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Among nonlinear dynamical invariants, determination of the largest Lyapunov exponent is well suited to
positive identification of chaos in observed time series. When analyzing the dynamics of biomedical series,
such as an electro-encephalogréBit G), model-based methods should be used. Moreover, in the absence of
any well founded theoretical model, and because of unexplained variability in the data, candidate models must
provide for a stochastic component. Here we use nonlinear autoregressive stochastic modeling to estimate the
dominant Lyapunov exponent in an EEG series and compute confidence intervals from surrogate data. The
results are found to differ from those of approaches which aim at deleting noise prior to analysis.
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[. INTRODUCTION Estimation of the largest Lyapunov exponent is computa-
tionally more demanding20], but estimates of this param-
Originally, chaos and dynamical invariants.g., dimen-  eter are more readily interpreted with respect to the presence
sion parameters and Lyapunov expongmtere defined in  of chaos, as positive Lyapunov exponents are the hallmark of
the context of purely deterministic systems. This point ofchaos[21]. Some authors have expressed doubts as to
view will be adequate for the analysis of data from well- Whether Lyapunov exponents could be defined for a random
controlled physical or chemical experiments. However, wherseries(see, e.g., Ref.20]). However, the multiplicative er-
considering biomedical series, the analyst should introduce @odic theorem of Oseledd@2] provides a clear answer in
noise component in the model because of unexplained varthe affirmative, as was explicated by Arndi23,24 within
ability in the data and unavoidable model misspecificationthe formalism of random dynamical systems. Because these
Indeed, controversies about the chaotic nature of biomedicéesults seem to have been overlooked, most authors have
series, such as epidemics or electro-encephalogfse@G)  treated noise as a nuisance phenomenon, to be eliminated
recordings might be, at least in part, due to inadequate adior to computing Lyapunov exponents. Several approaches
counting for noisge.g., Ref[1]). such as filtering, computation along noise-free trajectories, or
Results from EEG analysis offer a particularly clear illus- 2long averaged trajectories have been considered in order to
tration of the controversies arising from nonlinear analysis of ‘€liminate” noise [25]. In the presence of dynamisystem
noisy biomedical series: whether the irregular pattern of rounoise, however, Lyapunov exponents should be computed
tine scalp EEG recordings is best explained as arising frondlong the actualnoisy) sample path. They may be inter-
deterministic nonlinear chaotic dynamics or from stochastidreted as quantifying the rate of divergence of initially
fluctuations is still a matter of debaft2]. Some authors have nhearby trajectories, subject to the constraint of identical se-
provided evidence for low dimensional cha@-5]. How-  dquences of random shocks6].
ever, this conclusion has been challenged, because of the Here we investigate EEG dynamics by computing
poor reliability of parameter estimates from experimental seLyapunov exponents of the random dynamical system along
ries, insofar as positive identification of chaos is concernedhe actual sample path and show that conclusions derived
[6—8]. Presently, modeling the EEG as a nonlinear stochastifom these parameters differ markedly from those derived
system with additive noise is often preferrg-13). with the noise deleted. Furthermore, although Lyapunov ex-
The above issues should obviously be solved before ongonents are statistical dynamical invariants which are inde-
attempts to compare nonlinear invariants between groups d¢fendent of the observed motion along trajectories, values
subjects. For instance, it has been reported that correlatiopstimated from finite amounts of data will be random quan-
dimension is lower in schizophrenic versus normal subjectéities. Thus, to draw any reliable conclusion from the estima-
[14]. While the conclusion is that there are differences in thetion of Lyapunov exponents as to the presence of chaos, one
EEGs of the two groups, the interpretation of the differencemust quantify the variability of the estimates. This is best
is unclear[15,16]. In effect, estimatiorf15,17—19 and in-  done in the form of confidence intervals, which can be esti-
terpretatior{6,2,7] of dimension parameters in noisy series ismated via bootstrapping, an approach akin to hypothesis test-
far from straightforward because the attractor is blurred byng using surrogate daf@6].

noise.
II. LYAPUNOV EXPONENTS IN NOISY TIME SERIES
*Email address: porcher@dbim.jussieu.fr Assume that scalar observationsg, ... X,,... are
TAlso at the Department of Psychiatry, pital Saint-Antoine, As- made at regular time intervals on some biomedical process,
sistance Publique-Hitaux de Paris. for which, motivated by Takens’ theoref7], we postulate
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the following autoregressive model: estimation method. The procedure operates as follows. For

fixed p, an approximation td is built in the form
Xp=f(Xp—1, ... Xp_p)t€q, N>p,

wheref is a possibly nonlinear autoregressive functienjs - 0

a white noise component with zero mean and finite variance, fp,o(x)=j§=30 a;®;(X), )

andp is the order of the autoregression. Note thas also

the embedding dimension of the process being observed.
To define Lyapunov exponents we write modé&) in

p-dimensional space

whereX e RP, thea;’s are real coefficients, and thi;'s are

D + 1 basis functions defined as tensor products of univariate
truncated linear splines. More specifically,
Xn=F(Xn-1)+E,, n>p, (2

whereX,= (X, . .. 1Xn—p+]_)T1 E.=(e,,0,... ,O)T, and the Po(X)=1,

mapF is defined in obvious fashion.

In the terminology of Arnold 23], model(2) specifies a
one-sided discrete time random dynamical systemRé&n ‘DJ(X)ZI(Hl [sj k(X o=t ]+, 1sj<D,
generated by the random mapping N

Kj

Pw)X=F(X)+Ey, (3)  wheres;j=*1, thex,  are(distinch components ok,
and thet; , are the corresponding knot locations. TKgs
wherew=(Ey,E;, ... ). are upper bounds specified by the user.
Furthermore, the Jacobian matdx dF/9X generates a The basis functionsb; and the coefficients; are com-
linear cocycle puted stepwise by least-squares. The initial basis function is
B, (@,Xg)=3(Xo)I(Xy) - .. I(X,_1) (4) d,. At each step, a least-squares optimization is performed

to select a parent basis functidn, (already in the modgl a

on RP [24]. Oseledés multiplicative ergodic theorerfi22] ~ component variablg, (which is not among the arguments of

then ensures that, under general ergodicity and integrabilitP«), and a knot locatiort,. Two daughter basis functions

conditions, the Lyapunov exponent @, (X)(x,—t,) + and®,(X)(t,—Xx,)+ are then added to the
model.

®) Optimal valuesp and D for p and D, are selected by
minimization of a penalized least-squares critefiafl.

Jacobian matrice$ were estimated fronﬁ,gyf, by numeri-

where H-” is Euclidean norm imp-space andie RP, exists 5 ifferentiation. The 95% confidence intervals foandx
and is independent @ andX,. Moreover, if the coordinates \yere estimated by parametric bootstrap, based on 400 surro-
of u are randomly generated from the uniform distribution ONgate realizations. The surrogate data were generated from

Ej%rﬁi’ng;ﬁ I?Z)ancl;\rﬁgxlsolnnéjpipendent of and equals the ?‘;,15 and additive Gaussian noise, with mean zero and vari-
yap P ance equal to

For purpose of comparison, the Lyapunov exponent

1
lim ﬁlogHBn(w,Xo)UH:

n—oo

~ 1
A= 1lim ﬁloann(XO)u”! (6) o?== 2 [x—fop(Xi_1, .. .x_p]% (8)

N— i=p+1

for the system with noise deleted was also considered. Here,
AL(Xo) =I(X)I[F(X)]-. . JF" (X1 IV. EEG ANALYSIS

We analyzed 18 EEG recordings obtained from 18
lll. STATISTICAL ESTIMATION asymptomatic female students aged 19-22 years. The EEG
For estimating Lyapunov exponents in noisy Systems’ d|.data were acquired from nine Scalp loci with InstEP software
rect methods that track small orbit differend@®)] are im-  (Canada version 3)1during 3 min periods, under the eyes
proper because, as far as the trajectories being compared walosed condition. The sampling rate was 250 Hz. The analy-
not correspond to the same sequence of random shocks, ths was performed on stationary 20 s segments that were
divergence between them might simply be due to the noisg€lected by eye from the central parietal derivation.
Component_ We thus resort to model based methods. Table | pl’esents estimates »fand 95% bOOtStrap confi-
Because in the biomedical setting, one is generally unabléence intervals. The estimates are significantly positive, sug-
to Specify a reliable parametric model fhrthe autoregres- gesting the existence of ChaOS, in 13 out of 18 SUbjeCtS. Es-
sive function was estimated by nonparametric regression, usimates of X and corresponding 95% bootstrap confidence
ing the multivariate adaptive splines of Friedn{@8]. Con- intervals are given in Table Il. These estimates, correspond-
trary to classical spline estimation, the knots are adaptivelyng to the noise free system, are seen to be all nonsignifi-
selected from the data, resulting in a parsimonious flexibleantly different from zero at the 5% level.
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TABLE I. Estimates and 95% bootstrap confidence intervals of TABLE II. Estimates and 95% bootstrap confidence intervals of

Lyapunov exponents\( for 18 subjects. Units are’s. Lyapunov exponents corresponding to the noise free systgrfof
18 subjects. Units are$.

Subject N Confidence interval
1 6.45 2.48, 11.37 Subject A
2 -0.78 -0.79, 9.32 1 2.80 —4.28, 16.19
3 4.73 1.15, 8.32 2 —6.80 —9.22, 13.86
4 5.45 0.03, 6.74 3 0.49 —2.79, 10.27
5 —0.68 —1.09, 5.48 4 10.18 —-1.90, 13.71
6 3.45 1.57, 8.42 5 —3.08 —3.42,7.25
7 1.83 -3.12,7.11 6 —0.62 —2.70, 10.01
8 2.70 0.47, 7.37 7 2.08 —8.18, 11.95
9 0.11 —2.43, 4.44 8 -1.84 —2.96, 6.54
10 0.95 0.19, 4.03 9 0.39 —6.04, 6.93
11 0.47 0.02, 2.60 10 -0.19 —2.19, 3.95
12 1.39 1.35, 9.54 11 0.35 -1.89, 1.77
13 6.95 1.98, 10.16 12 2.16 —4.11, 11.86
14 1.79 0.16, 7.79 13 7.78 —1.65, 12.27
15 2.43 0.11, 6.75 14 1.14 —3.25,9.82
16 5.00 0.95, 8.99 15 9.23 —3.97, 10.50
17 4.05 0.83, 8.12 16 0.36 —4.34, 10.26
18 3.95 —0.95, 7.00 17 1.45 —2.31, 14.16
18 —3.60 —4.89, 8.83

V. DISCUSSION

Here, we analyzed EEG dynamics using a nonlinear aul_ead.to erroneous conclusic_ms. Moreoyer, the estimation of
toregres,sive stochastic model which was estimated from thconfldence intervals was critical to avoid erroneous con(_:lu—
data. The model is compriseo[ of a deterministic autoregre éj(lons about_ the dynamlcs Of the system. Indeed, the estima-

S . " . . ion of confidence intervals is analogous to hypothesis tests
sive function and an additive noise component. This struc;

ture, however, should not be interpreted in the light of dee based on surrogate data advocated by Thaiteal. [26].

(stochastiy projection and(deterministi¢ dilation theorems Rvore specifically, our confidence interval construction may

established in the context of well understood oh SiCO_be understood as corresponding to a test of the null hypoth-
. . PNYSICO-eis of nonchaotic dynamics using surrogate data generated
chemical processef30]. Rather, the noise component is

merely a convenient modeling tool, which accounts for un-by the full model, whereas Theilest al. [26] generate the

explained variability in the data and model misspecification.Surrogates from null models.

In this sense, stocha_sti.c model?ng is equivalent to infinite ACKNOWLEDGMENTS
dimensional deterministic modelifd].

We found that, in biomedical series such as EEG record- We thank Professor R. Jouvent and CNRS UMR 7593 for
ings, computing Lyapunov exponents with noise deleted maproviding the EEG recordings.
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