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Discrete breathers in dissipative lattices

J. L. Marn 2 F. Falo*? P. J. Martnez?® and L. M. Flora!?

IDepartamento de Bica de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain
’Departamento de Tealy Simulacio de Sistemas Complejos, Instituto de Ciencia de Materiales de’ Arago
CSIC Universidad de Zaragoza, 50009 Zaragoza, Spain
3Departamento de Bica Aplicada, Universidad de Zaragoza, 50009 Zaragoza, Spain
(Received 6 December 2000; published 16 May 2001

We study the properties of discrete breathers, also known as intrinsic localized modes, in the one-
dimensional Frenkel-Kontorova lattice of oscillators subject to damping and external force. The system is
studied in the whole range of values of the coupling parameter, @erd (uncoupled limif up to values close
to the continuum limit(forced and damped sine-Gordon mgdéls this parameter is varied, the existence of
different bifurcations is investigated numerically. Using Floquet spectral analysis, we give a complete charac-
terization of the most relevant bifurcations, and we filsgatia) symmetry-breaking bifurcations that are
linked to breather mobility, just as it was found in Hamiltonian systems by other authors. In this way moving
breathers are shown to exist even at remarkably high levels of discreteness. We study mobile breathers and
characterize them in terms of the phonon radiation they emit, which explains successfully the way in which
they interact. For instance, it is possible to form “bound states” of moving breathers, through the interaction
of their phonon tails. Over all, both stationary and moving breathers are found to be generic localized states
over large values o€, and they are shown to be robust against low temperature fluctuations.
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[. INTRODUCTION some straightforward properties of the Floquet multipliers,
we obtain some formal conditions for the nonappearance of
The phenomenon afnhontopological localization in dis- extended instabilities of the uniformly oscillating back-
crete nonlinear lattice§.e., intrinsic localized modes or dis- ground, along with the tail analysis valid for not-too-large
crete breathejshas received a great deal of attention fromforcing. The good fitting of our numerical data to the results
both theoretical andas of lately experimental research. In- of this section ensures its validity for the parameters used in
deed, recent observatioht—3] of discrete roto breathers in the numerical work.
Josephson-junction ladder circuits have placed the subject on Section IV reports on our numerical findings, concerning
a firm experimental footingsee alsd4]). Most of the theo-  pinned discrete breathers, which are summarized in the phase
retical and computational work on discrete breathers hagiagram against the coupling parameter. Pitchfork and
dealt with Hamiltonian systems, of fundamental interest inandronov-Hopf bifurcations separating different periodic
Physics. For a review, see Ref$,6]. Comparatively, the and quasiperiodic breathers appear as generic features of this
easier case of dissipative breathers has received much legase diagram. At very high values of the coupling param-
attention, though the experimental systems that we have jugler, when the width of the discrete breather is much larger
mentioned belong to this class. than the period of the substrate potential, a Goldstone mode
Mathematical prOOfS of existence of discrete breathers ”i!n the F|Oquet spectrum Signa|s the approach to the con-
rather general dissipative networks of oscillatdrs6] ap-  tinuum limit.
peared soon after those of Hamiltonian netwdi&k While In Sec. V we study the mobility of discrete breathers, a
in the later case, a condition of nonresonance of the localizegybject that is yet poorly understood. After discussing the
oscillation with the band of extended normal modes of thzrocedures used to obtain and continue mobile breathers we
lattice has to be satisfied, that is not an issue in the forcedaxplain successfully, with the aid of simple physical argu-
damped case, and the dissipative breather possesses the chaénts, the numerical power spectra in the tails. Then we
acter of attractor for initial conditions in the correspondingstudy collisions between discrete breathers. We find all pos-
basin of attraction. As archetypical example of Klein'Gordonsib|e Scenariosl ranging from “elastic” to Comp|ete|y “in-
lattices of oscillators, we consider the standard Frenkelg|astic” collisions; this latter case includes both breather an-
Kontorova model with commensurability oriee., average pjhjlation and, more interestingly, the formation of “breather
interparticle distance equal to the period of the sinusoidapolecules” that can be either pinned or mobile. Finally, in

substrate pOtenti}illn Sec. Il we discuss the numerical pro- Sec. V|, we summarize the main conclusions of our work.
cedures used to obtain accurate breather solutions, which are

based on the continuation from the uncoupled limit of the
model.

In Sec. Il we explain some general features of the linear
stability (Floque} analysis of forced-damped periodic dis- The equations of motion of the Frenkel-Kontorova chain
crete breathers. For the sake of readability, this section isubject to damping and dspatially unifornm) external driv-
intended to be self-contained, to some extent. After derivindng force are, in dimensionless form,

Il. MODEL AND BREATHER GENERATION
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. ) 1 IIl. LINEAR STABILITY ANALYSIS
U+ au;+ s—sin(27u;)=C(U; 11— 2u;+ U _
T Y N(2ruy) = C(Uj s itu-1) A. Floquet multipliers
+F . Sin(wpt). (1) Let us consider a small perturbatign;(t)} of the dis-
crete breathefu;(t)} solution,v;=u;+¢; . After direct sub-
stitution in the equations of motion and discarding terms that

In order to generate a discrete breather configuration w@ré nonlinear ire; , one finds
start in the anti-integrabl@ncoupled limit C=0, using two
different amplitude attractors of the single pendulum equa-
tion of motion. That is, we first consider the dynamics of a . . .
single forced and damped pendulum, and try to find a region Thege fqrm a systgm of cpgpled linear d.|ﬁerent|§1l equa-
of parameters where there are at least two different attractoFéons_V\"th time periodic coefflClents_, fa; (t) IS a per iodic
coexisting. Note that, generically, all oscillators have at |eas{uncpon Qf time. For a system of S.'Zm’ the integration of
two attractors for sufficiently low values of the damping the linearized equatlon)_over a period,= 2w/ w;, of each
and the forceF,, if the frequency of the forces, is not  Of the 2N vectors{¢;(0),€;(0)} forming some basis of the
wildly different from the typical frequencies of the autono- tangent space defines th&lX 2N Floguet(or monodromy

€j+ae+cog§2mu;(t)]€=C(€ 11— 2€;+€-1). (2)

mous oscillator. matrix 7
Therefore we initially choose values fat, F,., andwy,,
and keep them fixed while we vafy. Then, for instance, we €(1p) €(0)
fix one of the oscillators to the high amplitude solution and éj(tb) - }s]-(O) 3

all the others to the low one. Using as initial condition this

anti-integrable configuration, we turn on adiabatically theéinai relates the small perturbations tatt, to those att

coupling paramete€. Following Sepulchre and MacKay's =0; in other words,F is the matrix associated to thg-map
work on dissipative breathefg], the initial solution can be ¢ g (2).

continued forC+0, at least until a bifurcation is reached.  The |inear stability of the breather solutidi;(t)} re-
That paper shows how, in contrast to Hamiltonian systeMsyyires that all the eigenvalues of the Flogquet matdalled

forced and damped systems have it easier to comply with thgso Floquet multipliers are inside the unit circle. Sincgis

conditions of the continuation theorem, since there is no L . . . —.
real, if u is an eigenvalue of, its complex conjugate: is

r;':}Iso an eigenvalue of. But the Floquet spectrum has more
structure, since one can transform the linear system of Eq.
(2) into a Hamiltonian ondsee Ref[10]). By transforming

the ¢; variables according to

fj(t):efatm?]j(t), 4

problem of resonance with phonofwge have attractojsand
the relative phases of the oscillators are locked by the exte
nal force.

Moreover, if the variation irC is small enough, the dis-
crete breather remains an attractor of the dynanfsasce
one expects the basins of attraction to evolve continuously
with C as wel). This makes the numerical continuation
greatly simpler: it is possible to just vary adiabatically the
couplingC as we integrate the equations of motidn, and
the dissipative dynamics drives the system to the stable at- -
tractor. gontrast){this with the expens)i/ve root-finding meth- 7= (a?l4=cod 2mu;()]) 9= C( 1= 27+ 7). 5
ods one needs to use for breather continuation in Hamil- ®)

tonian é)(;p_blemig]. ; dali bil vsis of th These are the equations of motion of(ronautonomoys
In 3_ |t|(|)n,. we pler ormel ahlnearl stability agalysls OoFthe Lamiltonian system of oscillators, for which the eigenvalues
periodic so qtlons{F oquet-Bloch analysis, see gbm OF"  of the (symplectig t, map must come in pairs such that their
der to investigate the nature of possible bifurcations. In som roduct is unity. Together with the fact that the map is real
cases we have added to the initial conditions a small randorg, o has these \;vell knowii 1], three possible case§) pairs '
noise (typically of order 10°) to test for robustness. We f i | Vi h’ it circl the = nor (i
pf eigenvalues lying on the unit circle, with;=N\5; (i)

have taken special care dealing with finite size effects. For . _ T i
low values ofC(C<0.6) small lattice sizes can be us@ay pairs lying on the real axis, W'mlf s and_(m) 4-tuples

N=40). However, once the breather is dressed by a phono®f eigenvalues with;=X3, No=\s, Ay=1/,.

tail (see below, we have needed to increase the lattice size Since the transformatiof¥) scales the eigenvalues by a
up to N=900 in order to avoid finite size effects. We think factor expt-aty/2), the Floquet multipliers of Eq2) must

this is an important point to check since experiments in reagither lie on a circle of radius exp(aty/2), or on the real
dissipative systems are done in small lattife£]. Numeri- ~ axis such thaju,u,=exp(-atp), or come as 4-tuples such
cal integration of equations of motion has been done using that =3, o= s, ©1=eXP atp) s

fourth-order Runge-Kutta scheme. Most of the simulations in  An important difference with the Hamiltonian case, where
this paper have been done with the following parametersa “phase” and the “growth” modeg6] are always associ-
a=0.02, wy=0.2r, and F,.=0.02, although we have ated to the double eigenvaluel in the Floquet matrix of
sometimes changed them to confirm the general validity othe discrete breather, is that these modes do not exist for the
our results. forced-damped case. The reason for that is that both the

this yields
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breather frequency and the time origin are fixed by the ex= max{pg ,Pq - Thus, from Eq(8), we conclude that the sta-
ternal force, so that the associated degeneracies are removeylity of the homogeneous solutidiu.,(t)} is assured in the
parameter region in which

B. Extended instabilities max_ ,/ 1
= Su <alld.
In the limit of an infinite systemN— ), the spectrum of Psup= SURPq

F consists of a continuous part associated with spatially ex- The determination of this region in parameter space can
tended eigenvectors and a discrete part associated with spanly be made by numerical means. For the range of param-
tially localized eigenvectors. The continuous part of theeters that we have used in our study of damped-forced
spectrum ofF is the continuous spectrum of the linearized preathers, the functiof(t) is a low amplitude oscillation
problem around the homogeneous solutiore., without around the value 1, and, as expected from the well-known
breather {u;(t)}={u.(t)}. As pointed out by Man and results on weakly time-dependent Hill equations, we have
Aubry [12], using the fact that the limitin the appropriate not observed instabilities by extended modes.
sensg of the sequence of spatial translations of the Floguet |n the next section, we will follow the continuation of the
matrix F of the system with breather is the Floquet matrix preather solution from the uncoupled limit, for increasing
Fo of the system without the breather, one proves easily thatoupling and numerically compute the eigenvalues of the
the spectrum ofF is included in the spectrum of. Recip-  Floguet matrixF. This will allow the characterization of the
rocally, the limit of the sequence of spatial translations of ardifferent bifurcations that the breather experiences when the
extended eigenvector ¢f can be seen to belong to the spec-coupling parameter increases.
trum of Fy.

First, we are going to consider the spectrun’gf so we C. Tail analysis
now will pay attention to the linearized equation of motion . . :
(2) around the homogeneous solution of @), {u;(t)} To proceed a bit further, we will assume from now on in

_ ; _ this section that.(t) is an oscillation of very low ampli-
={u.(t)} and denote simply(t)=cog2mu.(t)]. Under the X o .

usual periodic boundary conditions, we look for solutions oftude; SO that fofj|>1 the coefficient cd2m(t)] in Eq. (2)

the linear problem with the plane-wave form is essentially unity, if one discards terms less than or equal to

u2(t). Then we are left with the standard problem of a linear

n;()=e"Uxa(t). (6)  chain with damping, which we can solve exactly similar
_ _ _ o analysis to the one below appears in Rég]).
In other words x“(t) is the(spatia) Fourier coefficient of Let us consider a semi-infinite chain with the boundary

7;(t). Inserting E0|-(6)2 into the Eq.(2), and denoting by condition at the beginning given by, (t) =exp(—iwt), and
E(q) =4C sinf(q/2) — a®/4, we have, for each value gfthe  |ook for solutions of Eq(2) of the form

equation o
€()y=el"Erimigiot (12)

Y1) +[E(q)+f(t)]x%t)=0. 7
XOFE@+TOIAO @ Inserting Eq.(12) into Eq.(2) one obtains for the real and
This is a Hill equation. For each solutiop(t) of the  imaginary part, respectively,
single Hill equation(7) we have a solution of the forr(6)

for the Eq.(5), and thus, a solution _ i _ 2
B coshé cosq=1+ 2C(1 w°), (13a
€ (t)=e'Ve™*2x4(1) (8)
for the linearized problem. The Hill equatidi) has a gen- sinh&sing= % (13b

eral solution that can be expressed in terms ofnissmal

solutions which have the property First, we will analyze the situation in which=0, and

Xq(t+277/wb)=>\q)(q(t), (9) see hovx_/ one recovers the Well-kno_wn results for Hamil-
tonian discrete breathe[44,15. For £=0, one has the fa-
where\,, is called the characteristic number of the equationmiliar normal modesolutions, where the frequencies are
The complex numbep,, defined as\,= exp(2mp,/wy,) is the ~ given by the dispersion relation
called characteristic exponefits imaginary part being de- 5 .
fined up to an additive multiple ab,,). In the generic case in ©?=1+4Csir(q/2) (14
WT'Ch, Eq. (7) has tvyo different C-harflC'EerIStIC numbers andq(— w<qg<) is the wave vector of the normal mode.
Aq +Ag , their product is equal to unithg Ay =1, and the |t js customary to denote loosely the normal modes as

general solution has the form “phonons,” and the interval of values ab defined by Eq.
N _— (14) as “phonon band.” Foré#0 one has exponentially
xA(t)=c e’y (t)+c_efa'yy (1) (10 decaying solutions
wherec, ,c_ are constants andzg ,4 are time periodic ej(t)ze—fie—iwt, (159
functions with period Zr/w,. Consequently, x%(t) is o
bounded byKexp@g‘a"t), with K some constant, anpl[]"ax ej(t)=(—1)1e‘51e"“’t, (15b)
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where the inverse decay lengéhand the frequency are 05
related, respectively, through oal ]
a2r
w?=1—4C sint?(£12), (163 T ]
02F 4
w?=1+4C costt(£/2). (16b) 0.1F 1
0
Note that the values ob in Eq. (16) are, respectively,
below and above the phonon band, so we observe how the 2 . . I T
Hamiltonian linear lattice damps out any solution with a fre-
quency component outside the phonon b&hd), while the 15+ 1
normal modes are extended=0). As a consequence, a
Hamiltonian breather needs to have all breather harmonics § il
Nnw, out of the phonon band, and then they decay exponen- a=0.02
tially with the characteristic lengtti-*(nwy,). Thus the size [
of the Hamiltonian breather is given byé&,* 05F ]
zsuplgfl(nwb). b /()L:0.0-
When a#0, we have that(w)+0. Thus, any solution O e
decays exponentially. For very low values of the damping, W/2T
and frequencies well inside tHelamiltonian phonon band,
the decay lengti¥ ! is very large, so that sinf=¢ in Eq. FI_G. 1. Wave vectorq and inverse of the decay_ lengthas
(13b), and thus it can be approximated by functions of w for two different values of the dampingy=0.02

(open circleg and the Hamiltonian case=0.0 (filled ones. The
coupling paramete€ is in both cases equal to 0.75.
_, 2Csing _ 2vy

2o o (17 IV. BIFURCATIONS AND PHASE DIAGRAM

We have continued numerically breather solutions from

the uncoupledor anti-integrablg limit, for fixed values of

he damping coefficientg=0.02), external force frequency
I%wb= 0.27) and intensity F,.=0.02). The spectrum of Flo-

uet multipliers was also numerically computed for each so-
ution, thus monitoring their evolution on the complex plane.
The configurations we have focused on are two: the one-site
Rreather and the two-site breatiadjacent sites Of course
many other configurations are possible, by choosing from all
combinations of sites in either the high-amplitude or low-
amplitude attractor. However these two simplest breathers
already provide a quite rich behavior, and, surprisingly, they

wherev = (dw/dq) is the “group velocity” of the corre-
sponding normal mode, obtained from the dispersion relatio
(14). This approximation admits a simple physical interpre-
tation in terms of the competition between the damping an
the velocityv 4 at which the wave generateal the beginning
of the semi-infinite chain by the sustained perturbation
propagates: The amplitude of the excited phonon decays i
time as exp{at/2), so that the time after that the amplitude
has decayed by a factor of €)/is 2/a, and thus the distance
traveled by the phonon isug/a.
An example of the solution§(w) andq(w) of Egs.(13),
for the particular valuesr=0.02 andC=0.75, appears in
Fig. 1. For comparison purposes, the graphs corresponding to 4
the same value of coupling for the Hamiltonian case are in-
cluded. &
Note that for the existence of damped-forced discrete
breathers there is no need of a nonresonance condition 0.5 |
contrast with the Hamiltonian casebecause for any fre- \
quencyw, &(w)#0. However, for low values ok, if some 0.0625 C=0642
breather harmoniow, belong to the interval of values of
for which £(w) is very small, the breather profile will show 0.0156251 4
large “wings.” In Fig. 2 we ploté(3wy,) as a function of the R S S
coupling C, for «=0.02 andw,=0.27. Observe the dra- 0 05 ! 13 2
matic decay ofé(3wp) at aroundC=0.6 corresponding to C
the entrance of the third breather harmonic in tse to FIG. 2. Inverse of the decay lengtim logarithmic scalgas a
speak “phonon band,” and compare the breather profilesfunction of the coupling paramet@, for a fixed valuew= 3wy, .
for two values of C, respectively below and above, in Fig. 3.we mark two values of, 0.564, and 0.642, which correspond to
Both the wave vector and the size of the wings in figure fittwo rather different values of, also used in Fig. 3. The rest of the
very well with q(3wp) and £(3wy,) from Eg. (13). parameters are,= 0.2, @=0.02, andF,.=0.02.

C=0.564
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FIG. 3. Breather profiletwo-site breathejsat a given time for
two different values of2(0.564 filled circles and 0.642 open ones,
see also Fig. R The inset shows the right-hand-side tails, where we
can observe the existence of a phonon in the second case, corre-
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sponding to the entrance of the third harmonic.gfin the phonon 04 | E
band. The points are connected as a guide to the eye. 02 :
e 0 -
02t
allow continuation into very high values d, where the 04
continuum limit is approached. s
At very low values ofC the continued one-site breather is 04 | '
very narrow, symmetric around its localization sitee., 02 {
u_;(t)=u;(t) for all t andi], and all the Floquet multipliers w" 0 Y
lie on the circle of radius exp{at,/2) in the complex plane. 02T i
The breather remains stable for increasing coupling up to the o4 , , , , ,
value Cp;=0.529 62 where a Floquet multiplier, which had 0 50 100 150 200 250 300
previously detached along the real axis from that inner circle, (b) n

reaches the unit circle at 1. The corresponding eigenvector
of the Floquet matrix is localized around the breather site  F|G. 4. Floquet spectrum for the one-site breather n@ar
and possesses odd mirror symmetry with respect to that sites0.5296 and closely after the first pitchfork bifurcation. All eigen-
as shown in Fig. 4. Past the bifurcation, we are left with anvalues are in a circle of radius exp@t,/2) except two, one of
unstable symmetric breather and two new stable breatherghich crosses the unit circle by 1. The lower figure shows the
spatially asymmetric and one being the mirror image of theprofile of the eigenvector corresponding to this unstable eigenvalue
other. We can conclude that this isf@ward pitchfork bi-  (both velocity and position components,, ¢). Note that it is
furcation [16], associated with a spatial symmetry-breakingantisymmetric and strongly localized.

transition of the discrete breather.

In order to visualize the mirror symmetry breaking char-preather comes out. As in the bifurcation analyzed before,
acter of this bifurcation, we plot in Fig. 5 the difference onjy one Floquet eigenvector, associated with a Floquet mul-
A(0)=u_4(0)—u(0) at timet=0(mod t) of the positions tiplier of value + 1, is involved.
of the neighbor oscillators on both sides of the localization ' This unstable two-site breather that joins this second
site, as a function of the coupling paramet®in the vicinity  pitchfork is nothing but the two-site breather that can be

of the bifurcation value. It is not surprising that, close to thecgntinued from the uncoupled limit. Thus we have that the
bifurcation, the differencé (0) scales with the coupling pa-

rameter as € —Cp;) Y2, because the one-dimensional char-

acter of the unstable manifold of the symmetric breather al- ] T
lows to reduce the analysis to that of a pitchfork bifurcation ~ _ 00041 .
in a one-dimensional map, where this scaling behavior for < ‘ !
the distance between branches is well known. TO0002m gy b e
The asymmetric stable branches borrCat can be con- s |
tinued for higher values of coupling. We then observe how ; 0
the amplitude of one of the neighbors of the central site Y™
keeps increasing, until it equals the amplitude of the central & 7|
oscillator (which has in turn decreased slightlyat Cp, < 0004k g1t
=0.55315. It should be noted that the relative phases of the ' , N e ! ,
oscillators do not appear to change, At this valudyaak- 05295 052955  0,5296 c 052965 05297

ward pitchfork bifurcationoccurs, where the two stable

asymmetric breathers and one unstable symmetric two-site FIG. 5. Profiles of the breather around the area of the pitchfork
breather merge, and a stable mirror-symmetnie-site  bifurcation.
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two elementary breathers constructed at the uncoupled limit,
one-site and two-site breather, undergo an exchange of sta-
bility via this symmetry-breaking pitchfork mechanism. For
C<Cp; the one-site breather is stable and the two-site one
unstable. FoICp;<C<Cp, both are unstable, and the new
asymmetric breather is stable. P&st, the two-site breather

is stable and the one-site unstable. This is exactly the same
mechanism that was previously found by other authai@

for Hamiltonian breathers, and which is related to breather
mobility as we explore in the next section. It is, therefore,
plausible to conjecture that the mechanism is highly generic
and might be expected in a large class of models.

To be thorough in our description, a much less interesting
bifurcation does appear in the two-site breather branch at
very low C. The two-site breather is initiallgtable at the
uncoupled limit, but loses stability after a pitchfork bifurca-
tion at C~0.02. This is also a symmetry-breaking bifurca-
tion as above, however it is instructive to investigate the
differences: this time the spatial symmetry is broken in such
a way that the new stable, asymmetric breathers suffer a

)

dephasingbetween the two central sites. This can be con- 02}

firmed rigorously by examination of the relevant eigenvector 0.1 :

at the bifurcation. If one takes as reference for the time origin &~ 0 :¢:

the instant at which the two central sites have maximum 0.1 r i

amplitude, the unstable eigenvector for this second pitchfork 02 ¢ i

shows components only in the velocity part, not in ampli- 0 100 200 300 400 500 600 700 800 900
tudes; the former bifurcation shows exactly the opposite be- n

havior. In any case, the continuation of the asymmetric (b)

breather from this bifurcation &=0.02 is quickly lost after

a Hopf bifurcation, and we have not found any more Inter'=0.871. An eigenvalue and its complex conjugate cross the unit

esting behavior arising from these curious branches. jrcje at a nonzero angle in the complex plane. The figure at the
Now we turn on to the continuation of the stable two-sitestom shows the corresponding eigenvector.

breather branch past>Cp,. We find now that neaC
=0.817 two complex conjugate Floguet multipliers cross therobustness against small perturbations in the dynamics. This
unit circle at expttig), with ¢=1.285, and thgperiodio quasiperiodic two-site breather turns out to be stable for cou-
two-site breather becomes unstable. The real and imaginaplings up toC=0.88, beyond that it starts moving spontane-
components of the associated eigenvectors are shown in Figusly. Only when we reaclC=0.96 we recover again a
6. Close to the bifurcation, small perturbations of the un-stable, pinned quasiperiodic breather. Meanwhile, the
stable periodic breather bring it into a quasiperiodic breathepinned, periodic two-site breathéwhich became unstable
(as verified by inspection of the Poincaection, thus con-  after the Hopf bifurcation a€=0.817) can be continued by
firming the scenario of agAndronov-) Hopbifurcation[18].  a Newton method. At a value ne@r~0.995, it rejoins the
Indeed, the power spectrum analysis of the quasiperiodic atuasiperiodic two-site breather in an invefeew supercriti-
tractor (see Fig. 7 reveals two basic frequenciesy, and  cal) Hopf bifurcation, becoming stable again.
wnew= 0.0873. However, since this frequency is rather dif- We have tried to summarize most of these bifurcations in
ferent from the frequencyw,/27=0.1285 associated to the the sketch of Fig. 8. We postpone to the next section the
destabilizing eigenvalue couple, one concludes that thanalysis of the observed mobile breathers in this reggom
stable quasiperiodic attractor does not come out straight fromthers of parameter space.
the bifurcation. In other words, the simplest scenario of a To conclude this section we will comment on the continu-
supercritical Hopf bifurcation is discarded. Moreover, the ation and stability analysis &— <, i.e., the so-called con-
quasiperiodic attractor can be easily continued back fotinuum limit. The first interesting fact is that both the one-
lower values of the coupling.e.,C<0.817), therefore con- site and two-site breather, whether stable or unstable, have
firming that we have aubcritical Hopf bifurcation. Note been found to be continuable for couplings as high as de-
that, as parameters other th@nchange, it is possible for sired. In other words, they never disappear by, say, saddle-
these subcritical Hopf bifurcations to become supercriticalnode bifurcations or the like. Another interesting point is that
for their genericity lies in the Hopf character, not in being for C>1 we have also found pitchforks that connect the two
subcritical or supercritical. branches, exactly in the same way as the first one at
The lack of periodicity for the(quasiperiodit breather Cp;, Cp,. The ranges of coupling between forward- and
attractor prevents the use of Floquet analysis. However, itbackward-pitchfork bifurcationéhat is, where the connect-
stable character can be numerically ascertained, checking iisg branches of stable asymmetric breathers Eexjst pro-

FIG. 6. Floguet spectrum for the Hopf bifurcation &
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translational invariangeasC— . These effects were osten-
sibly manifest alC=5.

V. MOBILE BREATHERS

The problem of the mobility of discrete breathers is still
very poorly understood. While the fundamental theory of
stationary breathers is now firmly establishgg}, moving
discrete breather@dvIB for short) have so far eluded a rigor-
ous treatment. But the fact is that moving breathers have
been observed and studied through numerical simulation in
various works[19-21,17,22 and they appear to be a phe-
nomenon with the same degree of genericity as the stationary
case. Up to now most of those works have dealt with Hamil-
tonian systems; here we present a study of moving breathers
in our forced and damped Frenkel-KontoroffiaK) model.
Some of the results are strikingly similar to those observed in
Hamiltonian systems.

We should first point out that a moving breather is some-
thing to be distinguished from a similar class of solutions,
namely lattice solitons[23,24]. In a lattice soliton a pulse
propagates without dispersion through the lattice, but, unlike
breathers, there is no “internal” oscillation. This additional

FIG. 7. Two-site quasiperiodic breather. Note that particles ondegree of freedom makes the moving breather a more com-
both sides of the breather are out of phase. The figure below showslicated object. For instance, in Hamiltonian lattices, it is
the power spectrum of one of the central particles. The peaks argasy to see that inevitably the moving breather resonates

linear combinations of the two relevant frequencieg,and wpey,-

Note that only odd harmonics @, appear.

with the phonon bandnote the presence of a quasiperiodic
spectrum due to the additional frequency introduced by the
translational motio)y) and therefore it is not possible to have

gressively narrower for higher coupling values. And finally, tails that decay to zero. It is not clear whether the solution is
both the breather profiles and their Floquet spectrum reveal jast a transient that eventually decays by phonon radiation,
very natural approach to the continuum limit: the solutionsor maybe an infinite lifetime breather that “rides” on an
get broader in size, while the eigenvalue responsible for thénfinite, small amplitude radiation background.

pitchforks remains closer and closertdl at all times, an-
nouncing the appearance of the Goldstone m@iiee to

b . MB
[ ]
L ]
| [ e E——
I o .
ii+l : :
1 =
. 3 i
P ? : .
0.0223 7 Cpy Cpy 0.817 0.96

FIG. 8. Scheme showing all bifurcations found in our model up

But our model here is dissipative and has external forcing,
and it turns out that moving breathers appear as proper at-
tractors of the dynamics. Since these solutions are not tran-
sients, we can study and characterize them accurately and
with great confidence. Even though this will not shed any
light on the problem of existence of Hamiltonian moving
breathers, there is another aspect of theoretical interest in
which this study can contribute: tHpossible concept of a
Peierls-Nabarro barrier for breather motion. This concept
arises because of the similarities with the problem of mobil-
ity of discommensurationgkinks) in the Frenkel-Kontorova
model[25]. The discommensuration is an equilibrium static
structure, for which one may ask how much energy it costs
to displace it by one lattice site, until it reaches the equiva-
lent configuration by(discrete translational invariance. This
is commonly referred to as the Peierls-NabaRd) barrier.

And it is possible to give a precise definition: from all pos-
sible continuous deformations of the initial configuration into

to values ofC~1. The most relevant ones are probably the pitch-the final one, take the_ one in _W_hiCh the maximal energy
forks that exchange stability between the one-site and the two-sitthange along the path is the minimum. Very fruitful results
breather Cp;, Cpy). At C=0.817 the two-site breather has a sub- IN the theory of the F-K model have stemmed from this

critical Hopf bifurcation, connecting it to a quasiperiodic breather. definition [25]. . o .
At C=0.88 this quasiperiodic solution disappears as it turns into a But a corresponding definition of a PN barrier for breath-

slow moving breather. The gray-shaded areas betWeef.51 and

ers proves quite problematic. The difficulty lies in that it is

C=0.96 are those where moving breathers, either fast or slow, canot clear which space to use, since the configurations are

be found.

now periodic functions, not static points. Some authors have

066603-7



J. L. MAR’IN, F. FALO, P. J. MAR'I"NEZ, AND L. M. FLORIA PHYSICAL REVIEW E 63 066603

suggested possible candidates for a rigorous definition, but Re/gularMotion

the issue is still under debaf26,6,27. Technicalities aside, 0.05 — RS I W

it is still possible to give a working definition of the Peierls-

Nabarro barrier for breathers, at least in some cases. Most 004k o hooos. |
studies generate moving breathers by perturbing stationary |

ones, and Ref[28] gave a systematic method to do this. § | FastB |
Looking at the linear stability analysis of the breatliEto- 3 00 e SiowB.
guet analysig they found that in many cases one can iden- g \

tify an eigenmode that is distinctively localized and whose 0.02- PR i
spatial symmetry is appropriate for breather motimote i 3
that similar depinning modes are responsible for the depin- 0.01 o
ning of discommensuratiorf®5] under uniform forcing It v v

was found that adding a perturbation along this depinning 0 | 0163 30'7 e

eigenmode, provided one overcomes a certain threshold, re-
sults in a moving breather. Such thresholds are probably the
best pragmatic approach to the definition of a PN barrier. FIG. 9. Velocity of MB vs coupling paramet&. Dashed area

A further study[17] showed that many Hamiltonian lat- shows the region in which MB have a diffusive motion. It is also
tices exhibit a very interesting behavior that is linked to mo-showed different regions of “slow” and “fast” MB. See the text
bility. It was found that, as the coupling is increased fromfor details.
C=0, the one-site breather and the two-site breather each
undergo a pitchfork bifurcation, where additional brancheghis procedure. _ _ _ _
of periodic but spatially asymmetric breathers emerge. These Around the first symmetry-breaking bifurcation there is a
branches do in fact connect those pitchfork points, and th@arrow region in which we found MBs with regular motion
corresponding Floquet eigenmodes responsible for the bifu@nd well defined velocityFig. 10. A similar region is found
cations obviously show a spatial symmetry that we could du? the interval 0.£C=<0.88. We call these solutions
as “depinning.” This is exactly what we have found in our induced fast breathersTo generate thessteady stateVB
dissipative model, as shown in the previous section. AndWe have followed the procedure described 28]. Surpris-
just as in the cited works on Hamiltonian systems, we havédly. this method works very well even far from the bifur-
also verified that the mobility is greatly enhanced for valuestations. We typically use as initial conditions:
of coupling in the vicinity of these bifurcations: very small 0 a
amounts of perturbation along the depinning mode are Ui(t=0)=ui+Ae, (18)
enough to create the mobile breather. The upshot is that th
phenomenon provides a mechanism for the existence of m
bile breathers at relatively low couplingkigh discreteness
and with very slow velocities, two properties that were coun-
terintuitive and unexpected.

We should note that the continuous sine-Gordon equation
under external ac forcing and losses does not support MB
solutions[29]. The way in which a continuous breather de- U
stabilizes is by a transition to a quasiperiodic state and finally
creation of a kink-antikink paif30].

In the following we begin exploring this relation between
the stability of stationary breathers and the existence of their
mobile counterparts. Then we concentrate on studying the
properties of moving breathers in dissipative systems in
more detail. Finally, we explore other aspects such as colli-
sions.

lﬁ?hereuiO is a stationary breather solutioef, corresponds to
e antisymmetriqand localizedl eigenvector mode at the

145 150 155 160 165 170

180

175

A. Generation and phase diagram of MB

We have found MB as proper attractors of the dynamics
in a wide range of couplings, in particular for &&
=0.96. We have found them either by excitation of the de-
pinning mode of stationary breathdes explained belopor
simply by letting the system evolve to a steady state after the
instabilities of some stationary breathers develop fully. Then
it is possible to carry out a continuation of the MB into other
parameter values, since their attractor property allows to
change slowly a parameter and track the MB solution. Figure FIG. 10. The upper figure shows a MB with regular motion at
9 shows the phase diagram of MB we have constructed witle=0.75. Below, a MB with diffusive motion &€= 0.65.

£
170

165

160

0 200 400 600 80O 1000
time
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L Fac,» Which is dependent o@, a shock wave is formed and

| ” | ] the regular motion becomes again diffusive.
OF =

s 1 B. Emission of phonons

1
o
=
v

T

1

An important feature of botlpinned quasiperiodiand
moving breathers is the emission of low amplitude linear
waves (phonons. In both cases the breather tails clearly
show a complex quasiperiodic behavior in which many fre-
quencies are involved. For the moving breather, these tails
are also markedly asymmetric, due to the translational mo-
tion. Other authors have investigated the behavior of Hamil-
tonian breathers when subject to phonon scattdtis) note

FIG. 11. Instantaneous profile of a MB &=0.75 andF .. that in our case it is the breather itself the source of phonons.
=0.045. Note the clear asymmetry of the phonon tails in front of In order to investigate the phonon emission we have com-
and behind the breather. puted the power spectrum of(t) for sites sufficiently far
away from the breather center, as given by the expression

N " 1 " 1 " 1 "
300 400 500 600 700 300
site

bifurcation taking place nea€=0.53, and finally\ mea- - 2
sures the strength of the perturbation applied. It is found that, S(w)= f Uj(t)ei oyt
as in the Hamiltonian case, a criticg} is necessary to unpin o

the breather. However, in contrast to the results for Hamil-ln all spectra, we can observe peaks corresponding to the
tonian systems, once the breather starts to move the VeIOCiB’riving frequency and its odd harmonics, as expected. We
is unique(independent ok ), i.e. the MB is a robust attractor g0 observe a broad band spectrum corresponding to fre-
of the dynamics. Once iaducedMB is generated at a value gyencies in the phonon band, with several resonant peaks. In
of C, this solution can be continued by varyi@slowly,  poth cases we can explain those frequencies satisfactorily in
with almost no variation in velocity. The analysis of Poin- (arms of emission of phonons by the breather.

car'gsections of this MB_ shows clearly a _q_uasiperiodic be- Figure 12 shows a time snapshot and the corresponding
havior. Therefore there iso commensurabilitpetween the power spectra for a particle in the tails of a quasiperiodic
internal frequencyw;, and the present frequency associatedsinned breather. In this case, the resonant peaks simply cor-
to the velocity wmp=2mv . This behavior precludes the yegpond to frequencies that are linear combinationsogf

use of .fixefd' point met.hodéike NeMon methoid based in g4 wnew (the second basic frequency of the quasiperiodic
the periodicity of solutions, to findnumerically exact MB breather

solutions. Also, this quasiperiodicity prevents us from ex-
tending the Floquet analysis to MB. Wi = Mwp+ NOpey, MNeZ. (20

For intermediate couplings 0.80C=<0.72 (shadow re- )
gion in the phase diagramthe breather portrays random In the case of moving breathers, the peaks also correspond

motion. For some time interval, the MB moves regularly in O the frequencies given above, but shifted by the Doppler
one direction, then suddenly remains immoliiteit quasip- effec_t since they are emlt_ted by a moving source. Their cal-
eriodio for a while, changing then its motion to the other culation requires thus a !|ttle_ more care. We repall that_the
direction, and so on. A plausible scenario is that of the ocPropagation of phonons is given by the dispersion relations
currence of acrisis [31] at C~0.72 that destabilizes the (13- The frequency of the emitting source, in the reference
regularly moving breather®f positive and negative veloc- frame of the source itself, Bsc=nwy, + 27Mu yp. This sec-
ity, respectively, giving rise to a chaotic attractor consisting ©"d frequency appears because the breather is moving over a
of intervals(of random lengthof approximately regular mo- Periodic potential with velocity ,. However, in the refer-
tion, followed by changes of direction. ence frame of th_e mediufthe lattice, this frequency will be

As we have already mentioned, @t=0.88 the stationary Modified according to
breather solution(quasiperiodit disappears, and only the
MB solutions survive. We will refer to this breather sygon-
taneous slowMB. Its velocity is approximately half of the which is the well-known Doppler effect, only that the me-
fast MB and shows a great variation as a function@f dium is dispersivg32]. In particular, note how the wave
Moreover, there is a narrow window arou@d=0.89 where vectorq of the propagated phonon depends@wnas given
both the slow and fast MB coexist. by Egs.(13). Therefore Eqs(13) and(21) have to be solved

Regular motion MB are also stable against variation ofself-consistently fog and w.,;, and then the different peaks
parameters other thad. By increasingrF ., the velocity of  of the power spectrum can be worked out. The agreement of
the breather increases, showing a very asymmetric profile, ahis calculation with the observed frequencisse Fig. 13is
shown in Fig. 11. As we explain below, the origin of this excellent.
asymmetric shape can be explained in terms of forward and Finally we remark that for small lattice sizes, and when
backward emission of phonons from the moving breatherusing periodic boundary conditions, tails in front of and be-
which suffer a Doppler effect. Above a critical value of hind the breather can overlap. In such cases, solutions are

(19

O i1 = Wgre™ 2TY( W ai1) U b s (21)
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0 0.1 0.2 03 0.4 FIG. 13. Time evolution for a particle that is passed by a MB
/27 (uppe). Below, power spectra corresponding to the tails before and

after the passage of the breather. Note how the peaks are shifted by

FIG. 12. Time evolution for the tail of quasiperiodic breather at Doppler effect.
C=0.817 (upper figurg¢ and the corresponding power spectrum
(down figurg whose peaks are given by linear combinations of two

. In Fig. 15 we show some of the multiple behaviors we
frequencieswy, and wpey -

have observed in simulationg8) Collision between two MB
at low F,. and thus low velocity, a€=0.75. Their velocity
is low enough not to destroy themselves, but to create a
multibreather state{ii) Elastic collision of two “slow”
breathers a€ = 0.89; (iii) Collision that gives anobile two-
breather state. The last two collisions only differ in the initial
C. Breather collisions and thermal effects conditions. Finally, (iv) breather annihilation between a
. . . . . . “slow” and “fast” breather at C=0.89 where they coexist.
Since we are dealing with a system in which pinripd- An i : L : :

n interesting phenomenon arising from the simulations

riodic and quasiperiodjcand ’T‘Ob"e breathers coexist for above is the formation of multibreather solution both pinned
the same parameter values, it seems natural to study their

stability against collisions between them. Very different kind
of events appear depending on the breather velocity and the
initial conditions (initial distance between breathgrsThe
faster the breathers are, the more likely they are to destroy
each other. The main result is that, when the breathers sur-
vive to the collision, the interaction is mediated by the
phonons that dress the breather. For large velocity, the tail in
front of the breather is shotthe MB is very asymmetri¢ so

the breather cores can overlap and we observe they get de-
stroyed. For moderate velocities, the opposite occurs: the
tails are large, and it seems as if they mediated the collision,
slowing down the breathers and preventing the cores to
touch. A clear example of this latter case can be seen in the
Fig. 14, where we observe an “elastic” collision in which  F|G. 14. An elastic collision between two slowly moving
the breathers approach each other up to a distance that is thgathers. It is possible to appreciate how the breathers “see” each
range of the phonon tail. Note that this distaneel©0) is  other through their phonon tails. This collision was obtaine at
much larger than the core breather sizelQ). =0.809.

similar to the so-calledanopteron$33] of Hamiltonian sys-
tems, in which the MB appears to move in a “sea” of
phonons.

site
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50— 7T T and mobile. These breather “molecules™ all appear to be
linked by “phonon bonds.” Surprisingly, these multi-
breather solutions are more robust against changes of param-
eters. For instance, they can be subject to laFggrwithout
losing regular motion and then reaching larger velocities.
However, a systematic study and rigorous characterization of
these configurations will be left for further publication.
Finally, we have incorporated in the equations of motion
(1) a random forceg;(t) with (£;(t))=0 and(&;(t)¢;(t"))
" e =2T4; j6(t—t") in order to simulate the Langevin dynamics
5000 10000~ 15000 20000 25000 of our system. For lowT (T<10 %) breathers solutions
time (pinned and mobileare stable in the whole range of cou-
I ' ' ’ pling C, in the sense that localization persists. To be precise,

(ii) we observe that, if we are in a region of parameters where
\/ the MB exists, the noise always induces motion, which is of
1000 7 course stochastic itself. This can be understood again in a

scenario of crisis induced by the thermal noise. For higher

the thermal excitation of kink-antikink pairs and other
/\ breathers masks the original breather.

VI. DISCUSSION AND CONCLUSIONS

[
(=]
=
(=]

position

position

500+ ; | b
10000 15000 20000 25000
time Dissipative discrete breathe(iSBs, for shor} are generic

solutions of forced-damped lattices of nonlinear oscillators.
Contrary to their Hamiltonian counterparts, which are se-
(iii) verely affected by harmonic resonances with the phonon
10001 ~ band, the intrinsic localization of energy in the dissipative
case is not easily destroyed by resonances due to the efficient
damping of the radiation away from the localization site. The
character of attractor of the dissipative DBs allows their nu-
merical continuation in parameter space with simpler proce-
dures than those needed for the continuation of Hamiltonian
500 . DBs, and their robustness against all kind of small perturba-
tions (including stochastic ongsnsures their observability

in experimental situations.

Pinned dissipative DBs that are continued from the un-
{400—— . . . _ coupled limit experience generically different kinds of insta-
bilities by localized modes, namely pitchfofforward and
backward and Hopf (supercritical and subcriticabifurca-
tions. Pitchfork bifurcations produce DBs with broken-
mirror symmetry, while Hopf bifurcations lead to quasiperi-
odic DBs. In any case it is remarkable that the two basic
solutions(one-site and two-site periodic breathare found
to be continuabldas stable or unstable solutiongp to the
continuum limit, where continuous translational invariance is
restored in the model and then a Goldstone mode appears in

position

n | L 1 L 1 L | 1
0 5000 10000 15000 20000 25000
time

1000

position

g I . I . s . %3 their Floquet spectrum. For not-too-large forcing, tail analy-
5000 10000 15000 20 sis as explained in Sec. llIC explains successfully the nu-
time merical power spectra in sites away from the breather center,

FIG. 15. Four scenarios of collisions between breathers. W&S well as ,DB prpflles. .
represent the traces by plotting the position of the energy maxi- " Certain regions of the parameter space, mobile DBs
mum. (i) Formation of a pinned “molecule” after a collision of two OCCUr s attractors for an open set of initial conditidpesin
MB at C=0.75 andF,.=0.011; (ii) “elastic” collision at C of attraction) in phase space. Their velocity is determined by

=0.89 andF,.=0.02; (iii) Formation of mobile “molecule”C the model parameters, and it is slow compared with the time
=0.89 andF ,.=0.02; (iv) Annihilation of a “slow” and a “fast” scale set by the forcing frequency. One class of mobile so-
breather aC=0.89 andF,.=0.02. In this last case, the traces after lutions are connected to the existence of depinning modes in
the collision correspond to linear radiati¢phonons. the Floquet spectrum of periodic DBs, when they are in the
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vicinity of (symmetry-breakingpitchfork bifurcations. This regions of parameters where mobile DBs exist, the thermal
mechanism allows the generation of mobile DBs for valueghoise induces random motion in the breather.

of the coupling that are surprisingly low. Another class is
related to the destabilization of quasiperiodic pinned breath-

ers, and their velocity is even slower than that of the previ- We acknowledge C. Baesens, Anhez, and J. J. Mazo
ous class. for many useful discussions on this work. Financial support
; de Grant No. to DGES PB98-1592 of Spain, Aatitn-
F_lr_lally, we tested the _robgstness of breathers by means (]::grada Hispano-Britaca Grant No. HB1999-0104, and Eu-
collisions and the application of stochastic perturbatlonsropean Network LOCNET HPRN-CT-1999-00163 is ac-

(Langevin noisg It is concluded that breathers are quite ro- knowledged. J.L.M. acknowledges a Return Grant from the
bust in the sense that the localization persists; however, igpanish MEC.
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