt in tme;t%T. . lai
reflect an equilibrium property. However, at the present At IS stage it is convenient to support our claim con-

stage, we are forced to develop a picture comparable to th&?”?ing_ memory erasure with arguments borrowed from the
of the earlier work of Ref[20]. We have to study a case earlier investigation of Gaspard and Wal8y]. These au-

where the variablet not only undergoes the influence of the thors studied the Kolmogorov complexity of the Manneville

diffusion producing fluctuations, but it produces a feedback"aP. anldffound t.hat inf t?e regime corres;?]ondingl] to the dy-
on its own “bath,” balancing the diffusion process so as tona@mical foundation of Ley processes, the Kolmogorov

create an equilibrium condition. This is the condition to Com_cpmplexity is a linear function o_f_time. This means that at a
pare to the generalized canonical distribution of E5). In given timet the number of transmonﬂ from the one to the
other words, to address, from a dynamical perspective, thether laminar region is given bylct/T. This means that for
issues recently dealt with by Abe and Rajagopk] we t— the conditions for the realization of the generalized

cannot disregard the feedback from the system to thaersion of the central limit theorem are fulfilled, since the
“bath.” function defined by

TI(x)= %zﬁ(x/W)/W. (19)

D. Purpose of the present paper POGM)=ITOO*IL(X)™ - - * IH(X)* Pin(X), (20

At this stage it is much easier for us to illustrate the mainwherg the asterisk denotes a convolution,Nbr- tends to
purpose of the present paper. We want to explore a conditiothe Levy distribution. One might be tempted to make the
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conjecture that in the presence of feedback the nunvber an integer indexX running from 1 to+oo. At the end of any
cannot increase beyond some limit, and that equilibrium isojourn the variable can either change its value, and thus
reached with a relatively low value &l so as to allow the make a transition froVto —W or from —W to W, or it can
distribution to maintain the structure of a generalized canonikeep its original value. The probability of changing values
cal distribution in the manner of Tsallis. In this paper we and that of keeping the same value are equal, and thus equal
limit our analysis to the case where the linear responséo 1/2. We can interpret the variabfét) as a function of the
theory of Sec. Il holds true. This forces us to adopt a feedcontinuous time by adopting the following prescription:

back so weak that this possibility does not emerge from our
simulations.

D=2 &ty gy, (D, (22)

II. DYNAMICAL MODEL
where the timeg, andt,,,; denote the beginning and the

The dynamical model studied here depends on a proceghding time of thekth sojourn, respectively, and the values
of free diffusion with feedback, established through controlg, are randomly assigned either the vaMéor the value

of a dynamical parameter of the booster. This feedback pro-_yy ith equal probability andy; M)=1 if t,<t
k

cess has the role of balancing diffusion so as to realize dy—<t The sequel of the timet, is ﬁ')t(kgé by the waiting
k+1- -

namically the equilibrium condition. We illustrate first the . density distributi b lect ) | ‘
dynamical model used as the generator of free diffusion, the me density distribu onj Dy Selecling a given value, o
the interval [ 7,7+ €] with e<1 with the probability

how how the f Ki li finall illus-
we show how the feedback is realized, and finally we illus () e. The waiting-time distributiony is assigned an in-

trate the numerical technique adopted. . i .
g P verse power law form determined by the constraint of yield-

A Free diffusion ing the correlation function

Formally free diffusion is realized using the equation of (BT)A
motion P)=—="—, (23)
(BT+1)
dx(t) . . - . -
TR £(t). (21)  Wwhereg is a positive number determining the integrability of

the correlation function. If8>1, the correlation function,

. . . . Eq.(23), is integrable and the micr ic tim |
Here the dynamical variablg(t) denotes either a spatial 9. (23), Is integrable and the microscopic time scale

coordinate or a velocity. In the former case the variagly " BT
has to be considered a fluctuating velocity, while in the latter TmicroEf P (t)dt= — (24)
case it is regarded as a fluctuating acceleration. The results 0 -1

are equivalent, and the reader can adopt either of them, even ! _
if we considerx(t) to be a spatial coordinate so as to makeCan be defined. According to Ref&9,29 the form of y(t)

the connection with earlier worf6] more natural. is determined by that ob(t) through the relation

We assume the variablt) to be dichotomous, namely, 42
we shall assign to this variable only two distinct values, ei- sl/(t):?—fb (1) (25)
ther W or —W. The motivation for this choice is not only dz &

simplicity, but also has to do with the main purpose of this
paper, that of assessing the specific form the noncanonicsthich yields

equilibrium, and also of course, and prior to this purpose, o
that of proving that deviations from canonical equilibrium (B+1)(BT)A*L
can be generated as a consequence of the breakdown of the (V= (,8?+t)5+2
ordinary condition of time-scale separation between macro-
scopic and microscopic processes. In the limiting case Wher\c-;v

the variableé(t) is Gaussian, and consequently produces ?26) is the mean sojourn time. Thus, in some sense, when the

G_au55|an equ_lllbrlum c_hstrlbutlofBB]_, the resyltl_ng d'ﬁu'. microscopic time of Eq(24) becomes infinite, the role of the
sion process is Gaussian and the final equilibrium distribu- —

tion can turn out to be Gaussian as W], as a result of Microscopic time scale is played By
having established a seed of ordinary statistics at the micro- BY integration of Eq(21) we get

(26)

e note that the parametErappearing in both Eq$23) and

scopic level. For this reason the choice of microscopic sta- n—1
tistics, departing from the ordinary statistical condition is _

! . . . X(t)=&p(t—t )+ E , 2
crucial, and the adoption of the dichotomous assumption (O=&(t=th-) k=0 SicTi @)

serves the purpose of eventually establishing a noncanonical

equilibrium. wheret is a time located in the intervét, _;,t, 1+ 7,] with
The variableg(t) keeps one of the two possible values fortn,leE;éfk, in accordance with the earlier prescriptions.

times with a random duration. Thus, a statistical treatmenEurthermore, the transition probability of Sec. | A is obvi-

must be adopted and a waiting-time distributipft) is used. ously related to the waiting-time distribution of EL9).

The time intervals of sojourn in a given state are labeled byNote that, as discussed in detail in R¢f%,35,4Q, there are
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two distinct basins of attraction for the diffusion process re-With the linear response hypothesis inserted into(B@). the
sulting from the repeated occurrence of the transition processquation for the regularized process
of Eq. (19), the Gauss basin fg8>1 and the Lgy basin for N
B<1. dep(t) _
dt - ‘yXTP(t) (32)

B. The booster linear response and diffusion control

To control diffusion in such a way so as to generate as obtained. The solutioﬁTP(t):x(O)e*V‘ shows a relax-
known equilibrium distribution we adopt a model based onation toward the equilibriunx=0, on a time scal@g=1/y.

replacing Eqg.(21) with The analogy with a stochastic equation, such as the
dx(t) Ornstein-Uhlenbeck or its extension toJyenoise[41], is
%:fx(t), (29 completed by adding a fictitious stochastic ncxiﬁjqp(t) in

Eqg. (32) that summarizes the fluctuations on the time scale
which means that the motion of the fluctuating variaglg) T, and that compensates for the approximation inserted into
also depends on the value of the dynamic variabléVe Eq. (30),
make the simplifying assumption that thelaxation timeor _ ~ _
response time of the boostdrg, is shorter than that of the dxr (1) =—yxr (Ddt+dér (1). (33
particle of interestTr, so as to ensure for the boostetirae ) ] ]
dependent equilibrium conditiodetermined by the state of Hence, with the assumptions of linear response theory and
the system of interest. In other words, the booster is assumédfe relaxation times of the thermal bath faster than of that of
to be in a condition of equilibrium determined by the vari- the variable of interesfpartial equilibrium, a diffusive pro-
able x. As the variablex moves from an initial condition c€ss becomes an equilibrium process. We emphasize that the
x(0) out of equilibrium state, i.e., from a position larger than@nalogy(33) is true only if
the fluctuations ofx itself, to the final equilibrium, the 1
booster correspondingly moves from an equilibrium to an- Te<T,<Tr=7y " (34)
other equilibrium condition. All this is illustrated by the fol-
lowing mathematical arguments. These arguments do ng
aim at providing a rigorous mathematical treatment, but
rather a heuristic treatment reflecting the physical condition
that we are assigning to the booster. with respect to the fluctuatiorgs (t). This limit corresponds

To make the analysis in terms of a strictly stochastic proyg free diffusion for which the central limit theorefgener-
cess, we build up the following regularized process(t),  alized or not can be used. The distribution is Gaussian or

y using this simplified analysis it is also possible to make
ualitative predictions about the equilibrium distribution.

When x=0, the feedback— ﬁ(Tﬂ(t) can be neglected

defined by Levy’s according to whether the correlation function is inte-
grable or not.
dxr () x(t)—x(t-T,) 1 (t When |x|>0 the feedback terni31) prevails over fluc-
L= £ —— & (tHdt’ tuations in Eq.(33). Then the dynamical variable is pushed
dt T T =T, back to values near the equilibrium~0 as an attractive

1 (t field quenching the diffusion. This description corresponds,
= _?J' &(t")dt’, (290  at least for the regiofx|<W/ vy, to what one could obtain if
Pl Ty in Eq. (33 the fictitious noiseETP(t) is simply stochastic
whereT , is a regularization time and in the last equivalencel[41]. - ' o ' _
it has been explicited the spatial dependence of the noise on The condition(31) is satisfied when the time evolution of
X. This new process has the characteristics af{t) in the  &x IS replaced by the stochastic varialiieappearing in Eq.
mean, but its fluctuations are smoothed by using the tempd22) With the the stochastic variablg(x,), which has two

ral mean. distinct values with the same probability,
If the response timé&g of the bath is fast and if , is long _
Suled W (Xi) = W— yXg,
enough, but always smaller than relaxation tiife of the E(X) = (35)
variable x, one can suppose that the phase space mean is W_ (X)) = = W—yXy.

almost equivalent to the temporal mean, . .
Inthe time scald,, we can replace the variab§g(t) of Eq.

dxr (1) 1 ft (28) with its average over the faster bath fluctuations, and
P —_ ~(t")dt ~( & thus with
i WL (R
1
Now, assuming linear response is valid, the mean value of (6= S [W=yx=(W+yx)]=—x. (36)

the thermal bath variable depends oms
5 In Fig. 2 we show a sample trajectory corresponding to
(&)= —yX. (31)  the dynamic prescriptions of E¢35). In the lateral region,
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x(t) time, assumed to correspond to equilibrium, is obtained by
500 ' ' ' ' generating a sufficiently large number of trajectories and
constructing a histogram.

600 |

Ill. THEORETICAL PREDICTION

200 ] A\A‘ We are now in a position to demonstrate that in the case
A o / % ‘-\I of extremely weak feedback the resulting equilibrium distri-
°T / / ‘\f/";/'j /\‘v |y J bution is Levy. There are no compelling theoretical predic-
0 A AN ) A [ tions in the case of strong feedback, except the heuristic
\ [ j arguments used in Sec. I.
aol ] \ / | According to the strategy adopted in RE20] the theo-
“'\f' \ / retical approach to friction implies the treatment of the re-
600 N . . . sponse of the booster to an abruptly applied external pertur-
0 2000 4000 6000 8000y 100 bation. Using the notation adopted in REF0], this has to do
with the solution to the equation of motion

FIG. 2. Sample trajectory for the diffusion process with feed-
back defined in Eq(28). The solid and dashed lines denote the P
statesw, andW_, respectlve!y. See _E(QSS) fqr f[he definition of _ —p(E)=T(K)p(&,1), (37
these two states. The two horizontal lines defining the central stripe ot
correspond to the level®V/y and —W/y. The parameters used o )
have the values=5x10"3, W=1, B=0.5, T=50. wherel’(K) denotes the operator driving the motion of the

probability distributionp(&,t) in the presence of a perturba-
tion of intensity K. We assume that this operator can be

after the end of the state that has pushed the trajectory oufyressed as the sum of an unperturbed and a perturbed part,
side the central region, the slope assigned to the trajectory by

the ensuing states have always the same sign, either negative I'(K)=Ty+KI'y, (39)

for the top region or positive for the bottom region. This is a

consequence of the definition itself of side regions and cenwhereI’, denotes the operator driving the unperturbed mo-
tral stripe, the former being those characterized |By tion of the variable¢ and KI'; denotes the operator corre-
>W/y and the latter referring tix| <W/y. The final effect sponding to the perturbation. The intensity of this perturba-
is that the trajectories that have exited the central region argon can be freely changed by modifying the size of the
steadily brought back to it. We see that, on the contrary, irparameterK. We apply the perturbation abruptly at tinie
the central region the trajectory fluctuates back and forth=0 to the booster, assumed to be in the equilibrium state
more or less as it would do in the case of free diffusion. Thispeq- The perturbation strength is assumed to be so weak as
is perhaps the intuitive reason why the linear response theoit make it possible to solve E(87) at the first-order pertur-

of Sec. Ill, referring to a central region of extremely large bation,

size, makes the system’s statistics fall in thevy.dasin of

attraction as it does in the free cd$5]. J
48] o ED=Tops(£0+KT 1po, (39

C. Computer simulation wherepg andp; denote the zeroth- and the first-order distri-

The computer simulations are done generating the trajed2ution density, respectively. We assume that the system be-
tories of Eq.(27) with the assumption that the values ft_:Jre the abrupt perturbation is in thermodynamic equilib-

W, (x) =W— yx, and W_(x,) = —W— yx, have the same um- This means that we _identifyo .with Peq, Which is
probability. The distribution of sojourn times in one of these@SSumed to fulfill the following equation:

two states is given by the functian(t) of Eq. (26), which,

in turn, is realized by a suitable nonlinear transformation of a Fopeq=0. (40)
variable with a uniform distribution in the intervi0,1] ob- . .

tained by a standard routine for the generation of randon] "€ formal solution to Eq(39) is

numbers. It has to be pointed out that the value of either .

W, (%) or W_(xy) is determined by the value that the vari- _ / 4 /

ablex has at the moment when a new state is established and pal&) Kfodt XL lo(t=t) I apo(£:t")

it is kept fixed until the end of the sojourn in this state, .

namely, its value is fixed in the intervg, ,t,.1]. Each tra- _ / / Y

jectoryyis generated according to the intl:aglr(allofaa}) with Kfodt Xl ot )Tapo(&,t—t1)

the initial conditionx(0)=0 and it is observed until the time

T:=20/y>Tg. At this time the value is recorded in the form =Kftdt’exp(l" ') yp (41)
of a histogram. The distribution of the variablat this final 0 0" 7% 1Pear
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We assume that at equilibrium the mean valué ghnishes. nary linear response theory breaks down and a new form of
As a consequence, E(1) yields linear response to perturbation shows up, which, however,
. cannot be expressed in terms of unperturbed dynamics. This
_ N means that the response depends on the dynamical model
(£0) KfOC(t yar’, (“42) adopted and must be established through numerical integra-
tion.
where In conclusion, using the strategy of RE20] we find that
in the presence of feedback the free diffusion process
C(y=(&exp(I'ot)"1)eq- (43

: : . L dx/dt=¢ (49
This concise expression means a trace @vef the distribu-
tion obtained by applying tp. first the perturbation opera- must be replaced with
tor I'y, then the unperturbed time evolution operator
exp([ot) and finally the variablée itself. dx/dt=(&(t))x+ &, (50)
In the case of ordinary statistical mechanics one usuall
makes the assumption that the variabldas Gaussian sta-
tistics. This means a continuous variable driven by both th
unperturbed stochastic environment and by the perturbatio
of intensityK. To define the action of the perturbation on the
time evolution of thef trajectory, let us switch off the influ-
ence of the stochastic environment. In this case the perturb
tion action would be expressed ly/dt=K. Moving from
the Heisenberg-like to the Scluinger-like representation,
we would obtain ¢/dt)[ p(&,t)]1=K(d/d&)[p(§,1)], which

Yhere we have divided the current, in accordance with linear
esponse theory into the sum of two terms. The zeroth-order
‘{grm is given by the fluctuatiof assumed to be in the same
unperturbed condition as in E¢49). The first-order term is
(&(t)y). Although the variablet sojourns for long times in
gne of the two-velocity states, we assume the feedback to be
So weak as to be compatible with making many jumps
from one velocity state to the other while the value of the
variablex remains essentially unchanged. On the other hand,

implies that the perturbation operator is setting[20]
p K=—A%x (51)
Fl:a_g' (44 whereA? is a constant, we obtain
Note that in the Gaussian cagg,(§) is a Gaussian distribu- dx/dt=—yx(t)+&(t) (52
tion proportional to exp-£%/(2(£%),)]. Consequently
C(t) of Eqg. (43) becomes and
Clt)=d (1), (45) y=A4%, (53
Note that the susceptibilityy being defined by
d{x(t))/dt=(£(t)) (46) = f “Cdt 54
0
and that, in the absence of perturbations, with all the trajec-
tories starting ak=0, We are now in a position to address the problem under
. ) discussion here via three approximation steps.
<X2(t)>0=2<§2>eqf dt’ft dt'd (7). (47) (i) We replace Eq(52) with
0 0
dx/dt=— yx(t)+ (1), (55)

We adopt the subscript O to indicate that the time evolution ] i . ] ]

of the second moment takes place in the absence of pertufthere is a Levy noise[41]. This means that the variabig
bations. Using Eqg46), (47), and(42) supplemented by Eq. inone single time stgp prodgces jumps pro_portlonal t(_) those
(45) and setting equal to zero an arbitrary integration con®roduced by the variablg sojourning for a time = »/W in
stant so as to ensure a response proportional to the perturgd?e of the two velocity statg$4,35).

tion strength, we arrive at (i) We make a numerical simulation of EG2).
(i) We make a completely dynamical treatment of the
(X(1))=K(X2(1))o/(2(£%)eq).- (48)  whole fluctuation-dissipation process.

We shall refer to approximatiofi) as thestochastic ap-
This equation is a generalized Einstein relatf[d2], more  proximation The advantage of this approximation is that Eq.
recently discussed by Barkai and Fleuf@a3]. (52) is made equivalent to an equation studied years ago by
It is evident that the ordinary conditioq@8) cannot apply  West and Seshadfi41].The stochastic force results in a

in the case under study here corresponding to the conditionshase space operator equivalent to a fractional derivative of
(15 and(16). In fact, in this latter case the adoption of the order «, with

ordinary linear response relation would yield an infinite cur-
rent. Earlier investigatiof44] has established that the ordi- a=pB+1. (56)
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Thus, it is possible to shoj#1] (see also Ref§36,35 for a P(x)

more recent discussion of the same problémat the Fourier
transform of the distribution density(x,t), o(k,t) reads 10-1 b
O (k)= | blK| ™+ yk—| 5k 5 102
EO-( !t)_ | | Y % 0-( 1t)1 ( 7) i
which yields the following characteristic function 107 ¢
. 1-e " -]
otk —— == e sy
ay
. L . 1075 L
which for no dissipation has the familiar form

. 200000 -150000 -100000 50000 O 50000 100000 150000 200000 250000
lim Ino(k,t)=—tb|k| . (59 e
y=0 FIG. 3. The equilibrium distribution in the 'g's basin of at-
traction. The full line histograms refer to the numerical simulation
with 8=0.5, y= 107°, W=1, T=50. We set the bin size equal to
2000. The dashed line histograms illustrate the result of the numeri-
~ b|k|“ . cal simulation of the dissipative g walk of Eq.(52). The predic-

o (Kk,) exp( ) b, Ik

However, asymptotically, in time we obtain the equilibrium
condition

(60) tion of the stochastic approximation, or equivalently of the WS
statistics, is denoted by means of the heavily dashed line. To make
the figure less heavy we plot only the left part of the distribution
predicted by the WS statistics. The WS equilibrium is obtained by
evaluating the inverse Fourier transform of E@O0) with b,
=417771,a=1.5, andy=10"°. This is the value ob, that ac-
cording to the theoretical prediction of E@1) corresponds to the
parameters of the dynamical treatment. The inset shows, for clarity,
the enlarged portion of the figure corresponding toxfaxis inter-

val [ —20000,20 000 The enlargement of the ordinates is done
IV. THE NUMERICAL SIMULATION after conversion to a linear scale.

The second equality defines the equilibrium paramle;emf
the Levy characteristic function. Approximatiofii) is re-
ferred to as thealissipativeLévy walk, and has already been
discussed in an earlier wofB4,35, where it was shown that
in the limiting case ofy—0 it leads to an equilibrium dis-
tribution equivalent to that of Eq60).

An interesting result of the numerical simulation of the where the parametds, of Eq. (60) is calculated with the
dynamical model is that the equilibrium distribution is not following formula[35]:
uniquely determined. The condition of weak feedback yields
a distribution that has properties different from those of the W( BTW) _
equilibrium distribution stemming from the condition of b,= ( B)F(l B), (61)
B+ °
strong feedback.

The numerical simulation of the dynamical model can be

done both in the case of weak and strong feedback. Interes\thereT ?nd,? arevc\j/eflned ;2 Eq(zfg andI'(-) is t?e E(ijlgr th
ing new effects are revealed by the simulation of the case ggamma function. vve see that in the region enclosed by the
strong feedback. However, these are left as a subject fot?eaks a very good accordance among these three distinct
future theoretical discussions. Here we illustrate only the p?:roachedzrs 'lsl‘ mtde;ad f?#nd twation in the G basin of
simulation results concerning the case of weak feedback. Ac- \gure « tlustrates the S.' uation in the Lauss basin o
cording to the program of Ref20], we have developed a attraction. In this case the side peaks of the dissipative walk

theory resting on the linear response theory, although in th sappt_aar. The counterpart of the WS statistics here IS the
nonconventional form of Sec. Il and consequently on the rnstein-Uhlenbeck statisti¢d41], already used in an earlier

assumption of a very weak feedback. Therefore, the simul ubI|cat|on[35] to predict the form of equilibrium distribu-
tion results here discussed refer to a case of feedback S in the Gauss basin of attractlon We use the same pre-
weak as to ensure that the requirements of Sec. Il are ful® iction where the variance? is
filled. =

Figure 3 refers to the lug basin of attraction. We notice o2m BWT 62
that the dissipative vy walk results in pronounced peaks. y(B—1)
These peaks are produced by the fact that the trajectories
cannot overcross the values- = W/\. These peaks signal and we find that the agreement with the other two treatments
the region within which a good agreement among the fullyis again very good.
dynamic treatment, the dissipative wewalk, and the sto- We are convinced that the simulation results of Fig. 3 are
chastic approximation is expected. Note that, as remarked ia reliable numerical evidence of the fact that the dynamic
Sec. lll, the stochastic approximation is equivalent to theapproach to noncanonical equilibrium yields the analytical
equilibrium of the theory of West and SeshaWS) [41],  form proposed 18 years ago by West and Seshddtj here
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10—5 ol ‘»I-L | o < -200000 -150‘000 -1 0(;000 -50:)00 (‘) z 50(‘)00 100‘000 15(;000 20(;000 250000

-10000 5000 1000

z FIG. 5. Tsallis and WS statistics versus the numerical results.

FIG. 4. The equilibrium distribution in the Gaussian basin of The WS equilibrium is denoted by the heavily dashed line and, as in
attraction. The full line histograms refer to the numerical simulationFig- 3, only the left part of it is illustrated. It corresponds to the
with B=3, y=104, W=1 T=50. We set the bin size equal to inverse Fourier transform of the distribution of E®O) with b,

’ ’ ' . _ _ — —5
120. The dashed line histograms refer to the numerical solution of 41_7 77l,a=15, _andy—__lO_ - The parame@eby was found as
the Gaussian counterpart of HE§2). The heavily dashed line is the in Fig. 3 The Tsallis equilibrium, c_orrespondlng to_the_ proposal of
theoretical prediction of the Ornstein-Uhlenbeck process with Eq.(7), IS |II_letratfed by the do_tted line. Th'e dqtted line 'S plotted so
=7.5x 10° calculated from Eq(62). To make the figure less heavy as to coincide with the heavily dashed line in the region of large

we plot only the left portion of this theoretical prediction. distances *Q:.BX:L(TS: q=1.8). The inset shows, for clarity, the
enlarged portion of the figure corresponding to #axis interval

[—20000,20 00D The enlargement of the ordinates is done after

L . o conversion to a linear scale.
referred to as WS statistics. However, Tsallis statistics and

WS statistics have in common the analytical shape of they noncanonical equilibrium apparently yields a better agree-
tails, which is an inverse power law. This might suggest thatyent with our numerical results, is probably a nonstationary
the accordance between our simulation results and Tsa"'r%gion which depends on the observation time. We do not
statistics is as satisfactory as, or more satisfactory than, the, o y,et any theory concerning this region, but we have the

accordance with the WS statistics. We now show that it i§agit"of the numerical observation. The numerical simula-
not so, and that the accordance of our results with Tsallis

statistics is much less satisfactory than with the WS statis—,,,(x)
tics. According to the spirit of our dynamic approach, the
comparison should be done with the Tsallis form of equilib-
rium corresponding to a constraint on the first momenkpf 107t
This would produce a more significant departure from the
WS statistics, and from our simulation results, the WS sta-10-2}
tistics being, in fact, a Ly form of equilibrium statistics.
The reader can easily be convinced about this property by,,-s|
observing Fig. 1. Thus, we decided to discuss the compari-
son between our simulation results and Tsallis statistics
adopting a condition more favorable to the Tsallis statistics,10
namely, the analytical proposal of E).

In Fig. 5 we establish an exact accordance between Tsalli10-}
and WS statistics in the region of large distances. We see the
the WS statistical prescription yields a very satisfactory ac-
cordance with the results of simulation also in the central FIG. 6. Tsallis and WS statistics versus the numerical results.

region, while the Tsallis noncanonical equilibrium does not.rhe ws equilibrium is denoted by the heavily dashed line and, as in
In Fig. 6 we organize the comparison In SUCh a way as Iig. 3, only the left part of it is illustrated. It corresponds to the
produce the best fitting between Tsallis statistics and OUjnverse Fourier transform of the distribution of E@0) with b,
simulation in the central part of the equilibrium distribution. =417 771, «=1.5, andy=10"5. The Tsallis equilibrium, corre-
We see that this has the effect of making the discrepancyponding to the proposal of E€), is illustrated by the dotted line
between Tsallis statistics and WS statistics much worse iffp=2x 1078, q=1.8). The dotted line is plotted so as to get the
the region of large distances. We see that our simulatiopest fitting with the heavily dashed line in the central region. The
results are much closer to the WS equilibrium than to thanset shows, for clarity, the enlarged portion of the figure corre-
Tsallis equilibrium. We have to point out, furthermore, thatsponding to the-axis interval] — 20 000,20 00]. The enlargement
the region of large distances in Fig. 6, where the Tsallis formof the ordinates is done after conversion to a linear scale.

-4|

) ) ! ! ! ! ! !
-200000  -150000 -100000  -50000 0 z 50000 100000 150000 200000 250000
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tion shows that this region triggers nonstationary effects dudVest and Seshadfé41]. Also these authorf45] found the
to the fact that the trajectories reaching large distances froriisallis statistics to be incompatible with the non-Gibbsian
the central diffusion region, illustrated in Fig. 2, tend to es-nature of t_he c_orrespondlng stationary solution.
cape forever. This escape process gives rise, in a time scale In a lucid discussion Lebowitg30] has recently restated
that becomes infinitely large upon decrease of the feedbadke point of view of Boltzmann, establishing the microscopic
Strength' to a diffusion process, name|y' to a form of non_or|g|n of irreversible macroscopic behavior. In his view the
equilibrium distribution. adoption of the laws of large numbers is essential, and the
We are convinced that the WS equilibrium is closer to the©le of deterministic chaos becomes important only if it ap-
results of numerical simulation than the Tsallis noncanonicaPli€S t0 @ macroscopic number of noninteracting particles.
equilibrium. We see, however, that in the case of Fig. 6 thé‘ccording to Lebowitz, mixing and ergodicity are notions
departure of the Tsallis prediction from the results of thethat are “unnecessary, misguided, and misleading.” In other
numerical simulation is not so marked as to rule out thisWords, this opinion reflects the conviction mirrored by the
theoretical proposal. In conclusion, if we use only fitting handbooks of statistical mechanics that the unification of me-

arguments, we can select the constraint on the second mgbanics and thermodynamics rests on the conditen,
ment rather than that on the first, as the adoption of theoretvhereN denotes the number of degrees of freedom of the
ical arguments would suggest us to do. Eventually, the situSyStem under study. These statements do not, however, con-

ation would appear as favorable to Tsallis statistics adlict with the results of Refl20] reported in Sec. IB. In fact,
illustrated in Fig. 6. the signature of the dynamical origin of thermodynamics, as

expressed by Eq(ll), is lost in the limiting case of the
thermodynamic limitN— <, thereby making the controversy
between the advocates of mixing and the advocatebl of
The present paper is not just about obtaining the best fit te=co difficult, if not impossible, to substantiate with experi-
a numerical simulation. We aim at deriving equilibrium from mental arguments. This means, in other words, that the ca-
dynamics with no use of thermodynamic arguments. The renonical equilibrium distribution can be derived using simple
sult of our investigation is that equilibrium is dictated by the arguments based only on probabilistic concepts and the law
WS statistics rather than by the Tsallis statistics. This yield®f large numbers, or if we wish, also on the dynamical argu-
a satisfactory agreement with the results of numerical simuments of Ref[20]. If the criterion of simplicity is adopted,
lation with no fitting parameters. The advocates of Tsallisone might be tempted to choose the former approach that
statistics might reach a result as satisfactory as that providddads to the wanted result with little or no effort, while the
by the dynamic theoryeven if we think that actually it is second approach yields the same conclusion after many com-
less satisfactofyonly by using fitting parameters. This paper plicated calculations based on assumed dynamical properties,
results in two important facts. The first is a numerical simu-that only in a few cases has been rigorously proved.
lation yielding a noncanonical equilibrium. The second is a The present paper shows how to extend to the case of
theory to account for this noncanonical equilibrium. The the-boosters with no finite time scale the program of R2€)]. In
oretical arguments lead us to conclude that the noncanonicétis new case the dynamical approach to equilibrium yields a
equilibrium must correspond to the WS statistics. noncanonical equilibrium, which is that advocated many
If only fitting arguments were to be used, it would be years ago by West and Seshddii]. As pointed out by the
more difficult to make a choice between the Tsallis and theheoretical discussion of Sec. Il it must be remarked that Eq.
WS statistics. However, if we invoke theoretical argumenty55), yielding the form of equilibrium of West and Seshadri,
also, we find that no room is left for the Tsallis statistics inis the consequence of a form of linear response departing
the case of the dynamic model studied in the present papeirom the traditional wisdom behind the generalized Einstein
At least within the range of this dynamic model, we showrelation[42]. It is remarkable that the only plausible form of
that the noncanonical equilibrium is possible in nature, but ifinear response, resting on dynamics, yields the same pre-
must correspond to the theoretical proposal of West and Sescription as that suggested by a phenomenological approach.
shadri[41] rather than to the predictions of nonextensiveThus, while we do agree with Abe and Rajagopal about the
thermodynamicg6]. It is interesting to remark that in the fact that the canonical equilibrium is not the only acceptable
limiting case of very weak feedback our model becomedorm of equilibrium, we depart from them on the specific
identical to the Ley flights subject to the Hookean force of form that this equilibrium will take, since as we have seen in
the recent work of Jespersen, Metzler, and Fogédby and  Sec. I A, the Ley statistics must not be confused with the
that both models are equivalent to that originally studied bygeneralized canonical distribution of Tsallis.
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