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Universal criterion and amplitude equation for a nonequilibrium Ising-Bloch transition
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We identify a universal criterion for the onset of a nonequilibrium Ising-BI@¢iB) transition, and describe
the behavior near the bifurcation by a generic amplitude equation. We found that a NIB transition is caused by
an antisymmetric eigenvector passing the translational mode of the system at a critical point. In this context we
discuss Hamiltonian and dissipative systems. We report on a NIB in nonlinear optics, manifesting itself in a
transition from static to moving polarization fronts.
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Nonlinear systems can exhibit spatially homogeneous, pean this work is rather general. For definiteness, we study an
riodic, or localized structures with nontrivial dynamical be- example from nonlinear optics where the formation and con-
havior. One of the basic issues in nonlinear physics is tdrol of localized structures and fronts recently attracted a
correctly predict the interaction of such solutions where theyconsiderable deal of interef,7].
coexist. For example, bistable systems can exhibit fronts Due to the availability of materials with large second or-
connecting two stable homogeneous states. The propertié@r suceptibilities, much attention has been given to paramet-
and dynamics of such fronts have attracted attention acrodi processe$8—17. Here we study intracavity type-Il sec-
many branches of science, including chemistry, biology,ond harmonic generation in a planar waveguide resonator,
fluid dynamics, and opticgl]. where two orthogonally polarized pump photons at fre-

Generally, a front connecting two nonequivalent homogeduencyw generate one signal photon ab2The normalized
neous states moves in such a way that the more stable stgt of equations for the slowly varying envelopes of the two
annihilates the other. Sometimes, as a consequence of a dithogonally polarized fundamental harmonic fields ,
crete symmetry, a system may possess éqguivalentstates.  (FH1, FH2 and of the second harmonic fieRi(SH) reads,
The front between such states is generally at rest due té the mean field limit, a$16]
symmetry. But such fronts can destabilize via a bifurcation . ) . N
on changing a system parameter. A prominent example (igi+ i+ Aati)AL A B=E,
among gradient systen] is the so-called Ising-Bloch tran- . (1)
sition [2,3], known from the physics of ferromagnets and . 2 . B
liquid crystals[4]. However, many interesting nonlinear sys- |0t 50t Aptiy BT AA=0,
tems are far from equilibrium, and cannot be described by a
free energy functional, i.e., the governing order-parametewhere > describes diffraction, and is the dimensionless
equation is not of gradient type. Nevertheless, the symmetime. The incident fieldE is a monochromatic plane wave
tries of the system are frequently preserved even far from thaith a polarization angle of 45°, thus driving both FH waves
gradient limit. Thus pairs of equivalent solutions exist, butwith the same intensity. The FH and SH fields are detuned
the net force acting on an interface between them is noby A, andAg from a resonator resonance, respectivelys
necessarily zero. Examples of a transition from resting tahe ratio of the photon lifetimes at the two frequendi&3].
moving fronts were found in the complex parametrically A typical experimental configuration could consist of a
driven Ginzburg-Landau equatiof2,5], in an activator- 500-um-thick KTP crystal sandwiched between two mirrors
inhibitor reaction-diffusion systerf8], and in optical para- with 95% reflectivity for both fundamental and second har-
metric oscillatorg8]. The corresponding bifurcation is often monic waves. If theds; coefficient is employed, and phase
referred to as the nonequilibrium Ising-Blo€NIB) transi-  matching occurs at a certain tilt at 1.06m, one obtains the
tion. length and time scales as 30m and 110 ps. The driving

The main result of this paper is to obtain a rather simpleintensity|E|2:1 corresponds to about 50 kW/€m
but universal criterion for the onset of a NIB transition and a  Equations(1) exhibit the translational symmetry and two
generic amplitude equation, which can be applied to aldiscrete symmetries:
known cases. To this end we identify symmetries, which are
essential for a NIB transition, but more general than those Z:(A1,A;,B)—(A,,A1,B), P:x——X. (2
presented in Ref$2—5]. The investigations are based on the
crucial finding that for each nonlinear nonequlibrium systemZ allows for a pitchfork bifurcation of the stationary,(

a bifurcation of a resting solitary wave to a moving one is=0), homogeneousd(=0), and symmetricA;=A,) solu-
linked to an internal mode which comes inkxactcoinci-  tions[16]. There are two different resting fronts, i.e., hetero-
dence with the translational mode. In this context we com<linic trajectories, which connect equivalent states appearing
pare dissipativégradient and nongradienand Hamiltonian after the pitchfork bifurcation. They are transformed into
systems. The formalism and bifurcation scenario describedach other on applying [see Fig. 18)]. On the other side,
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= do i 4 o 4_' vector that is a nonlinear function of the fields and an arbi-
£ fi o trary bifurcation parametep. Obviously, resting fronteﬁo
translation . > . . .
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the eigenvectors, of the Jacobia@gw|;, , (the first deriva-

FIG. 1. Nonequlilibrium Ising-Bloch transition of polarization e of the nonlinear vectow with respect to the fieldl at

fronts in intracavity second harmonic generatig¢a). Ising front the resting fronti ) and the corresponding ei envectar
(unstable. (b) Bloch front (stablg. Insets: FH polarization ellipse. 9 0 P 9 - 9 i
can be either symmet-

(c) Spectrum of eigenvalues of the Ising frod) NIB criterion of the adjoint Jacobiandgw) ™ Ug.p
[(ao|€0)|. ParametersA,=—0.7Ag=—4, E=4, andy=0.5. ric, S(e,) =e,, or antisymmetricS(e,)=—e,. The resting
n n n n
front destabilizes if an eigenvalue, corresponding to any ei-

each front is transformed into itself on applyif®F ZP,, genvectore,, has a positive real part. An infinitesimal trans-
where the subscript “0” stresses that the reference frame foverse translation of the resting front generates the nullvector
the spatial inversion was chosen at the point where A,. éozaxﬁo (the translational mode of aﬁ\,ﬂ%’p, ie.,

In what foIIO\_/vs, fronts, which are invariant yvith _regpecS,o 3JVT/|J p(éo) —0. Both the nuIIvectoEo and the correspond-
are termedsing fronts Polarization fronts with similar sym- o - - - o
metres were recently observed in a single feedback exper0d Nullvectorag (9w™[j; p(ag)=0) of the adjoint Jaco-
ment with a sodium cel[18]. Ising fronts previously re- bian are antisymmetric.
ported in Refs.[2,3,8 appear as particular cases of our We have found that at some critical value of the param-
definition. For example, the Ising front in the CPGL equationeter p=p, (see the bifurcation diagrams in Fig) 2Zhe
is antisymmetric with respect to the inversion operagr ~ second-harmonic-generaté8HG) system undergoes a NIB
Therefore, theZ operator for the only occurring field in  transition. Each resting front transforms into a moving one,
the CPGL equation has to be chosen liEA——A. Then  propagating either in positive or negative directipsse Fig.
this Ising front is symmetric with respect & and all fol- ~ 1(P)]. By numerically solving the eigenvalue problem for
lowing considerations also hold for the CPGL model. Below,d;W|;, , we have found that the NIB transition is linked to a
we will demonstrate that a transition from a resting symmet-nontrivial and antisymmetric bound eigenmode of the Jaco-
ric front to a moving front is associated with a breaking of bian with a real eigenvalugsee Fig. 1c)]. Therefore, SHG
the S invariance, i.e., the symmetry operafdtransforms a  provides an example of a symmetry breaking of a symmetric
forward movint front into a backward moving front, and vice solution due to an antisymmetric eigenvector. Additionally,
versa. These fronts are call&ibch fronts and we term this we found that this eigenvector passes through the transla-
bifurcation the NIB transition. Naturally, the eigenmode of tional mode. In contrast in the gradient limit of the CPGL
the linearized operator driving this transition has to be anti€quation[2], the destabilization of an Ising front is initiated
symmetric to theS symmetry. by an eigenvector which isrthogonal to the respective
First we analyze the spectral properties of the resting po'granslanonal mode. However, we will show in the next para-
larization front. For the sake of numerical convenience, wed'@ph that as soon as a nonlinear system leaves the gradient

switch to a real basis, rewriting Eq&l) in the general form limit the NIB bifurcation is induced by an eigenvector pass-
ing exactlythe translational mode.

Now we investigate this symmetry breaking close to the
bifurcation point. We introduce a moving reference fraéne
=x—J,v(t")dt’ into Eq.(3), and obtain

du—w|;,=0, (3)

Whereﬁ(x) is a six-component vector of the electrical fields
u(x)=(ReA;,ImA;,ReA,,ImA,,ReB,ImB)T, and w is a JU—vdU—W|;,=0. 4
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We assume the following scaling up to the third order aroundronts themselves are neither symmetric nor antisymmetric.

the critical point: U=Ug+eX+e?Y+€e3Z, v=ev’'+€%”  But the forward (i) and backward moving frontstifc)
+€3", 9= €%dr, andp=po-+ 62P2' with e<1. Infirst or-  are related byS(Uro) = Upack-
der (e') we obtain—v’d U= dgw|;, p,(X)=0, which can Equation(6) explicitly shows that the moving polarization
only be solved for fronts relax exponentially to the final state, in contrast to the
algebraic relaxation of the velocity of fronts propagating be-
(ag|ey)=0. (5) tween stable and unstable staf@8]. For example, the de-

stabilization of a resting front foE,>0 can be described by

This relation is one of the key results of this paper, because direct integration of Eq.(6), to obtain v'=
it represents the criterion for the onset of a NIB transition. At+ \—rE,/(s+ De®F2T), whereD is an integration constant.

the critical point one ﬁndgzzv/;l, with 8L]VTI|L]0 po(il): In order to compare the analytical and numerical findings,
— €. Thus in first order the shape of the front is disturbed byWe display the dy)[]amlcs of the integral of a single field

a component of velocity’ pointing in the direction of the componeniQ(t)=J ’u;(x,t)dx. For a sufficiently large in-

antisymmetric vectox; . It can easily be shown that the vec- terval (x;,x;), an apalytical approximatiorQ(t) =[uy(x

tor X, is linearly independent of all eigenvectors of the Jaco-—*) ~U1(x— =) ][y v'(t")dt’ can be obtained and com-
bian &gvT/|L;0,p. Therefore, at the critical point two eigenvec- pared with the results of the numerical solution of Efj.

tors of the Jacobian must become degenerate to preserve #x¢€ Fig- )]

dimension of the vector space. In the case of a NIB transition !t 1S WO[th‘th”e to have a closer look at the threshold
a nontrivial bound state passes the translational mode. F@ondition{ay|ey)=0. It is obvious that for Galilean symme-
symmetry reasons, in second order we obtaf) (Y = D2)71 try, or in Hamiltonian systems with translational invariance,
+v' 2y, +0"%;,  Wwith aﬁmﬁo'po(yl):_ﬁp"w%,po and <a0|e_0) is_always zero, and thus the vgloc_ity of localized
solutions is an arbitrary paramete&0]. This signals a non-
critical, i.e., parameter independent, double degeneracy of

the zero eigenvalues corresponding§go see Ref[21], and
references therein. Conversely, if the above properties do not
hold, then any initially introduced velocity converges to a
rpv’ +sv' 3=drv’, 6) dgfir_lite _value. But thg above aqalysi§ disgloses that even ?n a
dissipative system without Galilean invariance, the velocity
can be considered as a parameter of the solution, provided

&gw|l;0'p0(y2) =— 5L2]W|Go,po(xl X1)[2—dgx;.  Finally  the
solvability condition applied to third ordeet) gives an am-
plitude equation for the velocity’ which represents the nor-
mal form for a symmetry breakingpitchfork) bifurcation,

where
that the scalar productag|ey) vanishes for some critical
- DT . values of the system parameters d@ag|e,) remains suffi-
r= (@0l ey + IGW[d,,po(X1:Y1) + 0 Wi, p(X2))/ (0l X2) ciently small. Now, however, the velocity is not an arbitrary
parameter, but rather an order parameter obeying the normal
and form [Eq. (6)]. Exactly at the critical point the dissipative

system behaves in a Hamiltonian-like manner. In contrast, in
gradient systems criteriotb) is never fulfilled, because the

corresponding Jacobian is self-adjoint. Consequently the ei-
genvector which causes the instability is orthogonal to the
translational mode; therefore, the front remains at rest. But if
. _ . a small nongradient term is added to a gradient equation the
In the case of type Il intracavity second harmonic generag.jar product|<50|éo>| drops to zero at the bifurcation

tion, (93"" vanishes. If the change of the input fidlt=E;  point, accompanied by a rapid transition of the respective
+ €’E, is the bifurcation parametes, we also haVe?G,pW eigenvector to the translational mode. In view of this sce-
=0 and &p\;,:(o,lioyl,olo)_ Furthermore, numerics predictNario, Ising-Bloch transitions appear very peculiar in gradi-
that the bifurcation is supercritical for the parameters se€nt systems. .

lected. IfE,<0, there is only the trivial stationary solution IS important to stress that there is no need to study the
v’ =0, corresponding to a resting front. Beyond the criticalfull spectral problem ford; W|L;0’p to find a,. It suffices to
po.int this branch becomes unstable and twp new stable sQy|ve the linear boundary value probleﬁM*lao,p(ﬁoFO.
lutions v’ =+ V—_rEzls emerge, corresponding to t_he two Then, applying one of the standard algorithms to minimize
counterpropagating fronfsee Fig. 2a)]. The asymptotic ex-

pression for the spatial profiles of the fronts close to thel(8ol€0)|, one can easily identify whether there is a NIB
-~ ‘transition for a given solution in a nonlinear systgsee Fig.

. . . _)_ - 12
b|fu2rcat|9n Ffoz'[‘t C‘:’}Q be calculated a8=uo*ev'Xs 1) The suggested theoretical approach can be straightfor-
+e(pay1tv’ %y, tv"%y), wherex,; is an antisymmetric  wardly extended to other dissipative models which exhibit a
sector andy; , are symmetric vectors. Therefore, the movingtransition from resting to moving puls¢22].

- 2 - - -
s=(a0| dgy2+ IW| 5, po(X1.Y2)

3 - - - - - -
+ &L]W|go'p0(x1 \X1,X1)/6)/{@g|X1).
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In conclusion, based on symmetry arguments, we havégradient and nongradignand Hamiltonian systems have
introduced generalized definitions of both Ising and Blochbeen compared in that context.
fronts. A universial criterion and a generic equation for the p_\, U, P., and F. L. acknowledge support from the
onset of a nonequilibrium Ising-Bloch transition, which re- peutsche ForschungsgemeinschH&EB 196. The work of
lies on the coincidence of an eigenmode and the translation®. S. and W. F. was supported by the Royal Society of
mode at the bifurcation point, have been derived. Dissipativéedinburgh and U.K. EPSRC Grant No. GR/N19830.
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