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Nystrom plus correction method for solving bound-state equations in momentum space

Alfred Tang' and John W. Norbury
Physics Department, University of Wisconsin-Milwaukee, P. O. Box 413, Milwaukee, Wisconsin 53201
(Received 30 November 2000; published 25 May 2001

A method is presented for solving the momentum-space Satger equation with a linear potential. The
Lande-subtracted momentum-space integral equation can be transformed into a matrix equation by the
Nystrom method. The method produces only approximate eigenvalues in the cases of singular potentials such
as the linear potential. The eigenvalues generated by the Nystrom method can be improved by calculating the
numerical errors and adding the appropriate corrections. The end results are more accurate eigenvalues than
those generated by the basis function method. The method is also shown to work for a relativistic equation such
as the Thompson equation.
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[. INTRODUCTION whereC; are constant coefficients. Substitute E2).into Eq.
(1) to obtain
The momentum-space Schlinger equation has a singu- N N

lar kernel for both the Coulomb and linear potentials. The e (A AR — .

Coulomb singularity is removed with the Lande-subtraction 21 f Kip.pOCai(p")dp )\;1 Ciai(p)- @

method[1,2]. Previous worlk{3—-5] showed how to remove , , . ,

the singularity from the linear potential using a subtractionNOW multiply bOth.S'deS of Eq(3) W'th,gj(p). and integrate

method with basis functions. A problem with this method is®VE' P 10 Symmetrize the equation oveandj,

that one must guess a suitable set of basis functions in ad- N

vance. In this paper, we show that Nystrom methdHcan s , , ,

solve the same problem more simply and accurately. We = Cij JK(P’P )gi(p")g;(p)dp'dp

begin with a review of the basis function method. Then we

introduce the Nystrom method and apply it to thstate Ajj

momentum-space Schdimger equation with a linear poten- N ’

tial. We use our new numerical results to show that the =)\Z Cif gi(p)g;(p)dp

Nystrom plus correction method is more accurate than the =t

basis function method. At the end, we generalize the Bjj 4)

Nystrom method to higher angular momentum quantum

numbers (>0). and the result is a matrix equation,
N N

Il. BASIS FUNCTION METHOD 21 Aijcizle B Ci. (5)

i= i=

We begin this paper with a discussion of the basis func-
tion method to give the proper theoretical motivation. Wewhere C; is the eigenvector and is the eigenvalue. The
shall use the simplest momentum-space Sdimger equa- indicesi andj correspond to the quadrature poiptandp’.
tion to illustrate the principles of the numerical methods,N represents the number of mesh points. In the case of the

which is thes-state equation. momentum-space Schiimger equation with a Coulomb or
The momentum-space Schlinger equation is related to linear potential, the kern@l is singular. A simple example is
an integral equation of the Fredholm type the momentum-space Scllinger equation with a linear po-

tential in theS state[3,5],
2
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Suppose that the wave functieh can be expanded in a set Vip.p)
of basis functiondg;}, such that

Xd)nO(p’)dp,:EnOd)nO(p)’ (6)
N
d(p)=2, Cigi(p), (2)  Wwherey=(p?+p’?)/2p’p,
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——Qo(Y)=n*(p*+p'*+ 7°)
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)

Lande subtractiof3,5,6 involves subtracting a zero term

i

from Eq. (6) such that

2
ﬂfQS(yHQé(y)ldp’:O (9)
p'p

p? A fx
L 4+
2M¢n0(p) 7Tp2 o

7]2
TQS(YHQ()()’)l
pp
X[hno(P") = dno(P)1dP’ =Enodno(p). (10

Using Egs.(7) and(8), the integral in Eq(10) for p>0 in
the limit of y—1 can be shown to equal

R Vil ¢ 2{ 1 ]2 1
im lim —| 2y ; - -
7—0p (p—p")2+7°)  (p—p) 2+ 7
dd’nO
AN —
X(p=p')?=g 2 =0. (1D

The order of the limits in Eq(11) is important. The reverse
order will lead to the nonsensical resulQg(y)dp’=0.
Next, in the limit ofp,p’—0, (p+p’)%2=(p—p)?. By sub-
stituting this equality into Eq97) and (8), it can be shown
again that the integral in Eq10) vanishes forp—0 aty
=1. At the end, the integral vanishesyat 1V p. Away from
the singularities, both integrands in the integral of EdD)
are finite. By takingn— 0, the first integrand vanishes. The
final form of Eq.(10) is

P’ N ) )
ﬂ¢n0(p)+ W—pzfo QoY) @no(P') — dno(p)]dp

=Eno®no(P), (12

where Qj(y) =1/(1—y?). As mentioned before¢ is ex-
panded in basis functions, followed by integrating EtR)

over p to generate a matrix equation. The basis function

used in previous publicatior8,5] are

_p2i2
gf*(p)=exr{ v } (13
and
B = —-—
9i (p) M)t (14
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respectively, wher#! is the maximum number of basis func-
tions usedM has a maximum because the code crashes when
too many basis functions are used. The basis funcgé(lp)
andg?(p) haveM =18.

The singularity of the kernel is a major challenge in solv-
ing the integral equation with a linear potential. It was shown
[3] that a simple pole remains even after subtraction. The
role of the basis functions is to make possible the evaluation
of the Cauchy principal value of the subtracted integral using
the Sloan method8]. To illustrate the Sloan method, we
suppose that(x) has a simple pole such that

)
X

f(x) (15
where g(x) is regular. The Cauchy principal value of the
subtracted integral of(x) can be evaluated if the range of
integration is symmetric. For example, the numerical integra-
tion of

1 g(x)~9(0)
fflfdx (16)

yields the Cauchy principal value because the prinD is
skipped when quadrature points are generated in the sym-
metric interval (~1,1). The subtraction term has zero con-
tribution since

11 B
f ;dX—O. (17)

-1

The purpose of this term is to justify the existence of the
Cauchy principle value and to reduce numerical errors. In
order to apply the Sloan method to Ed2), the integration
variable is transformed from to x such thatx is centered at
zero and its range is symmetric.

In the case of the Coulomb potential, the kernel has a
logarithmic singularity,

y+1

1
Qo(y)=3In y=1 (18

which is completely removed by Lande subtractjarB] be-
cause no simple pole remains after the subtraction.

The key to the success of the basis function method is the
availability of a suitable set of basis functions for a particular
problem. Unfortunately there is ra priori reason why the
same set of basis functions will work in every situation. For
éhis reason, it may be advantageous to have a mdihazh
as the Nystrom methgdhat does not depend on the choice
of the basis functions.

IIl. NYSTROM METHOD

In general, an integral equation of the Fredholm type

G<p>¢<p>+j:F<p,p'>¢<p'>dp'=x¢<p> (19

can be rewritten as a matrix equation as
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N N
le 52 (Gji+Fij)¢j=\¢;, (20
whereK;; is the kernel and andj are now indices corre-
sponding tgp andp’. Instead of integrating over from 0 to
o, we integrate ovex from —1 to 1. Transfornx; to p; by
the transformation

1+x
p(x)=tan ——|.

2 (21)

The mesh pointg; and the weightsvt; are generated by the

gaussian quadrature rule using the routine gauleg fikam
merical Recipe$7]. In order to integrate alonge[—1,1]
instead ofpe[0,), Eq. (19) is transformed as

1 dp’
G(x) ¢(x)+ f_lF(X,X’)tﬁ(X')&dx’ﬂxtb(x) (22
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——Qo(y)(l+p wtp,  (i#]). (27)
4p?

So far the kerneK is asymmetric under the interchange
of i andj. We can improve the stability and the efficiency of
the numerical solutions by symmetrizing E&5). We do so
by multiplying the equation witp?(1+ p?). It will change
the original matrix equation

K-Xx=AX (28
to an equivalent matrix equation
K’-x=\C-X, (29

whereC is a diagonal matrix andl’ =
definite, meaning

C-K. If Cis positive

Changing the dummy variable inside the integral and substi-

tuting the differentiation of Eq(21) with

_ a & 1+X B T )
dp= ZSG TW dX—Z(l—i—p )dx (23
gives
p,
ZM f QO(y#l)[(ﬁ] ¢]Se8(—77)dxj

=Edi. (24)

Equation(24) can now be written as a matrix equation,

N , 1+x
X,Zl Qi(y# 1)¢jse8(Tw)wtj :

M . / 1+ Xy B
_ 4_pi2¢ikzl Qoly# l)SE(?(Tﬂ-)Wtk_ Ed;.

(29

The left-hand side of Ed25] is the kernel times the eigen-
vector and the right-hand side is the eigenvalue times the
eigenvector. The sum ovéris independent of the eigenvec-
tor, which is just a scalar. The terms on the left that hav

only one indexi belong to the diagonal elements;. The
terms with mixed indices andj make up the off-diagonal
elementsKj; .
kernel are

pl AL

More explicitly, the matrix elements of the !

x"-C-x=0 V vectors X, (30
thenC can be Cholesky-decomposed as
C=L-LT, (3D

wherelL is a unique lower triangular matrix. The reason for
performing Cholesky decomposition is that the new matrix

KHELfl.K/.(Lfl)T (32)
is real symmetric and yields the same eigenvalues as Eq.
(29). In the case ofC;; =p?(1+p?), C is guaranteed to be
positive definite. After symmetrization, E426) does not
change K{=K;;) while Eq.(27) becomes

Kij = 4p p,

(i#]).
(33

)(1+p])wtwt

The eigenvalues oK” can be calculated by using stan-
dard packages such asPAK. In this paper, we use the tred2
and tqli routines fromNumerical Recipe§7].

IV. CORRECTION METHOD

Maung, and co-workel|$3,5] have shown that the subtrac-
tion method does not completely remove the singularity at
y=1. There is a residual simple pole term

_ﬂdqﬁnojw p/2 ' (34)
0

dp
™ (p'+p)4(p’ —p)

eremalnmg after the subtraction. The basis function method

evaluates the Cauchy principal value by the Sloan method as
described in Sec. Il. The Sloan method eliminates the simple
pole term by integrating symmetrically around the singular-
ity. Symmetrical integration involves splitting the range of
integration into two intervals,

o0 2p S
J dp’=J dp’+f dp’.
0 0 2p

(39
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The singularity ap=p’ is contained in the first term on the It is safe to assume thak(-E)d¢/dp<1. ¢! can be in-
right-hand side of Eq(35) which is assigned a symmetric terpreted as the normalization. The product of all of the
transformation rule p’/dx),. The second term generally pseudoconstants is labeled as the coefficierithe approxi-
has a different transformation rulelp’/dx), because it is mate eigenvalu&’ produced in the background of E(4)
mapping between two different sets, namely,p(2) is related to the true eigenvalleby

—(1,M] (for some real numbeM), such that

En=En+efn(N), (42)
f dp’ef — | dx'+ f —| dx’.  (36)  wherenis the principal quantum number s a constant, and
0 -1\ dx 1 1 \dx 2 f,(N) is a function approximately equal %~ 1. In general,

f,(N) varies slightly depending on the type of integral equa-

Notice that the division of the range of integration movestion and the potential. As a first order approximation, assume
with p. If two transformation rules are used with a moving that

division, each rowicolumn of the kernel has a different way

to map[0,) to[ —1,M]. But the eigenvectos(p) must be fo(N)y=N"17a(=1) (43)
mapped tog; in a unique way. This mismatch between the

mappings of the kernel and the eigenvector does not affecthe exponent of Eq43) is a first order Taylor series expan-

the basis function metho@gee Eq.(2.24 of Ref.[3]), sion of some negative unity function aroune-1. The con-
stant « is always taken to be small. More particularly,

N = p* I choose anx such that the variances &,, €, and x* are
;1 Ci fo ﬂgj(p)gider ?fo fo Qo(Y)gj(P)Lgi(P") minimized in the linear fit. Finally the refinement of an ei-

genvalue involves generating a setdffor variousN by the
N - Nystrom method and then extrapolatiBg by a x? linear fit
=E>, CiJ P“g;(p)gi(p)dp  (37)  in the graph ofE, versusf,(N). In the case of Eq(12),
i=1 0 . . . .
=0.004 is an optimal choice. The numerical results are ex-
plained in Sec. VI.
The order of the Nystrom algorithm is derived from those

—gi(p)ldp’dp

because the eigenvect@r is an N-tuple of the coefficients

and is independent of the ttansformation rules. In the case g € €02 and tal outines, which B(N?) [7], compared
P : with the basis function’sD(M?2N), which comes from the

the Nystrom method, the problem is real, at least for the

. ; . . roduct of the size of the matriM? and the number of
range of integration that we are interested in. Therefore wi . . . . .
I . Integration mesh pointd\ is typically around 1000 anifl is
cannot evaluate the Cauchy principal value by symmetri

. S ©0. The basis function method is generally more efficient
integration in the Nystrom method. In other words, a new, han the Nvstrom method. However. for anv given set of
method is needed to treat the errors arising from the simple . y j r Y9
ole term basis functlons, t_he ac_curacy_of the eigenvalues cannot be
P ' . . . improved arbitrarily by increasing the number of basis func-
So far the error term Eq(34) is not included in the . . ;
) L ) o tions becauseM is bounded from above due to numerical
Nystrom kernel in our derivation and is contributing to the : . .
. : errors. The prospect of improving the accuracy of the basis
errors of the eigenvalues. Since the error tdify. (34)] ; . T
. R function algorithm depends on the availability of a set of
involvesd¢/dp, we associate it with the error of the wave . . . o
f : more suitable basis functions for a specific problem. In the
unction . .
case of the Nystrom plus correction method, accuracy is op-
dé 1 do timized automatically by the correction scheme. The numeri-
Ap=Ap——~ — —, (38)  calresults obtained by the Nystrom and basis function meth-
dp Ndp ods are quoted with optimal accuracy in this paper.

where the mesh sizap has anN~! dependence. This fact
leads to an estimate of tH¢ dependence of the error of the
eigenvalueAE. Let the approximate eigenvector g€ and The eigenvalue of Eq12) can be solved exactly in con-
the approximate eigenvalue B¢. It is reasonable to say that figuration space. We shall use the analytic results to check
an approximate kern&l acting on an approximate eigenvec- our numerical results. The nonrelativistic Safirgyer equa-

V. EXACT S-STATE SOLUTION

tor ¢’ yields an approximate eigenvali& as in tion can be written as
Ko'=E'¢’ (39 2
—2+Fa R—2u[N r—E]R=0. (44
SK(p+Ad)=(E+AE)(S+Ad). (40) dr

It is easy to see that Let S=rR, then Eq.(44) can be simplified as

2

Ag d
AE:(K—E)Xz( (41) S5~ 2ulMr-Els=o. (45)
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TABLE I. Comparison of eigenenergies in GeV of the nonrelativistic Stimger equation with a linear
potential between the Nystrom method and the basis Fun¢B&h method. The basis functions being
referred to here arg®(p) =[(i/M)?+p*] L. The values of =0, A\ =5 GeV, andu=0.75 GeV are used.

Nystrom BF Exact
n N=100 N=700 N=1400 Corrected
1 5.899211 5.961921 5.967339 5.972379 5.972 5.972379
2 10.268443 10.417386 10.430047 10.442010 10.443 10.442114
3 13.767781 14.054263 14.078517 14.101276 14.104 14.101524
4 16.784747 17.258395 17.297500 17.335360 17.335 17.335728
5 19.467512 20.177458 20.234722 20.291708 20.293 20.292215
6 21.891635 22.887999 22.967933 23.046820 23.053 23.047142
7 24.101339 25.435892 25.541743 25.646532 25.648 25.646268
8 26.124257 27.851711 27.986463 28.121481 27.947 28.120787
9 27.977844 30.156480 30.323418 30.493311 30.194 30.488938
10 29.672260 32.366010 32.568895 32.778297 33.340 32.769375
Define a new variable mass frame by the replacement
5, \ 18 p2
xz()\—’:) [N r—E], (46) m—>2(w7+m7—m), (50)
L

wherep is the reduced mass andlis the mass of each of the
two equal mass elementary particles. The numerical results
S'—xS=0, (47)  obtained using the Thompson equation are compared against
those using the nonrelativistic Scldinger equation in Table
which is the Airy equation. The solution that satisfies thell calculating to two decimal places. Our new results are
boundary conditionS—0 as x— is the Airy function exactly the same as the previous results obtained in[REf.
Ai(x). It is easy to show that the eigenenergy formula is that uses basis functiomﬁ“(p) from Eq. (13).

such that Eq(44) can be transformed as

)\E 1/3
_) , (48) VII. 1#0 KERNELS

En=—Xp 2

The l#0 kernels for the linear and Coulomb potentials
wherex,, is thenth zero of the Airy function counting from contain the Legendre function of the second k@dy) and
x=0 along—x. In Ref.[5], the values\; =5 andu=0.75 its derivative, respectively. There are several mathematical
are used. In this case, the eigenenergy formula is issues that need to be addressed before constructing the

#0 kernels. First of all, the definition of
E,=—2.55436477%,. (49

2+ 12 1 '
u__(Lp) -

VI. NUMERICAL RESULTS FOR THE S-STATE y= 2p'p ) p’ F
The accuracy of the Nystrom plus correction method is
_sensmve to the range di. In this paper, increments of 10(_) using the Thompson equatidiiE) and the nonrelativistic Schro
in the range of 108 N<1400 are used. The reason for this dinger equationNRSE using|=0 and\, =0.2 Ge\’. Mass is
choice is that there are not enough spacings between the. c red in Gev. L ’
eigenvalues forN<<100, and forN>1500 the numerical
noise begins to corrupt the monotonic convergent behavior

TABLE Il. Comparison of the ratios of eigenenergigs, 1 /E;

n TE NRSE Mass

of the eigenvalues. The correct eigenvalues are extrapolated
from these numerical data by linear fit as described in 1 172 175 15
Sec. IV. The exacEstate eigenvalues are tabulated against 2 2.30 2.36 15
the numerical results obtained by the basis function method 3 2.80 2.90 15
and the Nystrom plus corrections method in Table I. It shows 1 1.67 1.75 0.5
that the numerical results obtained by the Nystrom method 2 2.18 2.36 0.5
plus corrections are more accurate than the results obtained 3 2.62 2.90 0.5
by the basis function method. 1 1.63 1.75 0.3
The kernel written for the nonrelativistic Scliiager 2 211 2.36 0.3
equation(NRSE can be easily generalized to that of the 3 251 2.90 0.3

relativistic two-body Thompson equation in the center-of-
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is easily seen to yielg>1 for p,p’>0. In Ref.[3], Maung 1
et al. use the Legendre identity Qiy)= 1oy (62
-y
Qi(Y)=Pi(y)Qo(y) =W, _1(y),
, (52
1 _
A N , y 1 .y-1
Wi-a(Y) = 2 P m(Y)Pmoa(y), Ql(y)= — Ly 63)
which is valid for—1<y=<1 [9,10] but can be extended to
y>1 by analytic continuatiofl1]. Q/(y) is easily obtained
by straightforward differentiation. The derivative of Leg- QL(y)= 1 —Eylny_l— 3 (64)
endre polynomial can be calculated from one of the recur- 2 1-y2 27 y+1 7
rence formulas,
dP(y) dP_4(y)
G =Y gy P, (53 o Y 187-3 y-1 15
y y Qs(y)= 1y 4 iz 9

which can be computed numerically by a recursive call. The
Legendre function can be generated by modifying the routine
plgndr inNumerical Recipefr] to allowy>1. The accuracy 1 35y3— 15y y 1 35

of Eq. (52) and its derivatives is generally sufficient. Slightly Quly)= 5~ —Vy2+ =, (66)
more accurate results can be obtained by the explicit evalu- -y 4 y+l 2 3
ation of the Neumann integral,
Q=1 oPwat (54 gy Y 31972107415 Yol 315
—1(y—1) Qs(y)= 1_y2 16 Py+1 3 —y3
with derivative 105
+ . (67)
e °
(y)=—3 P\ (t)dt. 55
QAW==1] o= zP® (55
. Asy—o, itis easily seen thay(y) =Qq(y)—0. This limit
The first fewQ,(y) are is true for allQ,(y) andQ/ (y) from applying the L'Hopital
y+ 1 rule. Unfortunately straightforward numerical calculation of

Qo(y)=35Int—7, (56)  Q(y) andQ/(y) by using Eqgs.(56)—(67) leads to serious
y numerical errors ag—«. At the same time, it is observed
that the numerical integration of Eg&4) and (55) are rea-

Qy(y)= y|ny+ ! -1, (57)  sonably accurate in the same regime. Therefore the two rep-
27 y-1 resentations are combined to minimize numerical error by
1 y+1 3 using the Neumann integrals fgr>y, and the explicit for-
_ = 2 mulas fory=<y,. Our codes usg,=50
Qa(y) 4(3y 1)In 2Y: (58) The subtracted momentum-space NRSE with a linear po-
tential is given in Ref[3], which can be simplified as
5y3—3y)l yHl 52,2 59
Qg(y)——( y*=3y) n—l—gy t3. (9
D 0+ 5 [ Q1) 0105~ 2L )
1 y+1 35 55 5, PP —ZJ 1Y) @n(p)dp ——= on (P
S 4_ 2 A< ST M TpJo P
Quly) = 75(3%" 30y +3)Iny_1 g Y oY
(60) o A l(l 1)
Qo P ——¢n(p)
_16573+15|y+1 63449
Qs(y) = 75(63y°—70y°+15y) N1 8Y T8 =V *Qo AL |(|+1)
_,dp +—— ——— n(P)=Enén(p).
8 op P
15 (61 68)
Q/ (y) can be obtained by the direct differentiation@f(y),
such that The matrix elements of a symmetric kernel for arbitrbayre
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TABLE Ill. Eigenenergies in GeV of the nonrelativistic SchHioger equation in momentum space
(PNRSE) compared with those in the configuration spad¢RSE) and the relativistic Thompson equation
in momentum spacé€TlE). Ther-space Thompson equation result is not available. The values=df, A |
=5 GeV, andu=0.75 GeV are used.

pNRSE rNRSE
| N=100 N=700 N=1400 Corrected Approx.
0 5.899211 5.961921 5.967339 5.972379 5.9719
1 8.528725 8.577713 8.582413 8.586002 8.5850
2 10.823099 10.847533 10.849675 10.851526 10.8514
3 12917124 12.904221 12.902815 12.902117 12.9020
4 14.874248 14.812422 14.805462 14.801358 14.9790
5 16.730585 16.606651 16.597636 16.586361 16.5845
TE
0 5.859885 5.914287 5.919054 5.923117
1 8.164379 8.202282 8.205185 8.208610
2 10.053574 10.067261 10.068464 10.069762
3 11.700322 11.680163 11.678063 11.676817
4 13.185124 13.121767 13.116634 13.111239
5 14.553134 14.437612 14.427702 14.418173
p? AL The kernel of a Coulomb potential can be symmetrized in the
Kii :2—'— — > Q4(y#1)(1+p2)wt, same way as that of a linear potential. The matrix elements
Mo 4py k are
A (41 o Qoly#1)
T > (1+pRwty p? A Qo(y#1) NeTP;
4pi 2 k Pk K..:_I__C ) 0— 1+ 2W + c !
i 2# 4 p|§k: Py ( pk) tk 2
+)‘L7T|(|+1) M w (1) (1+p?)wt;, (69 A
A~ - T 5 i i C
4p; 4p? o — 2 W(1)(1+pPwt, (72
AL ' 2 2 S Ac 2 2 —
Kij = gpp QN2+ PD(A+pHwtwty - (i%]). Kij=7-QA+p)(1+pHwtwt;,  (i#]).
iP]
(70 (73

Despite our method to control numerical noise, numericaIThe correction method that we have developed for the linear

errors still manifest themselves in the form of spurious Iargé:’me.ntlal cannot be useq n the C_oulomb case. The only
negative eigenvalues fd=8. Fortunately the rest of the avallal_ale _techmque of re“'”'f‘g the e_|genvalues of a Coulomb
positive eigenvalues are accurate. Some sample eigenvaluBgtentlal s by the wlay 9f mcrtlaasmg thehnumb_er ofbrlnesh
for O=<I=<5 are shown in Table Ill, which also compares theSt.epSN' Some sample eigenvalues are shown in Table IV.
eigenvalues generated by both thepace and-space codes. Since both the linear and Coulomb potentials can be symme-

Ther-space sgenlues arecacuated by sohing NRSE w260 1S e samo formalsn we cn casly spe the g
ing the relaxation methof3]. 9 9

The Lande-subtraced momentum-space NRSE equatio(rlume":lr plus Coulomppotential[12]

with a Coulomb potential is also given in Rd8] and is _ o
simplified as TABLE IV. Eigenenergies in eV of the hydrogen atom accord-

ing to the nonrelativistic Schainger equation witn=1.

| N=100 N=1400 N=3000 Exact

2
p )\cf“
—_— + P— ! Id !
2u éni(P) mJo Q) ¢n(P")p"dp —25.286631 —13.600349 —13.598508 —13.598289

0

1 —4579043 —3.400415 —3.399659 —3.399572
*Qoly) , , Acm 2 —1.463504 —1511499 -1510980 —1.510921
—dp’+ ——Pén(p) 3
0 p
4

Ac
B ?pd)nl(p) 2 —0.634523 —0.850358 —0.849940 —0.849893

—0.329730 —0.544332 —0.543972 —0.543932

=Enén(p). (71)
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Ac that compute the eigenvalues. The Nystrom plus correction is
V(r)= T AL (749 more accurate than the basis function method in the cases
studied in this paper. In other words, the new method has all
It is not surprising that the correction method derived for theof the advantages—elegance, accuracy, and versatility. In ad-
linear potential may also work for the Cornell potential be-dition, the kernel of the relativistic and nonrelativistic equa-
cause we expect that the error of the Cornell potential igion of motion with the Coulomb and linear potential can be
dominated by the error of the linear potential term. But it issymmetrized in exactly the same manner. It allows the cal-
a surprise that the correction method works more accuratelgulation of the eigenvalues of a Cornell potential readily.
with the Cornell potential than the linear potential as evi-Since the Nystrom method can be generalized for higiser

denced by vanishingly small variance agptl we can use it to calculate the Regge trajectories. Since the
Thompson equation that we have solved is a two-body equa-
VIIl. CONCLUSION tion, we can use it to analyze the experimental meson Regge

. . _ o trajectorieg 14]. This will be pursued in later work.
The basis function method requiragriori knowledge of

the eigenfunctions in order to pick out an appropriate set of

basis functipns. The advantage of the Nystrom me_thod is that ACKNOWLEDGMENTS

no such prior knowledge of the eigenfunctions is needed.

The kernel constructed by the Nystrom method is also much We thank Professor Khin Maung Maung for his helpful
simpler than that by the basis function method. The eigeneomments and George Nill and Daniel R. Shillinglaw for
functions can be generated by the same Nystrom routinetheir participation.
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