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In this Comment we point out that the semi-Poisson is well suited only as a reference point for the so-called
‘‘intermediate statistics,’’ which cannot be interpreted as a universal ensemble, like the Gaussian orthogonal
ensemble or the Poissonian statistics. In Ref.@2# it was proposed that the nearest-neighbor distributionP(s) of
the spectrum of a Poissonian distributed matrix perturbed by a rank one matrix is similar to the semi-Poisson
distribution. We show, however, that theP(s) of this model differs considerably in many aspects from the
semi-Poisson. In addition, we give an asymptotic formula forP(s) ass→0, which givesP8(0)5p)/2 for the
slope ats50. This is different not only from the GOE case, but also from the semi-Poisson prediction.
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The motivation for this Comment stems from our impre
sion that the article, ‘‘Models of intermediate spectral sta
tics,’’ can easily be misinterpreted in two ways: One mig
be led to believe that~i! the semi-Poisson distribution i
universal, and~ii ! the universality class of ‘‘intermediate sta
tistics’’ is as well defined and established as, for examp
the Poisson ensemble or the Gaussian orthogonal ense
~GOE!. In this Comment, we will argue that both stateme
are wrong.

Shklovskii et al. @1# introduced a numerical spacing di
tribution PT(s), and conjecture that it is universal for som
class of disordered systems at the metal-insulator trans
point. In Refs.@2,3# random matrix models have been pr
posed in order to reproduce these findings. Particularly
Ref. @2# various models are presented, and with referenc
@1# considered as members of a ‘‘third universal ensemb
of systems showing so-called intermediate statistics.
Poissonian and the Gaussian ensemble~for clarity, consider
orthogonal ensembles only! are considered as the two pr
mary universality classes in this list.

As in the Poissonian and in the GOE case, where
respective members have common and unique statis
properties, one would expect the same to hold for the mo
showing intermediate statistics. In Ref.@2# the authors con-
centrate on the distribution of nearest-neighbor spacings
the Poissonian case it is given byP(s)5exp(2s), and in the
GOE case it is close to the well-known Wigner surm
P(s)'(p s/2)exp(2p s2 /4). In the case of the intermediat
statistics, the candidate proposed in Ref.@2# is the semi-
Poisson distributionP(s)54s exp(22s).

One of the examples showing intermediate statistics, p
sented in Ref.@2#, is defined as

Hmn5endmn1tmtn . ~1!

H is a N3N matrix, en are mutually independent rando
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variables uniformly distributed over a finite interval, and t
tn are chosen with equal absolute value squaredtn

25r .
Due to the discussion in Ref.@2#, an unprejudiced reade

might believe that the correlation properties of the mat
model are similar to semi-Poisson. In what follows we w
show that the level spacing distribution in the case of t
model is in fact very different from the proposed sem
Poisson distribution. This discrepancy can already be see
a figure published in Ref.@4#, but the problem is not dis-
cussed there.

In Fig. 1 we present the numerical result forP(s) ob-
tained for an ensemble of 1000 matrices of dimension 7
For the statistical analysis we only used one third of
states in the center of the spectral region. The numbersen are
uniformly distributed over an interval@21, 1# and the ele-
ments of the vectortW are chosen ast i5Aa/(prN), wherer
is the level density in the center of the spectrum,N is the
dimension of the matrix, anda510 is the coupling constant
~We checked that a larger coupling does not change the
merical results!. Figure 1~a! demonstrates the qualitative di
ferences in the behavior ofP(s) between the random matri
model, the semi-Poisson distribution, and the exact GO
For values of 0,s&2.5, it is impossible to decide whethe
the numerical data lie closer to any one of the two refere
curves. In both cases, the deviations are well above the
tistical error. Even though the numerical data show a lin
increase at smalls and an approximately exponential fallo
at larges, the spacing distribution of the matrix model is n
close to semi-Poisson.

Figure 1~b! shows a magnification of the interval 0<s
<1/2 using the same data as in Fig. 1~a!. Here we addition-
ally plotted the asymptotic result~3! for the present model a
a dotted line. The basic idea for the derivation of Eq.~3! is
the following. In order to get a short distance between t
neighbored levels in the spectrum ofH, three eigenvalues o
©2001 The American Physical Society01-1
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FIG. 1. ~a! Nearest-neighbor distributionP(s) for the model~1! compared with the semi-Poisson distribution~dashed line! and the exact
GOE ~dashed-dotted!. The vertical scale gives the probability of finding two adjacent levels at distances. s is given in units of the unfolded
average level spacing.~b! The same as in~a! for short distances. In addition, the theoretical result~3! is drawn as a dotted line.
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H0 have to come close together. Then the remaining lev
being relatively far away, can be neglected. Therefore,
can restrict the sum

K~E!5(
i 51

N ti
2

E2ei
, ~2!

whose roots define the eigenvalues ofH, to those terms tha
contain the three consecutive eigenvalues. Resolving for
two roots, calculating their distance, and averaging over
levelsei leads to the following formula

P~s!5
9s

4 E
0

p/2

df

3

expF2
3s

2
~cosf1sinf!/A11sin~2f!/2G

11sin~2f!/2
.

~3!

The dashed curve in Fig. 1~b! is obtained from a numerica
integration of Eq.~3!. At short distances, this approximatio
describes the numerical data much better than the s
Poisson. A Taylor expansion of the integrand of Eq.~3!
givesP8(0)5p)/2 for the slope ats50, the same result a
found in Ref.@2#.
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A detailed numerical investigation of several statistic
properties of this kind of model can be found also in Re
@4–6#.

To conclude, the models discussed in Ref.@2# have two
common properties:~i! the linear increase of the neares
neighbor distributionP(s) at smalls, and~ii ! its approximate
exponential falloff at larges. As a typical example we dis
cussed the nearest-neighbor distribution of model~1!. This
suggests defining the class of systems showing intermed
statistics via those two properties only. Even though~i! and
~ii ! could be called universal for a large number of system
this kind of universality is a rather weak one, in order
speak of the third universal ensemble. One should comp
this to the Poisson or the GOE case, where the whole j
probability distribution~apart from the level density! is sup-
posed to be shared by all the members of the respec
classes.

In this context the semi-Poisson may serve as a rea
able reference point only. However, the comparison to
semi-Poisson is not an adequate procedure by which to
cide whether a given system belongs to the class of inter
diate statistics. Figure 1 clearly illustrates that even if hu
discrepancies are present, the model in question may ne
theless belong to the class of intermediate statistics.
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