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Thirteen-velocity three-dimensional lattice Boltzmann model
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A thirteen-velocity three-dimensional lattice Boltzmann model on a cubic grid is presented. The transport
coefficients derived from the standard Chapman-Enskog expansion are given together with the conditions for
isotropy and Galilean invariance. The different invariants of the model are discussed. The results of measure-
ments of drag and torque on a free falling sphere in a cylinder are in good agreement with solutions of the
Navier-Stokes equation. Comparison of the time evolution of a freely decaying Taylor-Green vortex computed
by fast Fourier transform and by the present model is presented.
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I. INTRODUCTION II. DEFINITION OF THE MODEL

. . . The LBF model considered is defined on a cubic grid with
Lattice Boltzmann fluidg.BF) _have_ b_e_en conS|d_ered for unit length 1(all quantities will be given in nondimensional
the last ten years or so as possible fictitious media useful tﬂnits) During the displacement step of the LBF cycle, the
perform small Mach number direct Navier Stokes simula-nq,jations move from one node of the grid to itself or to
tions. The basic principle consists in computing the timeyne of its second neighbors. Takidt= 1 for the duration of

evolution of the distribution function of fictitious particles tne unit time step, this leads to the set of possible velocities:
that move synchronously along the links of a lattice of high

symmetry. We recall that a LBF model is defined by several 60:(0,0,0),

ingredients: a set of nodes where the particles are located, a

set of rules for their motiofoften going from one node to its c;=(1,1,0, ¢;=(-1,-1,0),

close neighbopsto represent molecular advection using a

small set of possible molecular velocitiésere 13 of them c,=(1,-1,0), cg=(—1,1,0,

and a set of rules for the redistribution of particles present on

each node to mimic collision processes in a real fluid. C:=(1,0,1), Co=(—1,0—1),
Many systems have been used for both two and three 1)

dimensional cases. Originating from the simpler lattice gas 542(1,0,_ 1), 5102(_1,0,1),

models(LGA) introduced by 1], lattice Boltzmann fluids are

usually based on a simple grid: square or hexagonal in two- 55=(0,1,1), 511=(O,—1,— 1),

dimensions(2D) and simple cubic in 3D. This allows us to
use very simple algorithms to perform the simulations.
Here we shall consider a three-dimensional model on a

cubic grid including collisions that follow a multirelaxation On each node of the computational domain, the LBF is then
process[2] that possesses many more degrees of freedomharacterized by thirteen populations corresponding to these
than the commonly used Bhatnagar-Gross-Krq@GK) thirteen velocities,

models[3,4]. The model presented in Sec. Il uses thirteen R ) ) )

velocities, probably the minimal set of velocities in three N(r,t)=(Ng(r,t),N¢(r,t), ... ,Ny(r,1)). (2
dimensions allowing us to get the correct Navier-Stokes .
equation in terms of Galilean invariance and isotropy. ThisNote that we distinguish vectors in real spatesuch as,
model has several invariants that will be presented and diswith componentsx, y, and z labeled by greek indices, and
cussed in Sec. lII. It turns out to be quite efficient to performvectors in velocity spac&'® such asN, with components 0
moderate Reynolds flow simulations and we shall give soméo 12 labeled by latin indices.

results obtained for a sphere falling in a cylinder in Sec. The time evolution of the state of the fluid follows the
IV A and for the free decay of a Taylor-Green vortex in Sec.general equation
IV B. In both cases we shall compare the data obtained with

the LBF model with those coming from standard techniques

Ce=(0,1-1), c1,=(0,—1,1).

12

- o s - e =
in (CFD) [Galerkin or fast Fourier transforitFT)]. Ni(r+c;,t+ 1)_Ni(r't)_;0 Cij[IN;(r,H) = Nj“(r,t)],
()
*Electronic address: dominique.dhumieres@Ips.ens.fr whereN®dis the equilibrium distribution and={C;;} is the
"Electronic address: bouzidi@asci.fr collision operator, both being defined below using the “mo-
*Electronic address: lalleman@asci.fr ment analysis” introduced if2].
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For this purpose we first define thirteen pairwise orthogo-  (x,, A5, ... X12)=(Ae, N, N, AL AL AL Ny A nsAp).
nal vectorse,, ke{0,...,12, in the 13-velocity space 7)

spanned by the; :
P y e In order to recover the Navier-Stokes equation for an ather-

e():(111!11111!11111!11111!1)'1:(Cio)v mal fluid the values of the moments at equilibrium must be
chosen as
¢=(0,1,1,1,1,0,6:1,-1,-1,—-1,0,00=(cjy),
1 ( ) ( |x) ng:p’ (8)
=(0,1-1,0,0,1,1-1,1,0,0:-1,—1)=(c;), )
€ (Ciy ME=j, | ©)
€;=(0,0,0,1-1,1-1,0,0-1,1-1,1)=(c;,),
M3=jy, (10
e=(-12,1,1,1,1,1,1,1,1,1,1,0, % (13c?/2— 12c?),
ng:jZ! (11)

e:): (0111111111_ 21_ 2111111111_ 21_ 2) = (3CI2X_ CIZ),

3 13
eq_ ~eq_ 2_ P24 :2, 52
&=(01,1-1-1,001,1-1-1,00=(c5—c3), (4 Ma=em =g (1= 8)pt o st iy tin). - (12

— _ _ — (. . i2_i2, ;2
e7_(0111 1,0;01050111 150101010 (Clxcly)! ng:3se(g:21x (;y+]z , (13)
eB=(0,0,0,0,0,1T1y010a0.0,1;_1):(ciyciz)!
2 :2
69:(0101011!_11010501011!_11010):(Ci)(ci2)l ng: ec\]/\/:%! (14)
e0=(0,1,1-1,-1,0,0-1,-1,1,1,0,0 = (cix(c;, — ¢5)), i
, M5o=sii=="~, (15
ell:(oa_1!11010:11111_:110101_11_1):(Ciy(ciz_cix))! P
e=(0,0,0,1-1,-1,1,0,0- 1,1,1- 1) = (ci (¢ — ¢2)), M &%= gzl%, (16

with co=||Co||=0 andc;=||c;||=2 forie{1,...,12. o
Then the population vectaN is projected on thes,’s, MEi= Siq:&, (17
defining 13 moment#, Zp

12 M8=h$%=0, (18
Mk=N-eK=ZO Niei, ke{0,...,132. (5)
. M$5=hei=0, (19
At this point it is convenient to relate these moments to eq 1eq
physical quantities Myz=h;"=0. (20
Note that the so-called “incompressible” LBF5] can be
(Mg,Mq, ... My

implemented by replacing by a constanp, in the denomi-
=(psjxrly+12:8350SwwrSxy 1 Sy2:Skz. N hy s h,),  nators of the right-hand sides of Eq42) to (17) and that
6) Stokes flow can be obtained by setting the nonlinear terms
equal to zero in the same equations.

where the elements of the right-hand side correspond to the Finally the time evolution of the LBF is not computed
density, the mass fluxes alomgy, andz, a scalar related to Using Eq.(3), but rather
the kinetic energy, five components related to the viscous 1 R ou =
stress tensofnote that Syy=(Syw— Sw)/2, Sz= — (Suw (e t+1) =N - A My (r,t) = MEX(r,t)
+S0/2, andS,,+ S,y +S,,=0], and the components of a (r+ci, )=N(r.Y “=, "k lled|?
3D vector without obvious physical meaning. (22)

The collision operator is now chosen such that the 13
momentsM are its eigenvectors with corresponding eigen- A naive count of the operations required to compute the
values\, (between 0 and 2 for linear stabiljtyThe first four ~ moments from Eq(5) and the inverse projection in E(R1)
moments are the conserved quantities and their associatgélds respectively 93 and 69 additions/substractions. This
eigenvalues are irrelevant for the dynamisee Eq.(21) count can be reduced to no more than 35 and 41 by comput-
below]. In order to reflect the symmetries of the cubic latticeing only once the common subexpressions in Ggand Eq.
the nine other eigenvalues must be chosen such that (22).
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Using the standard Chapman-Enskog expansion, thikalves of the volume through appropriate boundary condi-
model leads to the continuity and Navier-Stokes equations tions as it is mentioned at the end of the Sec. IV C.

C7tP+V$'j: 0, (22) B. Staggered invariant
i " L With appropriate boundary conditionsuch as infinite
ot dg a—B) =—C§(9ap+ vAj,+ §+§ 3 (V-]), domain or periodic box with an even number of nodes in
p 293) each directionit is not difficult to see that
wherec, is the speed of sound andand{ are the shear and > ixyzt+1)— > i, (X,y,z,t+1)
bulk kinematic viscosities given by, x+yeZe,zele x+yeZy,zeq
1/1 1) 1/1 1 =(—1)t j(X,Y,2Z,t
V:z(rz):z(rz)’ e D ey Bhaen, 0720
(29 .
2-3c2(1 1 _x+y62226z i(xy.z0) |, (25
T3 2 T

whereZ, andZ, are the sets of even and odd integers. This is
one of the staggered invariants already known in other LBF
such asD3Q15 or D3Q19. There are three such invariants
for each sublattice. For the sublattige-y+ze 7, the one
given by Eq.(25) and two others obtained by exchangixg

or y with z. And for the sublatticex+y+ z e 7, one obtained

by exchangingk+y e Z, andx+yeZ, in Eq. (25 and two
others by exchanging or y with z afterwards.

A. Checkerboard invariant It can also be checked that for the sublattice such xhat

: _ vt
Since ¢, +Ciy+Ciye{—2,0,2 for all i{0,1,...,12, y+ziseven
X+y+z and x+y+z+cy+ciy+cjy, have the same parity

Note that\, and A, are different and related through the
shear viscosity; thus this model cannot be part of the single
time relaxation(also called BGK models. Therefore one
cannot write a simple evolution equation for tNe making
no reference to moments as was done in R&f.

I1l. INVARIANTS

forallie{0,1,...,12. As a consequence two nodes having ; ;

T ! . : xX,y,z,t+1)— x,y,z,t+1
sumsx+y+z of different parity cannot exchange informa- (x+yf7)zc7, J1(xy ) (x+y+§z;/2€zo by :
tion during the time evolution. It follows that the cubic lat-
tice can be split into two totally independent sublattices (-1t E i (xy,z,t)
made of the nodes witk+y+ z even for one and odd for the ryfez,
other.

This checkerboard invariant can be removed by some _ : 26
- . - . ) JL(X!y!Z!t) ’ ( )
simple geometrical transformations leading to the structure (x+y+z)2e 7,

of the fcc lattice. The first one is &/4 rotation around the

axis: this gives a square lattice with\@ mesh size in each wherej, is the mass flux in the direction (1,1,1), perpen-

x'y" plane, with a spacing of 1 unit length in taelirection;  gicylar to the plane+y+z=0. There are four such invari-
in addition the square lattice in thely” planes withz odd  ants for this sublattice, the three others being obtained by
are shifted by (142,14/2,0) with respect to the square lat- replacing the direction (1,1,1) by<1,1,1), (1~ 1,1), and
tice in the planes witlz even. _ . (1,1~-1). The four invariants for the other sublattice are
The second geometrical transformation takes the directiogptained by replacingxdy+2z)/2 by (x+y+z+1)/2 in Eg.
(1,1,1) as the new’ axis, the planex+y+2z=0 being the  (26) These invariants do not exist in tRE8Q15 orD3Q19
new x'y’ plane. Thisx’y’ plane contains the velocities models.
{C5,C4,Cq,Cg,C10,C12 that are the base vectors of a triangu-
lar lattice: this gives a triangular lattice with\® mesh size
in eachx'y’ plane, with a spacing of 2B in thez’ direc-
tion; in addition the triangular lattice in they’ planes with As for other LBF models, parameters of the model must
z'=1 (mod 3) are shifted by ({2,1//6,0), those withz’  be chosen in order to avoid “run away” situations. As ex-
=—1 (mod 3) by (- 1/y/2,—1/,/6,0) with respect to the tri- plained in detail elsewherg] this can be done by solving
angular lattice in the planes witti=0 (mod 3). numerically the dispersion equation for modes that are peri-
These two geometrical transformations lead to skewedadic in space. A fast procedure allows to scan the various
mappings between the lattice and the storage array in a conparameters of the model. After considering a broad range of
puter, similar to the one found when using triangular lattice values for the various parameters of the model, we can state
It is probably much better to use these two independent sulihat satisfactory results in terms of linear stability are ob-
lattices to simulate either two independent systems or twdained for

IV. SIMULATIONS
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1 TABLE I. Drag and torque in the sphere. The figures are given
c§=§ , relative to the Stokes value {&/Vr,) for the Drag and relative to
877VVr§ for the torque timesr(;/d).
Ae=1.5, Drag (Torque X (r./d)
A,=1.0-1.96, re/re LBF Tozeren[8] LBF Tozeren[8]
N=18 0.2 1.686 1.680
h o 0.3 2.366 2.371 0.242 0.2466
c2=1/3 has been chosen to increase the stability of thd4 3.574 3.593 0.604 0.6137
model when the problem under study includes a constarft 5.586 5.952 1.424 1.443
11.07 11.09 3.440 3.500

drift velocity V superimposed to features of small amplitude.o-6
(Note that the linear dependence\ihof the attenuation of

sound waves propagating in the direction of the mean flow igions with development of the velocity field on suitable func-
anisotropic and cannot be put to 0 as for other 3D LBFtjons. Table | gives the drag and the tortienesr/d) on
models) The values O'D\e and)\h have been set to constant the Sphere in the units chosen [ﬁ] (respectively, GTVVrS
values chosen to have numerical stability over a broad ranggnq 8;7er§). The velocity and the geometry of the cylinder
of viscosity (from 2.55< 10" to 0.125) for velocities up to  gye given in the caption of Fig. 1. The simulations in this
0.1 (in lattice unitg without further tuning. Indeed it is very gection and the next one have been performed with the “in-
possible that a finer tuning of, and \, as functions ofx , compressible” version introduced in Sec. Il wiply=1.
may increase the stability range in terms of maximum veloci- |t js not possible to give a precise estimation of the rela-
ties or available Reynolds numbers. Such a study is beyong\e accuracy of the determination of the momentum transfer
the scope of this paper and left as an exercise for the inter-
ested readers. Radius of Sphere / Radius of Cylinder = 0.4
The usual relaxation of initial excitations periodic in L
space allows to verify that the transport coefficients given
above are correct. In addition we verify that Galilean factors
are equal to 1 when initial conditions include a uniform flow
and a small periodic excitation.

A. Stokes flow

We then consider a case that is discussed in the literature ; ;|
[8]. We compute a Stokes flow in a cylinder of radiysand .
lengthL . in which a sphere of radiug, moves parallel to the
axis of the cylinder at constant speed/. The center of the
sphere is located on the axis of the cylinder. We choose a
frame of reference in which the sphere is fixed. Thus the
walls of the cylinder move with velocity. At the entrance
and exit of the cylinder, we take a uniform profile with ve-
locity V. The Stokes situation is achieved either by taking a
low Reynolds number or more simply by putting the nonlin-
ear terms in the equilibrium condition to zero.

To take into account the interaction of the fluid with the
solid boundariegsphere and cylind¢mwe use an extension
of the bounce-back with linear interpolation for each link of
the LBF lattice that connects a “fluid” and a “solid” point
as described for the 2D ca$&]. We then determine the
momentum transfer between the fluid and the sphere at each
time step. The component of the momentum transfer parallel 0.9 R R R
to the axis of the cylinder is the drag of the sphere. When 0 0.1 0.2 0.3 0.4 0.5 0.6
steady state is reached, we compare the measured drag to the Off—center
Stokes value G»Vrs. The ratio of these two quantities is FIG. 1. RatioR between the drag determined fand its value
larger than one for/r not very small. When the center of ¢, 4_q as a function ofdir,, for V=0.12, r.=42.25 andL,
the sphere is no longer on the axis of the cylinder, but at & 459 (i lattice unit3. The dotted, dashed, and long dashed curves
distanced, the flow produces a torque on the sphere proporgorrespond, respectively, to 13-, 15-, and 19-velocity models. The
tional (for smalld/r) to 8mvVrid/r that can also be mea- solid line is the polynomial expansion given by ZEzen[8]. The
sured in the LBF simulations. This torque can be comparedolid diamonds are the experimental points obtained by Ambari
to the values computed by solving the Navier-Stokes equaet al.[9] for rg/r,=0.44.
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0.00 Radius of sphere / Radius of cylinder = 0.4 between the corresponding ratiBsand their average value.
' o . One can see that the maximum difference is smaller than
F 1. . 1%, even when the gap between the sphere and the cylinder
0.004 E is less than two lattice units.
E e’
0.003- E B. Taylor-Green vortex
- - After the test of the quality of the LBF model in the
0.002- * Stokes regime, we consider now a situation that has been
; used as a standard problem for turbulence problems: the time
o evolution of a Taylor-Green vorteXL0]. We consider here
0.001 E the simple case of free decay from the initial conditions
i . x given below.
L LI I TP I T v,(X,Y,2,0)=u sin(kox)cog Koy)coskoz),  (27)
—0.0017 3
] ° vy(X,Y,2,0)= —u cogkgx)sin(koy)cogkez), (28
-0.002 3
; ; v,(x,y,2,0)=0. (29)
—0.0034 3
—0.004 E We then compute the time evolution of the corresponding
E E flow with periodic boundary conditions in a cube of sizé
000 with kg=2/n.
R AP PP AP VAR For small amplitudey, the flow decays as
Off—center
FIG. 2. Difference between the relative drags obtained for the v(r,t)=v(r,0)exq—3k§vt),

three models and their average value as a functiod/of for the
same parameters as in Fig. 1.

wherev is the viscosity. This is verified with good accuracy.
measurement. The measured value of the torque is more sen- For large values ofi, the nonlinear terms in the Navier-
sitive to the detailed boundary conditions on the sphere esStokes equations lead to the appearance of spatial harmonics
pecially whenrg/r. is small. The three-dimensional nature of the initial flow. We have measured the time evolution of
of the simulations prevented us from making an analysighe intensity(square of the amplitudeof a number of such
similar to what is performed in Ref7] and to make precise spatial harmonics, both in a LBF simulation and in a FFT
statements concerning the observed dependency of the reimulation. We show results in Fig. 3, where the solid lines
sults with mesh size. We may add that a simpler descriptioorrespond to LBF results and the dashed lines to FFT. The
of the fluid-solid interaction in terms of “bounce-back” may simulations are made on a f62omain (a small one by
also be used but leads to results that are more sensitive to theday’s standards but large enough for our purppsésan
diameter of the sphere. effective Reynolds numbedefined by Re-un/v) approxi-

We then compare the predictions of LBF simulations formately equal to 1260. One can see that there is good overall
three models: the present 13-velocity modetferred to agreement with differences in the amplitudes at the latest
“13" ), the 15-velocity model using velocitied,0,d and times of the simulation. The time is scaled to the reversal
{1,1,% (referred to “15") and the 19 velocities using veloci- time of the initial vortex, the amplitudes are in arbitrary
ties{1,1,0 and{1,0,0 (referred to “19”), see Ref[3] for  scales(the various curves are not indexed in terms of the
definitions of these models. Fluid-solid interaction are of thewave number to keep the figure readabke detailed exami-
same type as for the 13-velocity model. We consider thenation of the present results allows us to make the following
same problem as above but we offset the center of the spheremarks.
with respect to the axis of the cylinder by a distankcéex- The initial conditions satisfy diw=0 and thus are well
pressed in units of ;). For a fixed ratiors/r,=0.4, we plot  adapted for an incompressible flow simulation by FFT. Now
in Fig. 1 the ratioR of the drag determined fat to its value  for the value ofu=0.095 used in the LBF simulation the
for d=0. For smalld the decrease OR is in satisfactory choice of the initial condition for the pressure field is impor-
agreement with the polynomial expansion given bydien. tant, for instance a uniform initial pressure leads to genera-
At large value ofd we can only refer to experimental d48d  tion of additional spatial harmonics not present in FFT. To
and we only claim qualitative agreement. avoid this difficulty, the initial conditions for LBF included

Figure 2 shows for the three LBF models the differencean appropriate pressure field closer to the one obtained from
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107! A R aad KA st L s et L aaag e For turbulence studies, using a “noisy” driving term in
the FFT simulations is preferred. This can be done at very
little cost in the LBF case, however this would make difficult
separating various contributions to possible deviations be-
tween FFT and LBF.

We may add finally that on a given computer, producing
the results of Fig. 3 takes comparable times using LBF or
FFT (LBF is an order of magnitude faster per time step, but
FFT allows to take larger time incrementnd that LBF is
much easier to parallelize and is far less costly in terms of
data exchange between processors, a feature very useful
when using clusters of low cost PC’s. When we perform the
same type of analysis with the 15 or 19 velocities LBF mod-
els we find very small differences in the LBF results. A
detailed analysis of these findings would require a deep un-
derstanding of the influence of tlkedependence of andg
in a fully nonlinear problem.

C. Invariants

Finally we have verified that the two sublatticeist(
+k) even or odd are completely decoupled, allowing either
to perform two independent simulations at the same time
(this may be useful when studying the onset of instabilities
as the two sublattices have different numerical “noise?
to optimize the use of computer memdfgr instance in the
situation discussed above, the even sublattice can be used to
compute half the volume from the entrance and the odd sub-
: lattice for the remaining half to the exit with a suitable
Time matching to connect thenor to optimize domain decompo-
sition when making simulations on a parallel machine
FIG. 3. Time evolution of the intensitie@n arbitrary unit3 of  used a cluster of PC to perform the simulations discussed
some spatial harmonics of the Taylor-Green vortex, the solid linesereg.
correspond to LBF results and the dashed lines to FFT. The simu-
lations are made on a 18@omain at Re= 1260. Time is in units of
reversal time of the initial vortex. V. CONCLUSION

We have presented a simple and efficient LBF model for
the time evolution of the flow. We then get a very good Navier-Stokes simulations. More work needs to be per-
agreement between the time evolution of the total kinetiGormed to find out the possible influence of the additional
energy vs time computed by the two methods. invariants discussed here. All our present simulations and

At the latest times shown in Fig. 3 one observes deviagnalysis did not show any significant effect apart from the
tions in terms of intensity that may be attributed to two ori- decoupling of the odd and even sublattices. Compared to the
gins. As is well known in LBRsee Ref[6] for a discussion  more commonly used 15 and 19 velocities LBF algorithms,
the macroscopic behavior at short spatial scales differs fronthe present model is very efficient as far as CPU time and
that of a true Navier-Stokes fluid. This may be expressed iftnemory requirements are concerned, but it has a somewhat
terms ofk-dependent transport coefficients and value of thenigher shear viscosity for comparable numerical stability that

Gallilean factorg(k) that was introduced in the analysis of should be considered when using LBF techniques for very
LGA. For the present LBF model we know how to compute|arge direct Navier-Stokes simulations.

v(k) and how to include this information in the FFT code.

When this is done there is only a minor improvement in the

agreement between LBF and FFT. However, the way to

properly introduce &-dependent advection coefficient in a ACKNOWLEDGMENTS

FFT code is less clear and has not been done. Note th&t the

dependency of the viscosity in LBF can be seen as some kind The authors thank Dr. M. Meneguzzi for initiating them
of built-in “hyperviscosity” as those often used in FFT to FFT techniques and making his code available, and
codes to avoid instabilities when using fairly large time Professor A. Ambari for making his experimental data
steps. available.
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