
PHYSICAL REVIEW E, VOLUME 63, 066404
Path integral Monte Carlo simulation of the low-density hydrogen plasma
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Restricted path integral Monte Carlo simulations are used to calculate the equilibrium properties of hydrogen
in the density and temperature range of 9.8331024<r<0.153 g cm23 and 5000<T<250 000 K. We test
the accuracy of the pair density matrix and analyze the dependence on the system size, on the time step of the
path integral, and on the type of nodal surface. We calculate the equation of state and compare with other
models for hydrogen valid in this regime. Further, we characterize the state of hydrogen and describe the
changes from a plasma to an atomic and molecular liquid by analyzing the pair correlation functions and
estimating the number of atoms and molecules present.
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I. INTRODUCTION

In spite of the simple composition, hydrogen exhibits
surprisingly complex phase diagram, which is the subjec
numerous experimental and theoretical approaches. In
work, we study the high temperature regime of 5000<T
<250 000 K where hydrogen undergoes a smooth transi
with increasing temperature from a molecular fluid throu
an atomic regime and finally to a two component plasma
electrons and protons~see Fig. 1!. The properties of hydro-
gen in this regime are crucial for the evolution of stars a
the characteristics of the Jovian planets.

A variety of simulation techniques and analytical mod
have been developed to describe hydrogen at low den
This regime has been studied with chemical models@1–3#
that describe hydrogen as a mixture of interacting molecu
atoms, free protons, and electrons. The chemical comp
tion is determined by minimizing an approximate free ene
function constructed from known theoretical limits. In th
paper, we focus on low and intermediate densities 9
31024<r<0.153 g cm23 corresponding to 14>r s>2.6,
where one expects the chemical models to work well
though the properties of hydrogen are determined by
complex interplay of long-range Coulomb forces leading
strong coupling and bound states as well as degenerac
fects.

All these effects can also be described from first pr
ciples simulation. There areab initio methods such as re
stricted path integral Monte Carlo simulations~PIMC! @4–6#,
density functional theory molecular dynamics~DFT-MD!
@7,8# and wave-packet molecular dynamics@9,10#. The focus
of the work is to test the equation of state~EOS! derived
from chemical models and the actual density-tempera
limits of the validity of the chemical picture. Additionally
we provide data to determine the parameters of the free
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ergy models. Chemical models are expected to become i
curate in regions of high density where the lifetime of mo
ecules reduces to a few molecular vibrations@8#.

We present results from more accurate PIMC simulatio
First, we analyze the accuracy of the pair density matrix a
the error of the ‘‘time’’ discretization. Then we analyze th
finite size dependence of the derived EOS and discuss
fixed node errors by comparing results from simulations
ing free particle~FP! nodes and variational nodes. Furthe
more, we calculate pair correlation functions that we use
conjunction with a cluster analysis to characterize the stat
hydrogen at different temperatures and densities. We
atomic units~lengths in Bohr radii and energies in Hartree!
throughout this work except where indicated otherwise.

II. PATH INTEGRAL MONTE CARLO METHOD

A. Restricted path integral

The density matrix~DM! of a fermion system at tempera
ture kBT51/b can be written as an integral over all pat
Rt ,

r~R0 ,Rb ;b!5
1

N! (P ~21!P R
R0→PRb

dRt e2S[Rt] .

~2.1!

Rt stands for the entire paths ofN particles in three-
dimensional spaceRt5(r1t , . . . ,rNt) beginning atR0 and
ending atPRb . P labels the permutation of the particles an
(21)P to its signature. For nonrelativistic particles interac
ing with a potentialV(R), the action of the pathS@Rt# is
given by,

S@Rt#5E
0

b

dtFm

2 UdR~ t !

\ dt U
2

1V„R~ t !…G1const. ~2.2!
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B. MILITZER AND D. M. CEPERLEY PHYSICAL REVIEW E63 066404
In practice one discretizes@11# the path into a finite numbe
of imaginary time slicesM corresponding to a time stept
5b/M .

For fermionic systems the integration is complicated d
to the cancellation of positive and negative contributions
the integral~the fermion sign problem!. It has been shown
@12,13# that one can evaluate the path integral by restrict
the path to only specific positive contributions. One intr
duces a reference pointR* on the path that specifies th
nodes of the DM,r(R,R* ,t)50. A node-avoiding path for
0,t<b neither touches nor crosses a node:r„R(t),R* ,t…
Þ0. By restricting the integral to node-avoiding paths,

rF~Rb ,R* ;b!5E dR0 rF~R0 ,R* ;0!

3 R
R0→RbPY(R* )

dRt e2S[Rt] , ~2.3!

@Y(R* ) denotes the restriction# the contributions are posi
tive and therefore PIMC represents, in principle, a solution
the sign problem. The method is exact if the exact fermio
DM is used for the restriction. However, the exact DM
only known in a few cases. Most applications have appro
mated the fermionic DM by a determinant of single partic
DMs,

r~R,R8;b!5U r1~r1 ,r18 ;b! . . . r1~rN ,r18 ;b!

. . . . . . . . .

r1~r1 ,rN8 ;b! . . . r1~rN ,rN8 ;b!
U .

~2.4!

This approach has been extensively applied using the
nodes including applications to dense hydrogen@4–6#. It can
be shown that for temperatures larger than the Fermi ene
the interacting nodal surface approaches the FP nodal

FIG. 1. Phase diagram of hydrogen as a function of tempera
and density for the different regimes: plasma, the atomic, and
molecular regime. The dash-dot lines indicate the approxim
boundaries. The crosses indicate the parameters for which P
simulations have been performed, the solid lines are isobars, an
dashed lines represent contour lines of constant permutation p
ability of the electrons~as indicated on the line.!
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face. In addition, in the limit of low density, exchange effec
are negligible: the nodal constraint has a small effect on
path and therefore its precise shape is not important.

To gain some quantitative estimate of the possible eff
of the nodal restriction on the thermodynamic properties, i
necessary to try an alternative. In addition to FP nodes,
used nodal surface of a variational density matrix~VDM !
@14# derived from a variational principle that includes inte
actions and atomic and molecular bound states. This me
was first combined with PIMC in@15#. One assumes the DM
is a Slater determinant of single particle Gaussian functio

r1~r ,r 8,b!5~pw!23/2exp$2~r2m!2/w1d%, ~2.5!

where the variational parameters are the meanm, squared
width w, and amplituded. These parameters are determin
as a function of imaginary time using a system of coup
differential equations given in Ref.@14#. The initial condi-
tions at b→0 are w52b, m5r 8, and d50 in order to
regain the correct FP limit. It follows from the variationa
principle that at low temperature, the VDM goes to the lo
est energy wave function within the variational basis. For
isolated atom or molecule this will be a bound state, in co
trast to the delocalized state of the FP DM. A further disc
sion of the VDM properties is given in Ref.@14#. Note that
these nodes are only used to determine the nodal restric
in Eq. ~2.3!. The complete potential is taken into account
the path integral action as discussed in detail in Ref.@11#.

B. Accuracy of the method

The numerical implementation of the PIMC method r
quires one to make several approximations. Inaccuracies
be caused by statistical errors from the Monte Carlo~MC!
integration, inaccuracies in the numerically determined p
density matrices, a dependence on the time step of the
integral because ofN-body (N>3) correlations, finite size
effects, and nodal errors from approximations in the tr
density matrix. Their effects on the accuracy of the co
puted thermodynamic averages are quantitatively estim
in this section.

Statistical errors in the estimators for the thermodynam
quantities are calculated from the block averages gener
by the MC simulations. The correlations between blocks
taken into account by performing a blocking analysis@16#.
The resulting error bars~one standard deviation! are given
for all observables throughout this paper as a number in
renthesis referring to the least significant digit.

In the following discussion, we compare the internal e
ergy and the pressure calculated using the virial theorem

3Pv52K1V, ~2.6!

wherev is the volume of the simulation cell,K the kinetic
energy, andV the potential energy. Accurate estimation
the pressure requires a high accuracy in the kinetic and
potential energies because they tend to cancel out. In
molecular regime at low density, both terms, dominated
intramolecular contributions, cancel to a large extent leav
behind the molecular gas pressure. As a result, the pres
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PATH INTEGRAL MONTE CARLO SIMULATION OF THE . . . PHYSICAL REVIEW E 63 066404
is, in general, significantly more sensitive to approximatio
than other quantities such as the internal energy.

1. Pair density matrix

If one only used the bare potential as in Eq.~2.2! ~the
primitive approximation for the action!, the convergence
would be very slow@17# and would result in extremely inef
ficient many-particle simulation. Instead, we numerica
solve the two-particle problem with the matrix squaring tec
nique @18#. Numerical representations of the exact pair de
sity matrices are stored in tables used by the PIMC sim
tion program by expanding in the small variabless andz

u~r ,r 8;t!5
1

2
@u0~r ;t!1u0~r 8;t!#

1 (
k51

nA

(
j 50

k

uk j~q;t!z2 j s2(k2 j ), ~2.7!

where

q5
1

2
~ ur u1ur 8u!, s5ur2r 8u, z5ur u2ur 8u, ~2.8!

and r and r 8 denote the separation of the two particles
adjacent time slices. The accuracy of these tables is cru
for all computed results. Using the precomputed pair den
matrices allows one to employ a much larger time step
cause one starts with a solution of the two-particle proble
Figure 2 shows how accurate this method is. The inter
energy of an isolated hydrogen atom at sufficiently low te
perature (T510 000 K) in a large box (L526) is compared
with the exact ground state energy of213.6 eV. The tem-
perature was chosen low enough so that excited states ca
neglected; the contribution to the energy from the occupa
of the first excited state is 731025 eV at this temperature
Also shown is how well the kinetic energyK and the poten-
tial energyV satisfy the virial theorem 2K1V50, thus de-

FIG. 2. Accuracy study of PIMC simulations of the isolate
hydrogen atom using different ordersnA in the expansion formula
Eq. ~2.7! for the action and energy. The calculated 2K1V ~exact
value equals zero! and the deviation from the exact internal ener
of 213.6 eV are shown for different orders from simulations
T510 000 K usingt215106 K.
06640
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termining the accuracy with which the pressure can be de
mined. For a time step oft215106 K, the analysis shows a
quick convergence with the order of terms considered in
action expansion Eq.~2.7!. Using terms upnA53 reduces
the error to 0.033(3) eV in energy and to 0.039(8) eV
2K1V. This corresponds to an inaccuracy in the press
equivalent to a noninteracting molecular gas atT
5260(30) K.

2. Time step dependence

Employing the pair approximation of the density matr
does not include correlation effects for three or more p
ticles ~for example, between one electron and two proton!.
We now estimate how small the time step must be to ob
a given accuracy for an isolated molecule. Figure 3 sho
results for different time steps and temperatures with the
clei kept fixed at the equilibrium position ofR51.4008.
From the virial theorem, it follows that 2K1V50 at a suf-
ficiently low temperature. The exact energy per atom
215.973 eV @19#. The T dependence is small suggestin
that the electrons are in the ground state. However, one fi
a significant dependence on the time step. Usingt2152
3106 K reduces the error in the energy per atom
0.036(3) eV and in 2K1V to 0.090(16) eV. The time step
error is larger than the errors of the inaccuracies in the p
density matrices discussed above. The error in 2K1V cor-
responds to a pressure of a noninteracting molecular ga
T5700(100) K, which provides us with an approxima
limit of accuracy in the equation of state calculated fro
many-particle simulations witht21523106 K.

3. Finite size dependence

The estimation of the finite size errors is more difficult
assess because the needed PIMC simulations are com
tionally much more demanding. The required computer ti
increases rapidly with the number of particles making it ch
lenging to obtain converged results for paths correspond
to large systems.

t

FIG. 3. The error in the virial as a function of the number
time slices for an isolated hydrogen molecule. The classical nu
are fixed at the equilibrium bond length, thus the exact value
2K1V is zero at a sufficiently low temperature.
4-3
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Most results from many-body simulations reported in t
work were calculated withN532 pairs of electrons and pro
tons in a periodically repeated simulation cell. To study
effect on N, we performed simulations forN516 and 64
pairs of protons and electrons for a density ofr s52.6 and
T>10 000 K. We chose the highest density under consid
ation because one expects the finite size dependence
largest there due to the stronger interaction between the
oms.

The finite size dependence of the pressure, shown in
4, is small at high temperatures but grows to approxima
4(2)% nearT530 000 K. In this regime, the hydrogen un
dergoes structural changes involving the formation of ato
which affect the pressure. This study provides us only w
an estimate of the finite size dependence. An extrapolatio
N→` would require significantly larger systems, not cu
rently feasible at low temperatures. One should note the
creased size of the error bars forT<30 000 K, which indi-
cate that the two curves in Figs. 4 and 5 are still in agreem
within the error bars.

Figure 5 shows the finite size error of the internal ener
The smaller systems are more strongly bound by appr

FIG. 4. Finite size error of the pressure as a function of te
perature relative to simulations withN564 pairs of protons and
electrons at a density ofr s52.6.

FIG. 5. Finite size error of the internal energy as a function
temperature relative to simulations withN564 pairs of particles at
a density ofr s52.6.
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mately 0.2 eV per atom. For lower densities, we expect t
value to be smaller because, at high temperature, the fi
size errors are primarily caused by the interaction of
charges with their own images in periodic boundary con
tions. This introduces artificial correlations with a too neg
tive potential energy. The correction is inversely propo
tional to system size (1/N). For lower temperatures, thi
interaction is reduced due to screening effects and the
mation of bound states. This explains why the finite s
error of the internal energy increases with temperature
leads to lower values for small systems.

4. Nodal Approximation

In the above, we have studied controlled approximatio
The only uncontrolled approximation in the restricted PIM
method is the use of trial density matrix to constrain t
paths. The nodal surfaces are important only if the electr
are degenerate: at low temperatures or at high densities.
call that in this work we focus on hydrogen only at lo
density, where the electrons are bound in atoms and m
ecules and have a low or moderate degeneracy. Even at
density, one still needs a nodal surface in order to prevent

FIG. 6. The effect on the pressure of two different nodal s
faces: of the free particle density matrix and of the variational d
sity matrix.

FIG. 7. Internal energy computed with PIMC using two diffe
ent nodal surfaces: the free particle density matrix and the va
tional density matrix.
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TABLE I. Pressure and internal energy per atom from PIMC simulations with 32 pairs of particles
t21523106 K using free particle nodes except for* where VDM nodes were employed instead. T
probabilitiesx for finding a proton in a given state for the three dominant species are derived from a c
analysis.Pperm is the permutation probability for the electrons.

r s T(K) P(GPa) E(eV) xH1 xH xH2
Pperm

14.0 250 000 4.000~2! 62.93~4! 0.000
14.0 125 000 1.955~2! 29.97~4! 0.99 0.01 0.00 0.000
14.0 62 500 0.901~2! 11.85~4! 0.95 0.05 0.00 0.000
14.0 31 250 0.334~2! –2.97~3! 0.64 0.36 0.00 0.000
14.0 15 625 0.127~2! –11.30~4! 0.24 0.76 0.00 0.000
14.0 10 000 0.081~4! –12.43~6! 0.12 0.72 0.15 0.000
14.0 7 812 0.047~5! –13.34~13! 0.08 0.58 0.33 0.000
14.0 5 000 0.028~6! –15.00~12! 0.01 0.11 0.88 0.000

10.0 250 000 10.902~4! 62.00~3! 0.000
10.0 125 000 5.259~6! 28.56~3! 0.98 0.02 0.00 0.000
10.0 62 500 2.329~5! 9.41~3! 0.90 0.10 0.00 0.000
10.0 31 250 0.831~5! –4.91~3! 0.57 0.43 0.00 0.000
10.0 15 625 0.344~4! –11.49~3! 0.23 0.74 0.02 0.000
10.0 10 000 0.198~9! –12.79~5! 0.11 0.60 0.27 0.000
10.0 7 812 0.144~7! –13.54~9! 0.03 0.34 0.62 0.000
10.0 5 000 0.068~15! –15.05~7! 0.00 0.07 0.92 0.000

6.0 250 000 49.46~3! 59.33~4! 0.000
6.0 125 000 23.00~3! 24.70~4! 0.94 0.06 0.00 0.000
6.0 62 500 9.56~2! 4.79~3! 0.80 0.20 0.00 0.000
6.0 31 250 3.58~3! –6.92~4! 0.52 0.46 0.01 0.000
6.0 15 625 1.52~2! –11.83~4! 0.21 0.68 0.09 0.001
6.0 10 000 0.77~4! –13.38~6! 0.08 0.49 0.40 0.000
6.0 7 812 0.63~5! –13.95~7! 0.04 0.38 0.56 0.000
6.0 5 000 0.29~9! –15.17~12! 0.00 0.09 0.90 0.000

4.0 250 000 162.46~10! 55.63~4! 0.000
4.0 125 000 73.00~23!* 20.24~9!* 0.88 0.12 0.00 0.000
4.0 62 500 29.75~16!* 1.23~6!* 0.72 0.26 0.00 0.001
4.0 31 250 11.22~22!* –8.32~8!* 0.47 0.46 0.03 0.004
4.0 15 625 5.01~17!* –11.87~6!* 0.19 0.58 0.18 0.008
4.0 10 000 3.23~30!* –13.43~11!* 0.03 0.30 0.63 0.005
4.0 7 812 2.20~14! –14.29~6! 0.01 0.18 0.80 0.004
4.0 5 000 1.19~25! –15.20~9! 0.00 0.11 0.88 0.002

3.0 250 000 374.47~14! 51.79~2! 0.000
3.0 125 000 165.21~22! 16.58~4! 0.83 0.15 0.01 0.001
3.0 62 500 67.70~25! –1.04~4! 0.66 0.29 0.01 0.005
3.0 31 250 26.67~24! –9.02~4! 0.45 0.43 0.06 0.028
3.0 15 625 13.08~28! –12.29~4! 0.15 0.42 0.34 0.059
3.0 10 000 9.26~26! –13.79~4! 0.03 0.35 0.60 0.037

2.6 250 000 566.4~4! 49.58~4! 0.000
2.6 125 000 246.0~5!* 14.57~5!* 0.80 0.17 0.01 0.002
2.6 62 500 101.7~4!* –2.25~4!* 0.65 0.28 0.02 0.014
2.6 31 250 43.1~5!* –9.38~5!* 0.42 0.38 0.09 0.078
2.6 15 625 19.0~8!* –12.51~9!* 0.14 0.42 0.33 0.168
2.6 10 000 11.7~9!* –13.73~10!* 0.02 0.34 0.60 0.126
066404-5
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formation of unphysical clusters like H3 and H4 or even the
collapse of the entire system, but the precise shape of
nodes is not important at low density as shown in Fig.
Comparing FP and VDM nodes forr s52.6, one only finds
differences in the pressure forT<15 625 K, which is ap-
proximately where, at this density, the system shows a
nificant molecular signature~see Sec. III B and Fig. 16!. In
this regime, FP nodes systematically lead to a too high p
sure, while simulations with VDM nodes stay closer to t
prediction of a semiempirical chemical model@1#. At a lower
densityr s54 results from FP and VDM nodes agree with
the error bars. The differences in the internal energy,
shown in Fig. 7, using FP and VDM nodes are significan
smaller than the pressure deviations. One either finds ag
ment within the error bars or that VDM nodes predict low
internal energies, which was used in@15# to show that VDM
nodes are the more accurate nodal surface. The obse
energy differences did not exceed 0.1 eV per atom.

For even lower density, the nodes are less relevant
cause they become only important in a collision of two m
ecules, which occur less frequently at lower density. T
trend can also be understood in terms of the degenerac
the electrons. The degree of degeneracy manifests itse

FIG. 8. Internal energy per atom vs temperature for a densit
r s510 comparing the SC-EOS@1# with PIMC calculations.

FIG. 9. Internal energy per atom vs temperature for a densit
r s510 as shown in Fig. 8 but here for lower temperatures a
including results from the activity expansion~ActEx! @20# and the
fluid variational theory~FVT! @21#.
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the path integral formalism by the probability for the ele
trons to be involved in a permutation. At high temperatu
the paths are very short and permutations are rare. At
temperature and high density, the paths are long and
form long permutation cycles. However in hydrogen at lo
density, the paths are localized due to the attraction in ato
and molecules and permutations are rare. Figure 1 shows
the permutation probability never reaches 1% forr s54 ~see
Table I!. For higher densities, the permutation probability
increased as indicated by the contour lines. This is consis
with the temperature and density dependence of the n
error in pressure and internal energy discussed above.

III. RESULTS

A. Equation of state

Table I gives the complete set of energies and pressure
six densities and eight temperatures. We now compare th
results with several models for hydrogen. We begin our d
cussion by studying the internal energy per atom as a fu
tion of temperature shown in Figs. 8–11 for two select

f

f
o

FIG. 10. Internal energy per atom vs temperature as show
Fig. 8 but here for a density ofr s52.6.

FIG. 11. Internal energy per atom vs temperature for a den
of r s52.6 as shown in Fig. 10 but here for lower temperatures a
including results from the activity expansion~ActEx! @20# and the
FVT @21#.
4-6
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densities corresponding tor s510.0 and 2.6. Generally, w
find a fairly good overall agreement with the EOS by Sa
man and Chabrier~SC! @1# over the entire temperature an
density range discussed in this work. The agreement is
ticularly good in the molecular and atomic regime forr s
510.0, as shown in Fig. 9. There the SC energies are wi
the error bars of the PIMC results. At higher temperat
shown in Fig. 8, we find systematic deviations of up to 5
per atom atT5250 000 K. They indicate that the SC ene
gies are too low at high temperatures and too high at in
mediate temperatures~see Fig. 8!. One possible explanatio
for the deviations at high temperature is that the SC mo
underestimates the degree of ionization~see discussion in
@22#!.

We also studied these deviations as a function of dens
The cross-over temperature, above which the SC-EOS
derestimates the energy, increases with density. Atr s510.0,
the crossover is near 70 000 K compared to 130 000 K~Fig.
10! at r s52.6. At temperatures below 20 000 K forr s
52.6, one also finds some small deviations up to 0.5 eV
atom ~Fig. 11!.

Figure 12 shows a comparison of energy versus den
for several temperatures. It shows that the SC-EOS over
mates the energy forT55000 K and 31 250 K and under
estimates it for 125 000 K for densities higher than tho
corresponding tor s52.6.

Now let us compare the pressure from the SC-EOS w
that from the PIMC simulation using Eq.~2.6! in Table I. We
find remarkably good agreement of the entire range of te
perature and density under consideration. For a low den
such asr s510.0, this is shown in Fig. 13. As expected, o
finds that both methods interpolate between the limit of
ideal Fermi gas at high temperatures and noninteracting
lecular gas at low temperatures. Figure 14 confirms the g
agreement at a higher density ofr s52.6. As a result of the
strong interactions at this density, one finds that the pres
at low temperatures is significantly above the non-interac
molecular gas limit. We find that the SC-EOS underestima
the pressure by about 3% forT.62 500 K. This difference
is outside the error bar from the approximations in PIM

FIG. 12. Internal energy per atom vs density for different te
peratures from SC-EOS@1#, the activity expansion~ActEx! @20#
~not shown for 5000 K since nearly identical to SC! and PIMC
calculations.
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discussed in Sec. II B and could be interpreted as a fur
indication, in addition to the observed energy deviations, t
the SC model underestimates the degree of ionization at
temperatures. For intermediate temperatures 62 500>T
>15 625 K, one finds pressure differences, which are of
same magnitude as the finite size effects in PIMC. For te
peratures below 15 625 K, the increased statistical error
the PIMC pressure are of the same size as the observed
viations.

In Fig. 15, we show the pressure as a function of dens
which confirms the good agreement. The figure also in
cates that, at 5000 K andr s>4, the pressure is close to th
pressure of a noninteracting molecular gas.

In our comparison, we also included results from the
tivity expansion by Rogers@20#, which shows very good
agreement in pressure and internal energy~see Figs. 9, 11,
and 12!. The differences are small but increase with dens
In the molecular and atomic regime, one also finds go
agreement with the FVT by Juranek and Redmer@21# as
shown in Figs. 9, 11, 13, and 14. For higher temperatu
the FVT model is not applicable since it does not inclu
ionization of atoms.

- FIG. 13. Pressure vs temperature at a density ofr s510 showing
results from the fluid variational theory@21#, the SC-EOS@1#, and
PIMC simulations.

FIG. 14. Pressure vs temperature at a density ofr s52.6 as
shown in Fig. 13.
4-7
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B. Pair correlation functions

There are four different pair correlation functions that c
be directly obtained from many-body simulations and p
vide direct information about the state of the system. Sho
in the following figures is an extensive set of pair corre
tions that allow one to estimate the microscopic structure
the system and allow a direct comparison with other simu
tions. The proton-proton pair correlation functions fro
PIMC simulations with free particle nodes are shown in F
16. For T&20 000 K a peak at the bond length of 1
emerges, which clearly demonstrates the formation of m
ecules. We found it useful to multiply the pair correlatio
function by an extra density factorn5N/v so that the area
under the peak is proportional to the molecular fraction. T
peak height gets smaller with decreasing density as a re
of entropic dissociation of the molecules, driven by the nu
ber of unbound states at low density. Thermal dissocia
also reduces the number of molecules with increasing t

FIG. 15. Pressure vs density for different temperatures.

FIG. 16. Proton-proton pair correlation function multiplied b
the densityn. The columns correspond tor s values and the rows to
different temperaturesT.
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perature. Forr s&2, we expect that pressure dissociation
minishes the number of molecules with increasing den
@17# but this density range is beyond the scope of this pap

The proton-electron pair correlation function multiplie
by the density is shown in Fig. 17. The peak near the ori
shows the increased probability of finding an electron nea
proton due to the Coulomb attraction. The peak height
creases with temperature and increases with density bec
of thermal ionization and entropy ionization, respectively.
low temperature, the peak can be interpreted as occupatio
bound states although~unbound! scattering states can als
contribute. From proton-electron pair correlation alone, o
cannot distinguish between an atomic and a molecular s

Figures 18 and 19 show the electron-electron pair co
lation functions for pairs with anti-parallel spin. The peak
small separations comes from the formation of the molecu
bond. For pairs of electrons with parallel spin, one alwa
finds a strong repulsion due to the Pauli exclusion princi
and to a lesser extent to the Coulomb repulsion. This
shown in Fig. 19.

C. State of hydrogen

In this section, we discuss the phase diagram of hydro
as shown in Fig. 1. The diagram shows the approxim
location of the molecular, the atomic, and the plasma
gimes. The PIMC simulations, since they are based on
basic description in terms of electrons and protons, do
directly lend themselves to determining the number of co
pound particles such as molecules and atoms.~Methods for
determining this from PIMC simulations will be discussed
a future publication.! In order to obtain an estimate of th
atomic and molecular fraction, we employed a cluster ana
sis of the PIMC path configurations. As described in@23#, we
consider two protons as belonging to one cluster if they
less than 1.9aB apart. An electron belongs to one particul

FIG. 17. Proton-electron pair correlation function multiplied b
the densityn. The columns correspond to differentr s values and the
rows to different temperaturesT.
4-8
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cluster if it is less than 1.4aB away from any proton in the
cluster. The two cut-off radii were chosen from the molec
lar and atomic ground state distribution. This analysis gi
reasonable estimates for the molecular and atomic fract
at low temperatures. At high temperature, it overestima
the number of bound states because even in an~unbound!

FIG. 18. Electron-electron pair correlation function for electro
with opposite spin multiplied by the densityn is shown. The col-
umns correspond to differentr s values and the rows to differen
temperaturesT.

FIG. 19. Electron-electron pair correlation function. The so
lines correspond to pairs of electrons with parallel spin. For the s
of comparison, we also show the pair correlation functions of p
with opposite spin as dashed lines. This function is strongly pea
near the origin in the presence of molecules as shown in Fig.
The columns correspond to differentr s values and the rows to dif
ferent temperaturesT.
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collision, two particles are counted falsely as being part
the cluster. We corrected for this by applying an addition
criterion: a particle can only be considered as bound if
difference in action to remove it from the cluster is positiv
This method leads to the expected corrections at high t
perature.~The regime boundaries in Fig. 1 discussed bel
are hardly affected by the additional correction.!

The lower dashed line represents the region where 60%
the protons are bound in molecules. When the numbe
protons bound in atoms~i.e., with an electron! drop below
40% we labeled this state as plasma as shown in the u
dashed-dotted line. It should be emphasized that the loca
of these lines depends on the choice of these limits as we
on the cut-off radii used to determine the clusters in t
place. Figure 1 also shows the location of isobars, wh
appear as almost straight lines in this double logarithm
graph. The slope is different from the ideal gas because
pressure depends on ionization and dissociation.

Table I shows the fraction of the three most frequen
found species: molecules, atoms, and free protons wherex is
defined as the probability of finding a proton in a certa
compound particle. It should be noted that the sum:xH1

1xH1xH2
is less than 1 since other clusters have a nonz

probability. The largest contributions besides those listed
H2

1 with a maximum of 0.06 forr s52.6 andT515 625 K
followed by H3 with x<0.03 and H2 with x<0.02. Even
larger clusters occur very infrequently. The cluster analy
also gives an estimate for the fraction of free electro
which agrees well with the number of ionized protons:xH1 .

Figure 20 shows a comparison of the fraction of m
ecules and ionized atoms forr s510. One finds that the mo
lecular fractions decays rapidly with temperature. The res
ing atoms are then ionized at even higher temperatu
leading to the observed increase in the number of free p
tons. The PIMC predictions for the molecular fraction agr
very well with the SC model as well as with the FVT. On th
other hand, the PIMC results shows a significantly high
degree of ionization than SC. The same comparison fo
higher density ofr s52.6 in Fig. 21 shows that the cluste

e
s
d

8.

FIG. 20. Fraction of molecules and free protons as a function
temperature forr s510 comparing the cluster analysis of the PIM
results with the SC model@1# and the FVT@21#.
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analysis leads to smaller number of molecules than predi
by the SC model.

Summarizing, one can say that the cluster analysis p
vides us with reasonable estimates for the number of at
and molecules in the considered density range. We cau
the reader that other definitions of atoms and molecules,
sible in a many-body hydrogen, while giving qualitative
similar results, may differ quantitatively. Our computed n
merical values must be used with caution. A rigorous, ma

FIG. 21. Fraction of molecules and free protons as shown in
20 but here for a density ofr s52.6.
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body definition of a bound state remains to be applied. S
eral ideas are discussed in@24#.

IV. CONCLUSIONS

In this work, we studied the high-temperature equation
state of hydrogen at low and intermediate densities and
a remarkably good agreement with the SC-EOS. Genera
one finds that the deviations in the energy are more p
nounced than the differences in the pressure. We find sig
cant deviations in the EOS of temperatures'100 000 K,
most likely caused by an underestimate of the degree of
ization at those temperatures. In future work, we will exte
this comparison to higher densities. There one expects to
substantial differences between the SC model and PIM
which manifest themselves in a different shock Hugon
curve @15#.
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