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Discrete breathers in dissipative lattices
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We study the properties of discrete breathers, also known as intrinsic localized modes, in the one-
dimensional Frenkel-Kontorova lattice of oscillators subject to damping and external force. The system is
studied in the whole range of values of the coupling parameter, fromC50 ~uncoupled limit! up to values close
to the continuum limit~forced and damped sine-Gordon model!. As this parameter is varied, the existence of
different bifurcations is investigated numerically. Using Floquet spectral analysis, we give a complete charac-
terization of the most relevant bifurcations, and we find~spatial! symmetry-breaking bifurcations that are
linked to breather mobility, just as it was found in Hamiltonian systems by other authors. In this way moving
breathers are shown to exist even at remarkably high levels of discreteness. We study mobile breathers and
characterize them in terms of the phonon radiation they emit, which explains successfully the way in which
they interact. For instance, it is possible to form ‘‘bound states’’ of moving breathers, through the interaction
of their phonon tails. Over all, both stationary and moving breathers are found to be generic localized states
over large values ofC, and they are shown to be robust against low temperature fluctuations.
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I. INTRODUCTION

The phenomenon of~nontopological! localization in dis-
crete nonlinear lattices~i.e., intrinsic localized modes or dis
crete breathers! has received a great deal of attention fro
both theoretical and~as of lately! experimental research. In
deed, recent observations@1–3# of discrete roto breathers i
Josephson-junction ladder circuits have placed the subjec
a firm experimental footing~see also@4#!. Most of the theo-
retical and computational work on discrete breathers
dealt with Hamiltonian systems, of fundamental interest
Physics. For a review, see Refs.@5,6#. Comparatively, the
easier case of dissipative breathers has received much
attention, though the experimental systems that we have
mentioned belong to this class.

Mathematical proofs of existence of discrete breather
rather general dissipative networks of oscillators@7,6# ap-
peared soon after those of Hamiltonian networks@8#. While
in the later case, a condition of nonresonance of the local
oscillation with the band of extended normal modes of
lattice has to be satisfied, that is not an issue in the forc
damped case, and the dissipative breather possesses the
acter of attractor for initial conditions in the correspondi
basin of attraction. As archetypical example of Klein-Gord
lattices of oscillators, we consider the standard Frenk
Kontorova model with commensurability one~i.e., average
interparticle distance equal to the period of the sinuso
substrate potential!. In Sec. II we discuss the numerical pr
cedures used to obtain accurate breather solutions, which
based on the continuation from the uncoupled limit of t
model.

In Sec. III we explain some general features of the lin
stability ~Floquet! analysis of forced-damped periodic di
crete breathers. For the sake of readability, this sectio
intended to be self-contained, to some extent. After deriv
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some straightforward properties of the Floquet multiplie
we obtain some formal conditions for the nonappearance
extended instabilities of the uniformly oscillating bac
ground, along with the tail analysis valid for not-too-larg
forcing. The good fitting of our numerical data to the resu
of this section ensures its validity for the parameters use
the numerical work.

Section IV reports on our numerical findings, concerni
pinned discrete breathers, which are summarized in the p
diagram against the coupling parameter. Pitchfork a
Andronov-Hopf bifurcations separating different period
and quasiperiodic breathers appear as generic features o
phase diagram. At very high values of the coupling para
eter, when the width of the discrete breather is much lar
than the period of the substrate potential, a Goldstone m
in the Floquet spectrum signals the approach to the c
tinuum limit.

In Sec. V we study the mobility of discrete breathers
subject that is yet poorly understood. After discussing
procedures used to obtain and continue mobile breathers
explain successfully, with the aid of simple physical arg
ments, the numerical power spectra in the tails. Then
study collisions between discrete breathers. We find all p
sible scenarios, ranging from ‘‘elastic’’ to completely ‘‘in
elastic’’ collisions; this latter case includes both breather
nihilation and, more interestingly, the formation of ‘‘breath
molecules’’ that can be either pinned or mobile. Finally,
Sec. VI, we summarize the main conclusions of our work

II. MODEL AND BREATHER GENERATION

The equations of motion of the Frenkel-Kontorova cha
subject to damping and an~spatially uniform! external driv-
ing force are, in dimensionless form,
©2001 The American Physical Society03-1
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ü j1au̇ j1
1

2p
sin~2puj !5C~uj 1122uj1uj 21!

1Fac sin~vbt !. ~1!

In order to generate a discrete breather configuration
start in the anti-integrable~uncoupled! limit C50, using two
different amplitude attractors of the single pendulum eq
tion of motion. That is, we first consider the dynamics o
single forced and damped pendulum, and try to find a reg
of parameters where there are at least two different attrac
coexisting. Note that, generically, all oscillators have at le
two attractors for sufficiently low values of the dampinga
and the forceFac , if the frequency of the forcevb is not
wildly different from the typical frequencies of the auton
mous oscillator.

Therefore we initially choose values fora, Fac , andvb ,
and keep them fixed while we varyC. Then, for instance, we
fix one of the oscillators to the high amplitude solution a
all the others to the low one. Using as initial condition th
anti-integrable configuration, we turn on adiabatically t
coupling parameterC. Following Sepulchre and MacKay’
work on dissipative breathers@7#, the initial solution can be
continued forC5” 0, at least until a bifurcation is reache
That paper shows how, in contrast to Hamiltonian syste
forced and damped systems have it easier to comply with
conditions of the continuation theorem, since there is
problem of resonance with phonons~we have attractors!, and
the relative phases of the oscillators are locked by the ex
nal force.

Moreover, if the variation inC is small enough, the dis
crete breather remains an attractor of the dynamics~since
one expects the basins of attraction to evolve continuou
with C as well!. This makes the numerical continuatio
greatly simpler: it is possible to just vary adiabatically t
couplingC as we integrate the equations of motion~1!, and
the dissipative dynamics drives the system to the stable
tractor. Contrast this with the expensive root-finding me
ods one needs to use for breather continuation in Ha
tonian problems@9#.

In addition, we performed a linear stability analysis of t
periodic solutions~Floquet-Bloch analysis, see below! in or-
der to investigate the nature of possible bifurcations. In so
cases we have added to the initial conditions a small rand
noise ~typically of order 1025) to test for robustness. W
have taken special care dealing with finite size effects.
low values ofC(C,0.6) small lattice sizes can be used~say
N540). However, once the breather is dressed by a pho
tail ~see below!, we have needed to increase the lattice s
up to N5900 in order to avoid finite size effects. We thin
this is an important point to check since experiments in r
dissipative systems are done in small lattices@1,2#. Numeri-
cal integration of equations of motion has been done usin
fourth-order Runge-Kutta scheme. Most of the simulations
this paper have been done with the following paramet
a50.02, vb50.2p, and Fac50.02, although we have
sometimes changed them to confirm the general validity
our results.
06660
e

-

n
rs

st

s,
e

o

r-

ly

t-
-
il-

e
m

r

on
e

l

a
n
s:

f

III. LINEAR STABILITY ANALYSIS

A. Floquet multipliers

Let us consider a small perturbation$v j (t)% of the dis-
crete breather$uj (t)% solution,v j5uj1e j . After direct sub-
stitution in the equations of motion and discarding terms t
are nonlinear ine j , one finds

ë j1aė j1cos@2puj~ t !#e j5C~e j 1122e j1e j 21!. ~2!

These form a system of coupled linear differential equ
tions with time periodic coefficients, foruj (t) is a periodic
function of time. For a system of sizeN, the integration of
the linearized equation~2! over a periodtb52p/vb of each
of the 2N vectors$e j (0),ė j (0)% forming some basis of the
tangent space defines the 2N32N Floquet~or monodromy!
matrix F

S e j~ tb!

ė j~ tb!
D 5FS e j~0!

ė j~0!
D ~3!

that relates the small perturbations att5tb to those att
50; in other words,F is the matrix associated to thetb-map
of Eq. ~2!.

The linear stability of the breather solution$uj (t)% re-
quires that all the eigenvalues of the Floquet matrix~called
alsoFloquet multipliers! are inside the unit circle. SinceF is
real, if m is an eigenvalue ofF, its complex conjugatem̄ is
also an eigenvalue ofF. But the Floquet spectrum has mo
structure, since one can transform the linear system of
~2! into a Hamiltonian one~see Ref.@10#!. By transforming
the e j variables according to

e j~ t !5e2at/2h j~ t !, ~4!

this yields

ḧ j2~a2/42cos@2puj~ t !# !h j5C~h j 1122h j1h j 21!.
~5!

These are the equations of motion of a~nonautonomous!
Hamiltonian system of oscillators, for which the eigenvalu
of the ~symplectic! tb map must come in pairs such that the
product is unity. Together with the fact that the map is re
one has these well known@11#, three possible cases:~i! pairs
of eigenvalues lying on the unit circle, withl15l̄2; ~ii !
pairs lying on the real axis, withl151/l2; and~iii ! 4-tuples
of eigenvalues withl15l̄3 , l25l̄4 , l151/l̄4.

Since the transformation~4! scales the eigenvalues by
factor exp(2atb/2), the Floquet multipliers of Eq.~2! must
either lie on a circle of radius exp(2atb/2), or on the real
axis such thatm1m25exp(2atb), or come as 4-tuples suc
that m15m̄3 , m25m̄4 , m15exp(2atb)/m̄4.

An important difference with the Hamiltonian case, whe
a ‘‘phase’’ and the ‘‘growth’’ modes@6# are always associ
ated to the double eigenvalue11 in the Floquet matrix of
the discrete breather, is that these modes do not exist fo
forced-damped case. The reason for that is that both
3-2
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breather frequency and the time origin are fixed by the
ternal force, so that the associated degeneracies are rem

B. Extended instabilities

In the limit of an infinite system (N→`), the spectrum of
F consists of a continuous part associated with spatially
tended eigenvectors and a discrete part associated with
tially localized eigenvectors. The continuous part of t
spectrum ofF is the continuous spectrum of the lineariz
problem around the homogeneous solution~i.e., without
breather! $uj (t)%5$u`(t)%. As pointed out by Marı´n and
Aubry @12#, using the fact that the limit~in the appropriate
sense! of the sequence of spatial translations of the Floq
matrix F of the system with breather is the Floquet mat
F0 of the system without the breather, one proves easily
the spectrum ofF0 is included in the spectrum ofF. Recip-
rocally, the limit of the sequence of spatial translations of
extended eigenvector ofF can be seen to belong to the spe
trum of F0.

First, we are going to consider the spectrum ofF0, so we
now will pay attention to the linearized equation of motio
~2! around the homogeneous solution of Eq.~1!, $uj (t)%
5$u`(t)% and denote simplyf (t)5cos@2pu`(t)#. Under the
usual periodic boundary conditions, we look for solutions
the linear problem with the plane-wave form

h j~ t !5eiq jxq~ t !. ~6!

In other words,xq(t) is the~spatial! Fourier coefficient of
h j (t). Inserting Eq.~6! into the Eq.~2!, and denoting by
E(q)54C sin2(q/2)2a2/4, we have, for each value ofq, the
equation

ẍq~ t !1@E~q!1 f ~ t !#xq~ t !50. ~7!

This is a Hill equation. For each solutionxq(t) of the
single Hill equation~7! we have a solution of the form~6!
for the Eq.~5!, and thus, a solution

e j~ t !5eiq je2at/2xq~ t ! ~8!

for the linearized problem. The Hill equation~7! has a gen-
eral solution that can be expressed in terms of itsnormal
solutions, which have the property

xq~ t12p/vb!5lqxq~ t !, ~9!

wherelq is called the characteristic number of the equati
The complex numberrq defined aslq5exp(2prq /vb) is the
called characteristic exponent~its imaginary part being de
fined up to an additive multiple ofvb). In the generic case in
which Eq. ~7! has two different characteristic numbe
lq

1 ,lq
2 , their product is equal to unity,lq

1lq
251, and the

general solution has the form

xq~ t !5c1erq
1tcq

1~ t !1c2erq
2tcq

2~ t ! ~10!

where c1 ,c2 are constants andcq
1 ,cq

2 are time periodic
functions with period 2p/vb . Consequently,xq(t) is
bounded byKexp(rq

maxt), with K some constant, andrq
max
06660
-
ed.

x-
pa-

t

at

n
-

f

.

5max$rq
1 ,rq

2%. Thus, from Eq.~8!, we conclude that the sta
bility of the homogeneous solution$u`(t)% is assured in the
parameter region in which

rsup5supqrq
max,a/2. ~11!

The determination of this region in parameter space
only be made by numerical means. For the range of par
eters that we have used in our study of damped-for
breathers, the functionf (t) is a low amplitude oscillation
around the value 1, and, as expected from the well-kno
results on weakly time-dependent Hill equations, we ha
not observed instabilities by extended modes.

In the next section, we will follow the continuation of th
breather solution from the uncoupled limit, for increasi
coupling and numerically compute the eigenvalues of
Floquet matrixF. This will allow the characterization of the
different bifurcations that the breather experiences when
coupling parameter increases.

C. Tail analysis

To proceed a bit further, we will assume from now on
this section thatu`(t) is an oscillation of very low ampli-
tude, so that foru j u@1 the coefficient cos@2puj(t)# in Eq. ~2!
is essentially unity, if one discards terms less than or equa
u`

2 (t). Then we are left with the standard problem of a line
chain with damping, which we can solve exactly~a similar
analysis to the one below appears in Ref.@13#!.

Let us consider a semi-infinite chain with the bounda
condition at the beginning given bye0(t)5exp(2ivt), and
look for solutions of Eq.~2! of the form

e j~ t !5e(2j1 iq) je2 ivt. ~12!

Inserting Eq.~12! into Eq.~2! one obtains for the real an
imaginary part, respectively,

coshj cosq511
1

2C
~12v2!, ~13a!

sinhj sinq5
av

2C
. ~13b!

First, we will analyze the situation in whicha50, and
see how one recovers the well-known results for Ham
tonian discrete breathers@14,15#. For j50, one has the fa-
miliar normal modesolutions, where the frequencies a
given by the dispersion relation

v25114C sin2~q/2! ~14!

andq(2p,q,p) is the wave vector of the normal mode
It is customary to denote loosely the normal modes
‘‘phonons,’’ and the interval of values ofv defined by Eq.
~14! as ‘‘phonon band.’’ Forj5” 0 one has exponentially
decaying solutions

e j~ t !5e2j je2 ivt, ~15a!

e j~ t !5~21! je2j je2 ivt, ~15b!
3-3
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where the inverse decay lengthj and the frequencyv are
related, respectively, through

v25124C sinh2~j/2!, ~16a!

v25114C cosh2~j/2!. ~16b!

Note that the values ofv in Eq. ~16! are, respectively,
below and above the phonon band, so we observe how
Hamiltonian linear lattice damps out any solution with a fr
quency component outside the phonon band~14!, while the
normal modes are extended (j50). As a consequence,
Hamiltonian breather needs to have all breather harmo
nvb out of the phonon band, and then they decay expon
tially with the characteristic lengthj21(nvb). Thus the size
of the Hamiltonian breather is given byjb

21

5supnj21(nvb).
When a5” 0, we have thatj(v)5” 0. Thus, any solution

decays exponentially. For very low values of the dampi
and frequencies well inside the~Hamiltonian! phonon band,
the decay lengthj21 is very large, so that sinhj.j in Eq.
~13b!, and thus it can be approximated by

j21.
2C sinq

av
5

2vg

a
, ~17!

where vg5(dv/dq) is the ‘‘group velocity’’ of the corre-
sponding normal mode, obtained from the dispersion rela
~14!. This approximation admits a simple physical interp
tation in terms of the competition between the damping a
the velocityvg at which the wave generated~at the beginning
of the semi-infinite chain! by the sustained perturbatio
propagates: The amplitude of the excited phonon decay
time as exp(2at/2), so that the time after that the amplitud
has decayed by a factor of (1/e) is 2/a, and thus the distanc
traveled by the phonon is 2vg /a.

An example of the solutionsj(v) andq(v) of Eqs.~13!,
for the particular valuesa50.02 andC50.75, appears in
Fig. 1. For comparison purposes, the graphs correspondin
the same value of coupling for the Hamiltonian case are
cluded.

Note that for the existence of damped-forced discr
breathers there is no need of a nonresonance condition~in
contrast with the Hamiltonian case!, because for any fre
quencyv, j(v)5” 0. However, for low values ofa, if some
breather harmonicnvb belong to the interval of values ofv
for which j(v) is very small, the breather profile will show
large ‘‘wings.’’ In Fig. 2 we plotj(3vb) as a function of the
coupling C, for a50.02 andvb50.2p. Observe the dra-
matic decay ofj(3vb) at aroundC50.6 corresponding to
the entrance of the third breather harmonic in the~so to
speak! ‘‘phonon band,’’ and compare the breather profil
for two values of C, respectively below and above, in Fig.
Both the wave vector and the size of the wings in figure
very well with q(3vb) andj(3vb) from Eq. ~13!.
06660
he
-

cs
n-

,

n
-
d

in

to
-

e

.
t

IV. BIFURCATIONS AND PHASE DIAGRAM

We have continued numerically breather solutions fro
the uncoupled~or anti-integrable! limit, for fixed values of
the damping coefficient (a50.02), external force frequenc
(vb50.2p) and intensity (Fac50.02). The spectrum of Flo
quet multipliers was also numerically computed for each
lution, thus monitoring their evolution on the complex plan
The configurations we have focused on are two: the one-
breather and the two-site breather~adjacent sites!. Of course
many other configurations are possible, by choosing from
combinations of sites in either the high-amplitude or lo
amplitude attractor. However these two simplest breath
already provide a quite rich behavior, and, surprisingly, th

FIG. 1. Wave vectorq and inverse of the decay lengthj as
functions ofv for two different values of the damping,a50.02
~open circles! and the Hamiltonian casea50.0 ~filled ones!. The
coupling parameterC is in both cases equal to 0.75.

FIG. 2. Inverse of the decay length~in logarithmic scale! as a
function of the coupling parameterC, for a fixed valuev53vb .
We mark two values ofC, 0.564, and 0.642, which correspond
two rather different values ofj, also used in Fig. 3. The rest of th
parameters arevb50.2p, a50.02, andFac50.02.
3-4
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allow continuation into very high values ofC, where the
continuum limit is approached.

At very low values ofC the continued one-site breather
very narrow, symmetric around its localization site@i.e.,
u2 i(t)5ui(t) for all t and i #, and all the Floquet multipliers
lie on the circle of radius exp(2atb/2) in the complex plane
The breather remains stable for increasing coupling up to
value CP150.529 62 where a Floquet multiplier, which ha
previously detached along the real axis from that inner cir
reaches the unit circle at11. The corresponding eigenvecto
of the Floquet matrix is localized around the breather s
and possesses odd mirror symmetry with respect to that
as shown in Fig. 4. Past the bifurcation, we are left with
unstable symmetric breather and two new stable breath
spatially asymmetric and one being the mirror image of
other. We can conclude that this is aforward pitchfork bi-
furcation @16#, associated with a spatial symmetry-breaki
transition of the discrete breather.

In order to visualize the mirror symmetry breaking cha
acter of this bifurcation, we plot in Fig. 5 the differenc
D(0)5u21(0)2u1(0) at timet50(mod tb) of the positions
of the neighbor oscillators on both sides of the localizat
site, as a function of the coupling parameterC in the vicinity
of the bifurcation value. It is not surprising that, close to t
bifurcation, the differenceD(0) scales with the coupling pa
rameter as (C2CP1)

1/2, because the one-dimensional cha
acter of the unstable manifold of the symmetric breather
lows to reduce the analysis to that of a pitchfork bifurcati
in a one-dimensional map, where this scaling behavior
the distance between branches is well known.

The asymmetric stable branches born atCP1 can be con-
tinued for higher values of coupling. We then observe h
the amplitude of one of the neighbors of the central s
keeps increasing, until it equals the amplitude of the cen
oscillator ~which has in turn decreased slightly!, at CP2
50.553 15. It should be noted that the relative phases of
oscillators do not appear to change, At this value, aback-
ward pitchfork bifurcation occurs, where the two stabl
asymmetric breathers and one unstable symmetric two
breather merge, and a stable mirror-symmetrictwo-site

FIG. 3. Breather profiles~two-site breathers! at a given time for
two different values ofC(0.564 filled circles and 0.642 open one
see also Fig. 2!. The inset shows the right-hand-side tails, where
can observe the existence of a phonon in the second case, c
sponding to the entrance of the third harmonic ofvb in the phonon
band. The points are connected as a guide to the eye.
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breather comes out. As in the bifurcation analyzed befo
only one Floquet eigenvector, associated with a Floquet m
tiplier of value11, is involved.

This unstable two-site breather that joins this seco
pitchfork is nothing but the two-site breather that can
continued from the uncoupled limit. Thus we have that t

e
rre-

FIG. 4. Floquet spectrum for the one-site breather nearC
50.5296 and closely after the first pitchfork bifurcation. All eige
values are in a circle of radius exp(2atb/2) except two, one of
which crosses the unit circle by11. The lower figure shows the
profile of the eigenvector corresponding to this unstable eigenv

~both velocity and position components,ė i , e i). Note that it is
antisymmetric and strongly localized.

FIG. 5. Profiles of the breather around the area of the pitchf
bifurcation.
3-5
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two elementary breathers constructed at the uncoupled li
one-site and two-site breather, undergo an exchange of
bility via this symmetry-breaking pitchfork mechanism. F
C,CP1 the one-site breather is stable and the two-site
unstable. ForCP1,C,CP2 both are unstable, and the ne
asymmetric breather is stable. PastCP2, the two-site breathe
is stable and the one-site unstable. This is exactly the s
mechanism that was previously found by other authors@17#
for Hamiltonian breathers, and which is related to breat
mobility as we explore in the next section. It is, therefo
plausible to conjecture that the mechanism is highly gen
and might be expected in a large class of models.

To be thorough in our description, a much less interest
bifurcation does appear in the two-site breather branch
very low C. The two-site breather is initiallystable at the
uncoupled limit, but loses stability after a pitchfork bifurc
tion at C'0.02. This is also a symmetry-breaking bifurc
tion as above, however it is instructive to investigate
differences: this time the spatial symmetry is broken in su
a way that the new stable, asymmetric breathers suffe
dephasingbetween the two central sites. This can be co
firmed rigorously by examination of the relevant eigenvec
at the bifurcation. If one takes as reference for the time ori
the instant at which the two central sites have maxim
amplitude, the unstable eigenvector for this second pitchf
shows components only in the velocity part, not in amp
tudes; the former bifurcation shows exactly the opposite
havior. In any case, the continuation of the asymme
breather from this bifurcation atC50.02 is quickly lost after
a Hopf bifurcation, and we have not found any more int
esting behavior arising from these curious branches.

Now we turn on to the continuation of the stable two-s
breather branch pastC.CP2. We find now that nearC
50.817 two complex conjugate Floquet multipliers cross
unit circle at exp(6iw), with w51.285, and the~periodic!
two-site breather becomes unstable. The real and imagi
components of the associated eigenvectors are shown in
6. Close to the bifurcation, small perturbations of the u
stable periodic breather bring it into a quasiperiodic breat
~as verified by inspection of the Poincare´ section!, thus con-
firming the scenario of an(Andronov-) Hopfbifurcation@18#.
Indeed, the power spectrum analysis of the quasiperiodic
tractor ~see Fig. 7! reveals two basic frequencies,vb and
vnew50.0873. However, since this frequency is rather d
ferent from the frequencywvb/2p50.1285 associated to th
destabilizing eigenvalue couple, one concludes that
stable quasiperiodic attractor does not come out straight f
the bifurcation. In other words, the simplest scenario o
supercritical Hopf bifurcation is discarded. Moreover, th
quasiperiodic attractor can be easily continued back
lower values of the coupling~i.e., C,0.817), therefore con
firming that we have asubcritical Hopf bifurcation. Note
that, as parameters other thanC change, it is possible fo
these subcritical Hopf bifurcations to become supercritic
for their genericity lies in the Hopf character, not in bein
subcritical or supercritical.

The lack of periodicity for the~quasiperiodic! breather
attractor prevents the use of Floquet analysis. However
stable character can be numerically ascertained, checkin
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robustness against small perturbations in the dynamics.
quasiperiodic two-site breather turns out to be stable for c
plings up toC50.88, beyond that it starts moving spontan
ously. Only when we reachC50.96 we recover again a
stable, pinned quasiperiodic breather. Meanwhile,
pinned, periodic two-site breather~which became unstable
after the Hopf bifurcation atC50.817) can be continued b
a Newton method. At a value nearC'0.995, it rejoins the
quasiperiodic two-site breather in an inverse~now supercriti-
cal! Hopf bifurcation, becoming stable again.

We have tried to summarize most of these bifurcations
the sketch of Fig. 8. We postpone to the next section
analysis of the observed mobile breathers in this region~and
others! of parameter space.

To conclude this section we will comment on the contin
ation and stability analysis asC→`, i.e., the so-called con
tinuum limit. The first interesting fact is that both the on
site and two-site breather, whether stable or unstable, h
been found to be continuable for couplings as high as
sired. In other words, they never disappear by, say, sad
node bifurcations or the like. Another interesting point is th
for C.1 we have also found pitchforks that connect the t
branches, exactly in the same way as the first one
CP1, CP2. The ranges of coupling between forward- a
backward-pitchfork bifurcations~that is, where the connect
ing branches of stable asymmetric breathers exist! get pro-

FIG. 6. Floquet spectrum for the Hopf bifurcation atC
50.871. An eigenvalue and its complex conjugate cross the
circle at a nonzero angle in the complex plane. The figure at
bottom shows the corresponding eigenvector.
3-6
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DISCRETE BREATHERS IN DISSIPATIVE LATTICES PHYSICAL REVIEW E63 066603
gressively narrower for higher coupling values. And final
both the breather profiles and their Floquet spectrum reve
very natural approach to the continuum limit: the solutio
get broader in size, while the eigenvalue responsible for
pitchforks remains closer and closer to11 at all times, an-
nouncing the appearance of the Goldstone mode~due to

FIG. 7. Two-site quasiperiodic breather. Note that particles
both sides of the breather are out of phase. The figure below sh
the power spectrum of one of the central particles. The peaks
linear combinations of the two relevant frequencies,vb andvnew.
Note that only odd harmonics ofvb appear.

FIG. 8. Scheme showing all bifurcations found in our model
to values ofC'1. The most relevant ones are probably the pitc
forks that exchange stability between the one-site and the two
breather (CP1, CP2). At C50.817 the two-site breather has a su
critical Hopf bifurcation, connecting it to a quasiperiodic breath
At C50.88 this quasiperiodic solution disappears as it turns in
slow moving breather. The gray-shaded areas betweenC50.51 and
C50.96 are those where moving breathers, either fast or slow,
be found.
06660
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translational invariance! asC→`. These effects were osten
sibly manifest atC*5.

V. MOBILE BREATHERS

The problem of the mobility of discrete breathers is s
very poorly understood. While the fundamental theory
stationary breathers is now firmly established@8#, moving
discrete breathers~MB for short! have so far eluded a rigor
ous treatment. But the fact is that moving breathers h
been observed and studied through numerical simulatio
various works@19–21,17,22#, and they appear to be a phe
nomenon with the same degree of genericity as the statio
case. Up to now most of those works have dealt with Ham
tonian systems; here we present a study of moving breat
in our forced and damped Frenkel-Kontorova~F-K! model.
Some of the results are strikingly similar to those observed
Hamiltonian systems.

We should first point out that a moving breather is som
thing to be distinguished from a similar class of solution
namely lattice solitons@23,24#. In a lattice soliton a pulse
propagates without dispersion through the lattice, but, un
breathers, there is no ‘‘internal’’ oscillation. This addition
degree of freedom makes the moving breather a more c
plicated object. For instance, in Hamiltonian lattices, it
easy to see that inevitably the moving breather reson
with the phonon band~note the presence of a quasiperiod
spectrum due to the additional frequency introduced by
translational motion!, and therefore it is not possible to hav
tails that decay to zero. It is not clear whether the solution
just a transient that eventually decays by phonon radiat
or maybe an infinite lifetime breather that ‘‘rides’’ on a
infinite, small amplitude radiation background.

But our model here is dissipative and has external forci
and it turns out that moving breathers appear as prope
tractors of the dynamics. Since these solutions are not t
sients, we can study and characterize them accurately
with great confidence. Even though this will not shed a
light on the problem of existence of Hamiltonian movin
breathers, there is another aspect of theoretical interes
which this study can contribute: the~possible! concept of a
Peierls-Nabarro barrier for breather motion. This conc
arises because of the similarities with the problem of mo
ity of discommensurations~kinks! in the Frenkel-Kontorova
model @25#. The discommensuration is an equilibrium sta
structure, for which one may ask how much energy it co
to displace it by one lattice site, until it reaches the equi
lent configuration by~discrete! translational invariance. This
is commonly referred to as the Peierls-Nabarro~PN! barrier.
And it is possible to give a precise definition: from all po
sible continuous deformations of the initial configuration in
the final one, take the one in which the maximal ener
change along the path is the minimum. Very fruitful resu
in the theory of the F-K model have stemmed from th
definition @25#.

But a corresponding definition of a PN barrier for brea
ers proves quite problematic. The difficulty lies in that it
not clear which space to use, since the configurations
now periodic functions, not static points. Some authors h
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suggested possible candidates for a rigorous definition,
the issue is still under debate@26,6,27#. Technicalities aside
it is still possible to give a working definition of the Peierl
Nabarro barrier for breathers, at least in some cases. M
studies generate moving breathers by perturbing statio
ones, and Ref.@28# gave a systematic method to do th
Looking at the linear stability analysis of the breather~Flo-
quet analysis!, they found that in many cases one can ide
tify an eigenmode that is distinctively localized and who
spatial symmetry is appropriate for breather motion~note
that similar depinning modes are responsible for the de
ning of discommensurations@25# under uniform forcing!. It
was found that adding a perturbation along this depinn
eigenmode, provided one overcomes a certain threshold
sults in a moving breather. Such thresholds are probably
best pragmatic approach to the definition of a PN barrier

A further study@17# showed that many Hamiltonian la
tices exhibit a very interesting behavior that is linked to m
bility. It was found that, as the coupling is increased fro
C50, the one-site breather and the two-site breather e
undergo a pitchfork bifurcation, where additional branch
of periodic but spatially asymmetric breathers emerge. Th
branches do in fact connect those pitchfork points, and
corresponding Floquet eigenmodes responsible for the b
cations obviously show a spatial symmetry that we could d
as ‘‘depinning.’’ This is exactly what we have found in ou
dissipative model, as shown in the previous section. A
just as in the cited works on Hamiltonian systems, we h
also verified that the mobility is greatly enhanced for valu
of coupling in the vicinity of these bifurcations: very sma
amounts of perturbation along the depinning mode
enough to create the mobile breather. The upshot is that
phenomenon provides a mechanism for the existence of
bile breathers at relatively low couplings~high discreteness!
and with very slow velocities, two properties that were cou
terintuitive and unexpected.

We should note that the continuous sine-Gordon equa
under external ac forcing and losses does not support
solutions@29#. The way in which a continuous breather d
stabilizes is by a transition to a quasiperiodic state and fin
creation of a kink-antikink pair@30#.

In the following we begin exploring this relation betwee
the stability of stationary breathers and the existence of t
mobile counterparts. Then we concentrate on studying
properties of moving breathers in dissipative systems
more detail. Finally, we explore other aspects such as c
sions.

A. Generation and phase diagram of MB

We have found MB as proper attractors of the dynam
in a wide range of couplings, in particular for 0.5&C
&0.96. We have found them either by excitation of the d
pinning mode of stationary breathers~as explained below! or
simply by letting the system evolve to a steady state after
instabilities of some stationary breathers develop fully. Th
it is possible to carry out a continuation of the MB into oth
parameter values, since their attractor property allows
change slowly a parameter and track the MB solution. Fig
9 shows the phase diagram of MB we have constructed w
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this procedure.
Around the first symmetry-breaking bifurcation there is

narrow region in which we found MBs with regular motio
and well defined velocity~Fig. 10!. A similar region is found
in the interval 0.7&C&0.88. We call these solution
induced fast breathers. To generate thesesteady stateMB
we have followed the procedure described in@28#. Surpris-
ingly, this method works very well even far from the bifu
cations. We typically use as initial conditions:

ui~ t50!5ui
01le i

a , ~18!

whereui
0 is a stationary breather solution,e i

a corresponds to
the antisymmetric~and localized! eigenvector mode at the

FIG. 9. Velocity of MB vs coupling parameterC. Dashed area
shows the region in which MB have a diffusive motion. It is al
showed different regions of ‘‘slow’’ and ‘‘fast’’ MB. See the tex
for details.

FIG. 10. The upper figure shows a MB with regular motion
C50.75. Below, a MB with diffusive motion atC50.65.
3-8
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DISCRETE BREATHERS IN DISSIPATIVE LATTICES PHYSICAL REVIEW E63 066603
bifurcation taking place nearC50.53, and finallyl mea-
sures the strength of the perturbation applied. It is found t
as in the Hamiltonian case, a criticallc is necessary to unpin
the breather. However, in contrast to the results for Ham
tonian systems, once the breather starts to move the velo
is unique~independent ofl), i.e. the MB is a robust attracto
of the dynamics. Once ainducedMB is generated at a valu
of C, this solution can be continued by varyingC slowly,
with almost no variation in velocity. The analysis of Poi
carésections of this MB shows clearly a quasiperiodic b
havior. Therefore there isno commensurabilitybetween the
internal frequencyvb and the present frequency associa
to the velocityvmb52pvmb. This behavior precludes th
use of fixed point methods~like Newton method! based in
the periodicity of solutions, to find~numerically! exact MB
solutions. Also, this quasiperiodicity prevents us from e
tending the Floquet analysis to MB.

For intermediate couplings 0.60&C&0.72 ~shadow re-
gion in the phase diagram!, the breather portrays random
motion. For some time interval, the MB moves regularly
one direction, then suddenly remains immobile~but quasip-
eriodic! for a while, changing then its motion to the oth
direction, and so on. A plausible scenario is that of the
currence of acrisis @31# at C'0.72 that destabilizes th
regularly moving breathers~of positive and negative veloc
ity, respectively!, giving rise to a chaotic attractor consistin
of intervals~of random length! of approximately regular mo
tion, followed by changes of direction.

As we have already mentioned, atC50.88 the stationary
breather solution~quasiperiodic! disappears, and only th
MB solutions survive. We will refer to this breather asspon-
taneous slowMB. Its velocity is approximately half of the
fast MB and shows a great variation as a function ofC.
Moreover, there is a narrow window aroundC50.89 where
both the slow and fast MB coexist.

Regular motion MB are also stable against variation
parameters other thanC. By increasingFac , the velocity of
the breather increases, showing a very asymmetric profile
shown in Fig. 11. As we explain below, the origin of th
asymmetric shape can be explained in terms of forward
backward emission of phonons from the moving breath
which suffer a Doppler effect. Above a critical value

FIG. 11. Instantaneous profile of a MB atC50.75 andFac

50.045. Note the clear asymmetry of the phonon tails in front
and behind the breather.
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Fac , which is dependent onC, a shock wave is formed an
the regular motion becomes again diffusive.

B. Emission of phonons

An important feature of bothpinned quasiperiodicand
moving breathers is the emission of low amplitude line
waves ~phonons!. In both cases the breather tails clear
show a complex quasiperiodic behavior in which many f
quencies are involved. For the moving breather, these
are also markedly asymmetric, due to the translational m
tion. Other authors have investigated the behavior of Ham
tonian breathers when subject to phonon scattering@15#; note
that in our case it is the breather itself the source of phono

In order to investigate the phonon emission we have co
puted the power spectrum ofu̇i(t) for sites sufficiently far
away from the breather center, as given by the expressio

S~v!5U E
2`

`

u̇ j~ t !eivtdtU2

. ~19!

In all spectra, we can observe peaks corresponding to
driving frequency and its odd harmonics, as expected.
also observe a broad band spectrum corresponding to
quencies in the phonon band, with several resonant peak
both cases we can explain those frequencies satisfactori
terms of emission of phonons by the breather.

Figure 12 shows a time snapshot and the correspon
power spectra for a particle in the tails of a quasiperio
pinned breather. In this case, the resonant peaks simply
respond to frequencies that are linear combinations ofvb
and vnew ~the second basic frequency of the quasiperio
breather!

v tail5mvb1nvnew, m,nPZ. ~20!

In the case of moving breathers, the peaks also corresp
to the frequencies given above, but shifted by the Dopp
effect since they are emitted by a moving source. Their c
culation requires thus a little more care. We recall that
propagation of phonons is given by the dispersion relati
~13!. The frequency of the emitting source, in the referen
frame of the source itself, isvsrc5nvb12pmvmb. This sec-
ond frequency appears because the breather is moving o
periodic potential with velocityvmb. However, in the refer-
ence frame of the medium~the lattice!, this frequency will be
modified according to

v tail5vsrc62pq~v tail!vmb, ~21!

which is the well-known Doppler effect, only that the m
dium is dispersive@32#. In particular, note how the wave
vector q of the propagated phonon depends onv, as given
by Eqs.~13!. Therefore Eqs.~13! and~21! have to be solved
self-consistently forq andv tail , and then the different peak
of the power spectrum can be worked out. The agreemen
this calculation with the observed frequencies~see Fig. 13! is
excellent.

Finally we remark that for small lattice sizes, and wh
using periodic boundary conditions, tails in front of and b
hind the breather can overlap. In such cases, solutions

f
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similar to the so-callednanopterons@33# of Hamiltonian sys-
tems, in which the MB appears to move in a ‘‘sea’’
phonons.

C. Breather collisions and thermal effects

Since we are dealing with a system in which pinned~pe-
riodic and quasiperiodic! and mobile breathers coexist fo
the same parameter values, it seems natural to study
stability against collisions between them. Very different ki
of events appear depending on the breather velocity and
initial conditions ~initial distance between breathers!. The
faster the breathers are, the more likely they are to des
each other. The main result is that, when the breathers
vive to the collision, the interaction is mediated by t
phonons that dress the breather. For large velocity, the ta
front of the breather is short~the MB is very asymmetric!, so
the breather cores can overlap and we observe they ge
stroyed. For moderate velocities, the opposite occurs:
tails are large, and it seems as if they mediated the collis
slowing down the breathers and preventing the cores
touch. A clear example of this latter case can be seen in
Fig. 14, where we observe an ‘‘elastic’’ collision in whic
the breathers approach each other up to a distance that
range of the phonon tail. Note that this distance ('150) is
much larger than the core breather size ('10).

FIG. 12. Time evolution for the tail of quasiperiodic breather
C50.817 ~upper figure! and the corresponding power spectru
~down figure! whose peaks are given by linear combinations of t
frequenciesvb andvnew.
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In Fig. 15 we show some of the multiple behaviors w
have observed in simulations:~i! Collision between two MB
at low Fac and thus low velocity, atC50.75. Their velocity
is low enough not to destroy themselves, but to creat
multibreather state;~ii ! Elastic collision of two ‘‘slow’’
breathers atC50.89; ~iii ! Collision that gives amobiletwo-
breather state. The last two collisions only differ in the init
conditions. Finally, ~iv! breather annihilation between
‘‘slow’’ and ‘‘fast’’ breather atC50.89 where they coexist

An interesting phenomenon arising from the simulatio
above is the formation of multibreather solution both pinn

t

FIG. 13. Time evolution for a particle that is passed by a M
~upper!. Below, power spectra corresponding to the tails before
after the passage of the breather. Note how the peaks are shifte
Doppler effect.

FIG. 14. An elastic collision between two slowly movin
breathers. It is possible to appreciate how the breathers ‘‘see’’ e
other through their phonon tails. This collision was obtained aC
50.89.
3-10
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DISCRETE BREATHERS IN DISSIPATIVE LATTICES PHYSICAL REVIEW E63 066603
FIG. 15. Four scenarios of collisions between breathers.
represent the traces by plotting the position of the energy m
mum.~i! Formation of a pinned ‘‘molecule’’ after a collision of two
MB at C50.75 and Fac50.011; ~ii ! ‘‘elastic’’ collision at C
50.89 andFac50.02; ~iii ! Formation of mobile ‘‘molecule’’C
50.89 andFac50.02; ~iv! Annihilation of a ‘‘slow’’ and a ‘‘fast’’
breather atC50.89 andFac50.02. In this last case, the traces aft
the collision correspond to linear radiation~phonons!.
06660
and mobile. These breather ‘‘molecules’’ all appear to
linked by ‘‘phonon bonds.’’ Surprisingly, these mult
breather solutions are more robust against changes of pa
eters. For instance, they can be subject to largerFac without
losing regular motion and then reaching larger velociti
However, a systematic study and rigorous characterizatio
these configurations will be left for further publication.

Finally, we have incorporated in the equations of moti
~1! a random forcej i(t) with ^j i(t)&50 and ^j i(t)j j (t8)&
52Td i , jd(t2t8) in order to simulate the Langevin dynamic
of our system. For lowT (T,1024) breathers solutions
~pinned and mobile! are stable in the whole range of cou
pling C, in the sense that localization persists. To be prec
we observe that, if we are in a region of parameters wh
the MB exists, the noise always induces motion, which is
course stochastic itself. This can be understood again
scenario of crisis induced by the thermal noise. For higheT
the thermal excitation of kink-antikink pairs and oth
breathers masks the original breather.

VI. DISCUSSION AND CONCLUSIONS

Dissipative discrete breathers~DBs, for short! are generic
solutions of forced-damped lattices of nonlinear oscillato
Contrary to their Hamiltonian counterparts, which are s
verely affected by harmonic resonances with the phon
band, the intrinsic localization of energy in the dissipati
case is not easily destroyed by resonances due to the effi
damping of the radiation away from the localization site. T
character of attractor of the dissipative DBs allows their n
merical continuation in parameter space with simpler pro
dures than those needed for the continuation of Hamilton
DBs, and their robustness against all kind of small pertur
tions ~including stochastic ones! ensures their observability
in experimental situations.

Pinned dissipative DBs that are continued from the u
coupled limit experience generically different kinds of inst
bilities by localized modes, namely pitchfork~forward and
backward! and Hopf ~supercritical and subcritical! bifurca-
tions. Pitchfork bifurcations produce DBs with broke
mirror symmetry, while Hopf bifurcations lead to quasipe
odic DBs. In any case it is remarkable that the two ba
solutions~one-site and two-site periodic breather! are found
to be continuable~as stable or unstable solutions! up to the
continuum limit, where continuous translational invariance
restored in the model and then a Goldstone mode appea
their Floquet spectrum. For not-too-large forcing, tail ana
sis as explained in Sec. III C explains successfully the
merical power spectra in sites away from the breather cen
as well as DB profiles.

In certain regions of the parameter space, mobile D
occur as attractors for an open set of initial conditions~basin
of attraction! in phase space. Their velocity is determined
the model parameters, and it is slow compared with the t
scale set by the forcing frequency. One class of mobile
lutions are connected to the existence of depinning mode
the Floquet spectrum of periodic DBs, when they are in
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vicinity of ~symmetry-breaking! pitchfork bifurcations. This
mechanism allows the generation of mobile DBs for valu
of the coupling that are surprisingly low. Another class
related to the destabilization of quasiperiodic pinned brea
ers, and their velocity is even slower than that of the pre
ous class.

Finally, we tested the robustness of breathers by mean
collisions and the application of stochastic perturbatio
~Langevin noise!. It is concluded that breathers are quite r
bust in the sense that the localization persists; howeve
ev

s

s
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regions of parameters where mobile DBs exist, the ther
noise induces random motion in the breather.
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