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Thirteen-velocity three-dimensional lattice Boltzmann model
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A thirteen-velocity three-dimensional lattice Boltzmann model on a cubic grid is presented. The transport
coefficients derived from the standard Chapman-Enskog expansion are given together with the conditions for
isotropy and Galilean invariance. The different invariants of the model are discussed. The results of measure-
ments of drag and torque on a free falling sphere in a cylinder are in good agreement with solutions of the
Navier-Stokes equation. Comparison of the time evolution of a freely decaying Taylor-Green vortex computed
by fast Fourier transform and by the present model is presented.
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I. INTRODUCTION

Lattice Boltzmann fluids~LBF! have been considered fo
the last ten years or so as possible fictitious media usefu
perform small Mach number direct Navier Stokes simu
tions. The basic principle consists in computing the tim
evolution of the distribution function of fictitious particle
that move synchronously along the links of a lattice of hi
symmetry. We recall that a LBF model is defined by seve
ingredients: a set of nodes where the particles are locate
set of rules for their motion~often going from one node to it
close neighbors! to represent molecular advection using
small set of possible molecular velocities~here 13 of them!
and a set of rules for the redistribution of particles presen
each node to mimic collision processes in a real fluid.

Many systems have been used for both two and th
dimensional cases. Originating from the simpler lattice g
models~LGA! introduced by@1#, lattice Boltzmann fluids are
usually based on a simple grid: square or hexagonal in t
dimensions~2D! and simple cubic in 3D. This allows us t
use very simple algorithms to perform the simulations.

Here we shall consider a three-dimensional model o
cubic grid including collisions that follow a multirelaxatio
process@2# that possesses many more degrees of freed
than the commonly used Bhatnagar-Gross-Krook~BGK!
models@3,4#. The model presented in Sec. II uses thirte
velocities, probably the minimal set of velocities in thr
dimensions allowing us to get the correct Navier-Stok
equation in terms of Galilean invariance and isotropy. T
model has several invariants that will be presented and
cussed in Sec. III. It turns out to be quite efficient to perfo
moderate Reynolds flow simulations and we shall give so
results obtained for a sphere falling in a cylinder in S
IV A and for the free decay of a Taylor-Green vortex in Se
IV B. In both cases we shall compare the data obtained w
the LBF model with those coming from standard techniqu
in ~CFD! @Galerkin or fast Fourier transform~FFT!#.

*Electronic address: dominique.dhumieres@lps.ens.fr
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‡Electronic address: lalleman@asci.fr
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II. DEFINITION OF THE MODEL

The LBF model considered is defined on a cubic grid w
unit length 1~all quantities will be given in nondimensiona
units!. During the displacement step of the LBF cycle, t
populations move from one node of the grid to itself or
one of its second neighbors. Takingdt51 for the duration of
the unit time step, this leads to the set of possible velocit

cW05~0,0,0!,

cW15~1,1,0!, cW75~21,21,0!,

cW25~1,21,0!, cW85~21,1,0!,

cW35~1,0,1!, cW95~21,0,21!,
~1!

cW45~1,0,21!, cW105~21,0,1!,

cW55~0,1,1!, cW115~0,21,21!,

cW65~0,1,21!, cW125~0,21,1!.

On each node of the computational domain, the LBF is th
characterized by thirteen populations corresponding to th
thirteen velocities,

N~rW,t ![„N0~rW,t !,N1~rW,t !, . . . ,N12~rW,t !…. ~2!

Note that we distinguish vectors in real spaceR3 such asrW,
with componentsx, y, and z labeled by greek indices, an
vectors in velocity spaceR13 such asN, with components 0
to 12 labeled by latin indices.

The time evolution of the state of the fluid follows th
general equation

Ni~rW1cW i ,t11!5Ni~rW,t !2(
j 50

12

Ci j @Nj~rW,t !2Nj
eq~rW,t !#,

~3!

whereNeq is the equilibrium distribution andC5$Ci j % is the
collision operator, both being defined below using the ‘‘m
ment analysis’’ introduced in@2#.
©2001 The American Physical Society02-1
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D’HUMIÈ RES, BOUZIDI, AND LALLEMAND PHYSICAL REVIEW E 63 066702
For this purpose we first define thirteen pairwise ortho
nal vectors ek , kP$0, . . . ,12%, in the 13-velocity space
spanned by thecW i :

e05~1,1,1,1,1,1,1,1,1,1,1,1,1!5~ci
0!,

e15~0,1,1,1,1,0,0,21,21,21,21,0,0!5~cix!,

e25~0,1,21,0,0,1,1,21,1,0,0,21,21!5~ciy!,

e35~0,0,0,1,21,1,21,0,0,21,1,21,1!5~ciz!,

e45~212,1,1,1,1,1,1,1,1,1,1,1,1!5~13ci
2/2212ci

0!,

e55~0,1,1,1,1,22,22,1,1,1,1,22,22!5~3cix
2 2ci

2!,

e65~0,1,1,21,21,0,0,1,1,21,21,0,0!5~ciy
2 2ciz

2 !, ~4!

e75~0,1,21,0,0,0,0,1,21,0,0,0,0!5~cixciy!,

e85~0,0,0,0,0,1,21,0,0,0,0,1,21!5~ciyciz!,

e95~0,0,0,1,21,0,0,0,0,1,21,0,0!5~cixciz!,

e105~0,1,1,21,21,0,0,21,21,1,1,0,0!5„cix~ciy
2 2ciz

2 !…,

e115~0,21,1,0,0,1,1,1,21,0,0,21,21!5„ciy~ciz
2 2cix

2 !…,

e125~0,0,0,1,21,21,1,0,0,21,1,1,21!5„ciz~cix
2 2ciy

2 !…,

with c05uucW0uu50 andci5uucW i uu5A2 for i P$1, . . . ,12%.
Then the population vectorN is projected on theek’s,

defining 13 momentsMk

Mk5N•ek5(
i 50

12

Nieki , kP$0, . . . ,12%. ~5!

At this point it is convenient to relate these moments
physical quantities

~M0 ,M1 , . . . ,M12!

[~r, j x , j y , j z ,e,3Sxx ,Sww ,Sxy ,Syz ,Sxz ,hx ,hy ,hz!,

~6!

where the elements of the right-hand side correspond to
density, the mass fluxes alongx, y, andz, a scalar related to
the kinetic energy, five components related to the visc
stress tensor@note that Syy5(Sww2Sxx)/2, Szz52(Sww
1Sxx)/2, andSxx1Syy1Szz50#, and the components of
3D vector without obvious physical meaning.

The collision operator is now chosen such that the
momentsMk are its eigenvectors with corresponding eige
valueslk ~between 0 and 2 for linear stability!. The first four
moments are the conserved quantities and their assoc
eigenvalues are irrelevant for the dynamics@see Eq.~21!
below#. In order to reflect the symmetries of the cubic latti
the nine other eigenvalues must be chosen such that
06670
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~l4 ,l5 , . . . ,l12![~le ,ln ,ln ,ln8 ,ln8 ,ln8 ,lh ,lh ,lh!.
~7!

In order to recover the Navier-Stokes equation for an ath
mal fluid the values of the moments at equilibrium must
chosen as

M0
eq5r, ~8!

M1
eq5 j x , ~9!

M2
eq5 j y , ~10!

M3
eq5 j z , ~11!

M4
eq5eeq5

3

2
~13cs

228!r1
13

2r
~ j x

21 j y
21 j z

2!, ~12!

M5
eq53Sxx

eq5
2 j x

22~ j y
21 j z

2!

r
, ~13!

M6
eq5Sww

eq 5
j y
22 j z

2

r
, ~14!

M7
eq5Sxy

eq5
j x j y

r
, ~15!

M8
eq5Syz

eq5
j y j z

r
, ~16!

M9
eq5Sxz

eq5
j x j z

r
, ~17!

M10
eq5hx

eq50, ~18!

M11
eq5hy

eq50, ~19!

M12
eq5hz

eq50. ~20!

Note that the so-called ‘‘incompressible’’ LBF@5# can be
implemented by replacingr by a constantr0 in the denomi-
nators of the right-hand sides of Eqs.~12! to ~17! and that
Stokes flow can be obtained by setting the nonlinear te
equal to zero in the same equations.

Finally the time evolution of the LBF is not compute
using Eq.~3!, but rather

N~rW1cW i ,t11!5N~rW,t !2 (
k54

12

lk

Mk~rW,t !2Mk
eq~rW,t !

uuekuu2
ek .

~21!

A naive count of the operations required to compute
moments from Eq.~5! and the inverse projection in Eq.~21!
yields respectively 93 and 69 additions/substractions. T
count can be reduced to no more than 35 and 41 by com
ing only once the common subexpressions in Eq.~5! and Eq.
~21!.
2-2
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Using the standard Chapman-Enskog expansion,
model leads to the continuity and Navier-Stokes equatio

] tr1¹W •W50, ~22!

] t j a1]bS j a j b

r D52cs
2]ar1nD j a1S n

3
1z D ]a~¹W •W !,

~23!

wherecs is the speed of sound andn andz are the shear and
bulk kinematic viscosities given by,

n5
1

4 S 1

ln
2

1

2D5
1

2 S 1

ln8
2

1

2D , and

~24!

z5
223cs

2

3 S 1

le
2

1

2D .

Note thatln and ln8 are different and related through th
shear viscosityn; thus this model cannot be part of the sing
time relaxation~also called BGK! models. Therefore one
cannot write a simple evolution equation for theNi making
no reference to moments as was done in Ref.@3#.

III. INVARIANTS

A. Checkerboard invariant

Since cix1ciy1ciyP$22,0,2% for all i P$0,1, . . . ,12%,
x1y1z and x1y1z1cix1ciy1ciy have the same parity
for all i P$0,1, . . . ,12%. As a consequence two nodes havi
sumsx1y1z of different parity cannot exchange informa
tion during the time evolution. It follows that the cubic la
tice can be split into two totally independent sublattic
made of the nodes withx1y1z even for one and odd for th
other.

This checkerboard invariant can be removed by so
simple geometrical transformations leading to the struct
of the fcc lattice. The first one is ap/4 rotation around thez
axis: this gives a square lattice with aA2 mesh size in each
x8y8 plane, with a spacing of 1 unit length in thez direction;
in addition the square lattice in thex8y8 planes withz odd
are shifted by (1/A2,1/A2,0) with respect to the square la
tice in the planes withz even.

The second geometrical transformation takes the direc
(1,1,1) as the newz8 axis, the planex1y1z50 being the
new x8y8 plane. Thisx8y8 plane contains the velocitie

$cW2 ,cW4 ,cW6 ,cW8 ,cW10,cW12% that are the base vectors of a triang
lar lattice: this gives a triangular lattice with aA2 mesh size
in eachx8y8 plane, with a spacing of 2/A3 in thez8 direc-
tion; in addition the triangular lattice in thex8y8 planes with
z8[1 (mod 3) are shifted by (1/A2,1/A6,0), those withz8
[21 (mod 3) by (21/A2,21/A6,0) with respect to the tri-
angular lattice in the planes withz8[0 (mod 3).

These two geometrical transformations lead to skew
mappings between the lattice and the storage array in a c
puter, similar to the one found when using triangular latti
It is probably much better to use these two independent s
lattices to simulate either two independent systems or
06670
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halves of the volume through appropriate boundary con
tions as it is mentioned at the end of the Sec. IV C.

B. Staggered invariant

With appropriate boundary conditions~such as infinite
domain or periodic box with an even number of nodes
each direction! it is not difficult to see that

(
x1yPZe ,zPZe

j z~x,y,z,t11!2 (
x1yPZo ,zPZo

j z~x,y,z,t11!

5~21! tS (
x1yPZe ,zPZe

j z~x,y,z,t !

2 (
x1yPZo ,zPZo

j z~x,y,z,t ! D , ~25!

whereZe andZo are the sets of even and odd integers. This
one of the staggered invariants already known in other L
such asD3Q15 or D3Q19. There are three such invarian
for each sublattice. For the sublatticex1y1zPZe the one
given by Eq.~25! and two others obtained by exchangingx
or y with z. And for the sublatticex1y1zPZo one obtained
by exchangingx1yPZe andx1yPZo in Eq. ~25! and two
others by exchangingx or y with z afterwards.

It can also be checked that for the sublattice such thax
1y1z is even

(
(x1y1z)/2PZe

j'~x,y,z,t11!2 (
(x1y1z)/2PZo

j'~x,y,z,t11!

5~21! tS (
(x1y1z)/2PZe

j'~x,y,z,t !

2 (
(x1y1z)/2PZo

j'~x,y,z,t ! D , ~26!

where j' is the mass flux in the direction (1,1,1), perpe
dicular to the planex1y1z50. There are four such invari
ants for this sublattice, the three others being obtained
replacing the direction (1,1,1) by (21,1,1), (1,21,1), and
(1,1,21). The four invariants for the other sublattice a
obtained by replacing (x1y1z)/2 by (x1y1z11)/2 in Eq.
~26!. These invariants do not exist in theD3Q15 orD3Q19
models.

IV. SIMULATIONS

As for other LBF models, parameters of the model m
be chosen in order to avoid ‘‘run away’’ situations. As e
plained in detail elsewhere@6# this can be done by solving
numerically the dispersion equation for modes that are p
odic in space. A fast procedure allows to scan the vari
parameters of the model. After considering a broad rang
values for the various parameters of the model, we can s
that satisfactory results in terms of linear stability are o
tained for
2-3
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cs
25

1

3
,

le51.5,

ln51.0–1.96,

lh51.8,

cs
251/3 has been chosen to increase the stability of

model when the problem under study includes a cons
drift velocity V superimposed to features of small amplitud
~Note that the linear dependence inV of the attenuation of
sound waves propagating in the direction of the mean flow
anisotropic and cannot be put to 0 as for other 3D L
models.! The values ofle andlh have been set to consta
values chosen to have numerical stability over a broad ra
of viscosity ~from 2.5531023 to 0.125) for velocities up to
0.1 ~in lattice units! without further tuning. Indeed it is very
possible that a finer tuning ofle andlh as functions ofln

may increase the stability range in terms of maximum velo
ties or available Reynolds numbers. Such a study is bey
the scope of this paper and left as an exercise for the in
ested readers.

The usual relaxation of initial excitations periodic
space allows to verify that the transport coefficients giv
above are correct. In addition we verify that Galilean fact
are equal to 1 when initial conditions include a uniform flo
and a small periodic excitation.

A. Stokes flow

We then consider a case that is discussed in the litera
@8#. We compute a Stokes flow in a cylinder of radiusr c and
lengthLc in which a sphere of radiusr s moves parallel to the
axis of the cylinder at constant speed2V. The center of the
sphere is located on the axis of the cylinder. We choos
frame of reference in which the sphere is fixed. Thus
walls of the cylinder move with velocityV. At the entrance
and exit of the cylinder, we take a uniform profile with v
locity V. The Stokes situation is achieved either by taking
low Reynolds number or more simply by putting the nonl
ear terms in the equilibrium condition to zero.

To take into account the interaction of the fluid with th
solid boundaries~sphere and cylinder! we use an extension
of the bounce-back with linear interpolation for each link
the LBF lattice that connects a ‘‘fluid’’ and a ‘‘solid’’ poin
as described for the 2D case@7#. We then determine the
momentum transfer between the fluid and the sphere at
time step. The component of the momentum transfer para
to the axis of the cylinder is the drag of the sphere. Wh
steady state is reached, we compare the measured drag
Stokes value 6pnVrs . The ratio of these two quantities i
larger than one forr s /r c not very small. When the center o
the sphere is no longer on the axis of the cylinder, but a
distanced, the flow produces a torque on the sphere prop
tional ~for smalld/r c) to 8pnVrs

2d/r c that can also be mea
sured in the LBF simulations. This torque can be compa
to the values computed by solving the Navier-Stokes eq
06670
e
nt
.

is

ge

i-
nd
r-

n
s

re

a
e

a

ch
el
n
the

a
r-

d
a-

tions with development of the velocity field on suitable fun
tions. Table I gives the drag and the torque~times r c /d) on
the sphere in the units chosen by@8# ~respectively, 6pnVrs

and 8pnVrs
2). The velocity and the geometry of the cylinde

are given in the caption of Fig. 1. The simulations in th
section and the next one have been performed with the ‘
compressible’’ version introduced in Sec. II withr051.

It is not possible to give a precise estimation of the re
tive accuracy of the determination of the momentum trans

FIG. 1. RatioR between the drag determined ford and its value
for d50 as a function ofd/r c , for V50.12, r c542.25 andLc

5459 ~in lattice units!. The dotted, dashed, and long dashed cur
correspond, respectively, to 13-, 15-, and 19-velocity models.
solid line is the polynomial expansion given by To¨zeren@8#. The
solid diamonds are the experimental points obtained by Amb
et al. @9# for r s /r c50.44.

TABLE I. Drag and torque in the sphere. The figures are giv
relative to the Stokes value (6pnVrs) for the Drag and relative to
8pnVrs

2 for the torque times (r c /d).

Drag ~Torque!3(r c /d)

r s /r c LBF Tözeren@8# LBF Tözeren@8#

0.2 1.686 1.680
0.3 2.366 2.371 0.242 0.2466
0.4 3.574 3.593 0.604 0.6137
0.5 5.886 5.952 1.424 1.443
0.6 11.07 11.09 3.440 3.500
2-4
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measurement. The measured value of the torque is more
sitive to the detailed boundary conditions on the sphere
pecially whenr s /r c is small. The three-dimensional natu
of the simulations prevented us from making an analy
similar to what is performed in Ref.@7# and to make precise
statements concerning the observed dependency of th
sults with mesh size. We may add that a simpler descrip
of the fluid-solid interaction in terms of ‘‘bounce-back’’ ma
also be used but leads to results that are more sensitive t
diameter of the sphere.

We then compare the predictions of LBF simulations
three models: the present 13-velocity model~referred to
‘‘13’’ !, the 15-velocity model using velocities$1,0,0% and
$1,1,1% ~referred to ‘‘15’’! and the 19 velocities using veloc
ties $1,1,0% and $1,0,0% ~referred to ‘‘19’’!, see Ref.@3# for
definitions of these models. Fluid-solid interaction are of
same type as for the 13-velocity model. We consider
same problem as above but we offset the center of the sp
with respect to the axis of the cylinder by a distanced ~ex-
pressed in units ofr c). For a fixed ratior s /r c50.4, we plot
in Fig. 1 the ratioR of the drag determined ford to its value
for d50. For smalld the decrease ofR is in satisfactory
agreement with the polynomial expansion given by To¨zeren.
At large value ofd we can only refer to experimental data@9#
and we only claim qualitative agreement.

Figure 2 shows for the three LBF models the differen

FIG. 2. Difference between the relative drags obtained for
three models and their average value as a function ofd/r c for the
same parameters as in Fig. 1.
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between the corresponding ratiosR and their average value
One can see that the maximum difference is smaller t
1%, even when the gap between the sphere and the cyli
is less than two lattice units.

B. Taylor-Green vortex

After the test of the quality of the LBF model in th
Stokes regime, we consider now a situation that has b
used as a standard problem for turbulence problems: the
evolution of a Taylor-Green vortex@10#. We consider here
the simple case of free decay from the initial conditio
given below.

vx~x,y,z,0!5u sin~k0x!cos~k0y!cos~k0z!, ~27!

vy~x,y,z,0!52u cos~k0x!sin~k0y!cos~k0z!, ~28!

vz~x,y,z,0!50. ~29!

We then compute the time evolution of the correspond
flow with periodic boundary conditions in a cube of sizen3

with k052p/n.
For small amplitudeu, the flow decays as

v~r ,t !5v~r ,0!exp~23k0
2nt !,

wheren is the viscosity. This is verified with good accurac
For large values ofu, the nonlinear terms in the Navier

Stokes equations lead to the appearance of spatial harmo
of the initial flow. We have measured the time evolution
the intensity~square of the amplitude! of a number of such
spatial harmonics, both in a LBF simulation and in a FF
simulation. We show results in Fig. 3, where the solid lin
correspond to LBF results and the dashed lines to FFT.
simulations are made on a 1623 domain ~a small one by
today’s standards but large enough for our purposes! at an
effective Reynolds number~defined by Re5un/n) approxi-
mately equal to 1260. One can see that there is good ov
agreement with differences in the amplitudes at the la
times of the simulation. The time is scaled to the rever
time of the initial vortex, the amplitudes are in arbitra
scales~the various curves are not indexed in terms of t
wave number to keep the figure readable!. A detailed exami-
nation of the present results allows us to make the follow
remarks.

The initial conditions satisfy divv50 and thus are well
adapted for an incompressible flow simulation by FFT. No
for the value ofu.0.095 used in the LBF simulation th
choice of the initial condition for the pressure field is impo
tant, for instance a uniform initial pressure leads to gene
tion of additional spatial harmonics not present in FFT.
avoid this difficulty, the initial conditions for LBF included
an appropriate pressure field closer to the one obtained f

e

2-5
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the time evolution of the flow. We then get a very go
agreement between the time evolution of the total kine
energy vs time computed by the two methods.

At the latest times shown in Fig. 3 one observes dev
tions in terms of intensity that may be attributed to two o
gins. As is well known in LBF~see Ref.@6# for a discussion!
the macroscopic behavior at short spatial scales differs f
that of a true Navier-Stokes fluid. This may be expressed
terms ofk-dependent transport coefficients and value of
Galilean factorg(k) that was introduced in the analysis
LGA. For the present LBF model we know how to compu
n(k) and how to include this information in the FFT cod
When this is done there is only a minor improvement in
agreement between LBF and FFT. However, the way
properly introduce ak-dependent advection coefficient in
FFT code is less clear and has not been done. Note thatk
dependency of the viscosity in LBF can be seen as some
of built-in ‘‘hyperviscosity’’ as those often used in FF
codes to avoid instabilities when using fairly large tim
steps.

FIG. 3. Time evolution of the intensities~in arbitrary units! of
some spatial harmonics of the Taylor-Green vortex, the solid li
correspond to LBF results and the dashed lines to FFT. The s
lations are made on a 1623 domain at Re51260. Time is in units of
reversal time of the initial vortex.
06670
c

-

m
in
e

e
o

e
nd

For turbulence studies, using a ‘‘noisy’’ driving term i
the FFT simulations is preferred. This can be done at v
little cost in the LBF case, however this would make difficu
separating various contributions to possible deviations
tween FFT and LBF.

We may add finally that on a given computer, produci
the results of Fig. 3 takes comparable times using LBF
FFT ~LBF is an order of magnitude faster per time step, b
FFT allows to take larger time increments! and that LBF is
much easier to parallelize and is far less costly in terms
data exchange between processors, a feature very u
when using clusters of low cost PC’s. When we perform
same type of analysis with the 15 or 19 velocities LBF mo
els we find very small differences in the LBF results.
detailed analysis of these findings would require a deep
derstanding of the influence of thek dependence ofn andg
in a fully nonlinear problem.

C. Invariants

Finally we have verified that the two sublattices (i 1 j
1k) even or odd are completely decoupled, allowing eith
to perform two independent simulations at the same ti
~this may be useful when studying the onset of instabilit
as the two sublattices have different numerical ‘‘noise’’! or
to optimize the use of computer memory~for instance in the
situation discussed above, the even sublattice can be us
compute half the volume from the entrance and the odd s
lattice for the remaining half to the exit with a suitab
matching to connect them! or to optimize domain decompo
sition when making simulations on a parallel machine~we
used a cluster of PC to perform the simulations discus
here!.

V. CONCLUSION

We have presented a simple and efficient LBF model
Navier-Stokes simulations. More work needs to be p
formed to find out the possible influence of the addition
invariants discussed here. All our present simulations
analysis did not show any significant effect apart from t
decoupling of the odd and even sublattices. Compared to
more commonly used 15 and 19 velocities LBF algorithm
the present model is very efficient as far as CPU time a
memory requirements are concerned, but it has a somew
higher shear viscosity for comparable numerical stability t
should be considered when using LBF techniques for v
large direct Navier-Stokes simulations.
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