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Path integral Monte Carlo simulation of the low-density hydrogen plasma
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Restricted path integral Monte Carlo simulations are used to calculate the equilibrium properties of hydrogen
in the density and temperature range of X8® 4<p=<0.153 gcm? and 5008 T<250000 K. We test
the accuracy of the pair density matrix and analyze the dependence on the system size, on the time step of the
path integral, and on the type of nodal surface. We calculate the equation of state and compare with other
models for hydrogen valid in this regime. Further, we characterize the state of hydrogen and describe the
changes from a plasma to an atomic and molecular liquid by analyzing the pair correlation functions and
estimating the number of atoms and molecules present.
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[. INTRODUCTION ergy models. Chemical models are expected to become inac-
curate in regions of high density where the lifetime of mol-
In spite of the simple composition, hydrogen exhibits aecules reduces to a few molecular vibratip8§
surprisingly complex phase diagram, which is the subject of We present results from more accurate PIMC simulations.
numerous experimental and theoretical approaches. In thisirst, we analyze the accuracy of the pair density matrix and
work, we study the high temperature regime of 5800 the error of the “time” discretization. Then we analyze the
=<250000 K where hydrogen undergoes a smooth transitiofinite size dependence of the derived EOS and discuss the
with increasing temperature from a molecular fluid throughfixed node errors by comparing results from simulations us-
an atomic regime and finally to a two component plasma ofng free particle(FP) nodes and variational nodes. Further-
electrons and protonsee Fig. 1 The properties of hydro- more, we calculate pair correlation functions that we use in
gen in this regime are crucial for the evolution of stars and;gnjunction with a cluster analysis to characterize the state of
the characteristics of the Jovian planets. , hydrogen at different temperatures and densities. We use
A variety of simulation techniques and analytical modelSiomic units(lengths in Bohr radii and energies in Hartrees

have been developed to describe hydrogen at low density,q,ghout this work except where indicated otherwise.
This regime has been studied with chemical modgls3]

that describe hydrogen as a mixture of interacting molecules,
atoms, free protons, and electrons. The chemical composi-
tion is determined by minimizing an approximate free energy
function constructed from known theoretical limits. In this A. Restricted path integral

paper, we focus on low and intermediate densities 9.83 The density matrixDM) of a fermion system at tempera-

74 73 .
X10 "<p=0.153 gcm corrgspondmg to Ars=2.6, ture kgT=1/B can be written as an integral over all paths
where one expects the chemical models to work well al+

though the properties of hydrogen are determined by the™’
complex interplay of long-range Coulomb forces leading to 1
strong coupling and bound states as well as degeneracy ef- p(Ro.Rg:8)=ry ; (-7 ﬁ - dR, e SR,
fects. ' 0

All these effects can also be described from first prin- 2D
ciples simulation. There arab initio methods such as re-
stricted path integral Monte Carlo simulatiofdMC) [4-6],
density functional theory molecular dynami¢BFT-MD)
[7,8] and wave-packet molecular dynamj€10]. The focus
of the work is to test the equation of staeOS derived
from chemical models and the actual density-temperatur
limits of the validity of the chemical picture. Additionally,

II. PATH INTEGRAL MONTE CARLO METHOD

R, stands for the entire paths & particles in three-
dimensional spac®;=(rq, . ..Int) beginning atRy and
ending atPR;. P labels the permutation of the particles and
é— 1)” to its signature. For nonrelativistic particles interact-
Ing with a potentialV(R), the action of the patly[R;] is

we provide data to determine the parameters of the free efdiVen by,
2
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face. In addition, in the limit of low density, exchange effects

200000 are negligible: the nodal constraint has a small effect on the
100000 | path and therefore its precise shape is not important.
To gain some quantitative estimate of the possible effect
50000 | of the nodal restriction on the thermodynamic properties, it is
necessary to try an alternative. In addition to FP nodes, we
T(K) used nodal surface of a variational density matisDM)
20000 [14] derived from a variational principle that includes inter-
actions and atomic and molecular bound states. This method
10000 . was first combined with PIMC ip15]. One assumes the DM
\ \ is a Slater determinant of single particle Gaussian functions,
5000 1 x e
[Molecular Fluid]
‘ ‘ ‘ pr(r,r',B)=(mww) exp— (r—m)?w+d}, (2.5
0.001 0.01 0.1
p(gem™)

where the variational parameters are the meansquared
FIG. 1. Phase diagram of hydrogen as a function of temperatur®/idth w, and amplituded. These parameters are determined
and density for the different regimes: plasma, the atomic, and th@s a function of imaginary time using a system of coupled
molecular regime. The dash-dot lines indicate the approximatdlifferential equations given in Ref14]. The initial condi-
boundaries. The crosses indicate the parameters for which PIM@ons at 3—0 arew=28, m=r’, andd=0 in order to
simulations have been performed, the solid lines are isobars, and tliegain the correct FP limit. It follows from the variational
dashed lines represent contour lines of constant permutation prolprinciple that at low temperature, the VDM goes to the low-
ability of the electrongas indicated on the ling. est energy wave function within the variational basis. For an
isolated atom or molecule this will be a bound state, in con-
In practice one discretizd41] the path into a finite number trast to the delocalized state of the FP DM. A further discus-
of imaginary time slicesvl corresponding to a time step  sjon of the VDM properties is given in Rdf14]. Note that
=BIM. these nodes are only used to determine the nodal restriction
For fermionic systems the integration is complicated dudn Eq. (2.3). The complete potential is taken into account in
to the cancellation of positive and negative contributions tathe path integral action as discussed in detail in [REE).
the integral(the fermion sign problem It has been shown
[12,13 that one can evaluate the path integral by restricting
the path to only specific positive contributions. One intro- o _
duces a reference poi* on the path that specifies the he numerical implementation of the PIMC method re-
nodes of the DMp(R,R*,t)=0. A node-avoiding path for duires one to makg s_everal approximations. Inaccuracies can
0<t<p neither touches nor crosses a nogéR(t),R*,t) D€ caused by statistical errors from the Monte CaitT)

#0. By restricting the integral to node-avoiding paths integration, inaccuracies in the numerically determined pair
’ density matrices, a dependence on the time step of the path

integral because di-body (N=3) correlations, finite size
PF(Rg,R*;,B)Zf dRo pr(Ro,R*;0) effects, and nodal errors from approximations in the trial
density matrix. Their effects on the accuracy of the com-
puted thermodynamic averages are quantitatively estimated
in this section.

Statistical errors in the estimators for the thermodynamic
[Y(R*) denotes the restrictigrthe contributions are posi- quantities are calculated from the block averages generated
tive and therefore PIMC represents, in principle, a solution tdy the MC simulations. The correlations between blocks are
the sign problem. The method is exact if the exact fermionidaken into account by performing a blocking analysis].

DM is used for the restriction. However, the exact DM is The resulting error barfone standard deviatigrare given

only known in a few cases. Most applications have approxifor all observables throughout this paper as a number in pa-

mated the fermionic DM by a determinant of single particlerenthesis referring to the least significant digit.

DMs, In the following discussion, we compare the internal en-
ergy and the pressure calculated using the virial theorem,

B. Accuracy of the method

X fﬁ dr,e SIRd (2.3
ROHRBEY(R*)

p1(ri,r:B) .. pa(rnariiB) 3Pu=2K+V, 2.6

p1(r, 1B oo pi(ra i B) wherev is the volume of the simulation celk the kinetic
(2.9 energy, andV the potential energy. Accurate estimation of
the pressure requires a high accuracy in the kinetic and the
This approach has been extensively applied using the FPotential energies because they tend to cancel out. In the
nodes including applications to dense hydropgn6]. It can  molecular regime at low density, both terms, dominated by
be shown that for temperatures larger than the Fermi energyntramolecular contributions, cancel to a large extent leaving
the interacting nodal surface approaches the FP nodal sulbehind the molecular gas pressure. As a result, the pressure
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FIG. 2. Accuracy study of PIMC simulations of the isolated

hydrogen atom using different ordeng in the expansion formula FIG. 3. The error in the virial as a function of the number of
Eq. (2.7 for the action and energy. The calculatel 2V (exact time slices for an isolated hydrogen molecule. The classical nuclei
value equals zejcand the deviation from the exact internal energy are fixed at the equilibrium bond length, thus the exact value for
of —13.6 eV are shown for different orders from simulations at2K+V is zero at a sufficiently low temperature.
T=10000 K usingr '=10° K.

termining the accuracy with which the pressure can be deter-
is, in general, significantly more sensitive to approximationsmined. For a time step of =10 K, the analysis shows a

than other quantities such as the internal energy. quick convergence with the order of terms considered in the
_ _ _ action expansion Eq2.7). Using terms upgn,=3 reduces
1. Pair density matrix the error to 0.033(3) eV in energy and to 0.039(8) eV for

If one only used the bare potential as in Eg.2) (the 2K+V. This corresponds to an inaccuracy in the pressure
primitive approximation for the action the convergence equivalent to a noninteracting molecular gas &t
would be very slow17] and would result in extremely inef- =260(30) K.
ficient many-particle simulation. Instead, we numerically
solve the two-particle problem with the matrix squaring tech- 2. Time step dependence
nique[18]. Numerical representations of the exact pair den- Employing the pair approximation of the density matrix
sity matrices are stored in tables used by the PIMC simulagqoes not include correlation effects for three or more par-
tion program by expanding in the small variabeandz ticles (for example, between one electron and two protons

We now estimate how small the time step must be to obtain

u(r,r’; )= E[UO(I’;T)-‘FUO(I";T)] a given accuracy for an isolated molecule. Figure 3 shows
2 results for different time steps and temperatures with the nu-

na k clei kept fixed at the equilibrium position dR=1.4008.

+> > ukj(q;r)ZZJSZ(k‘i), (2.77  From the virial theorem, it follows thatk+V=0 at a suf-
k=1j=0 ficiently low temperature. The exact energy per atom is

—15.973 eV[19]. The T dependence is small suggesting
that the electrons are in the ground state. However, one finds
1 a significant dependence on the time step. Using=2
a==(r|+[r'D, s=lr=r'|, z=|r|-]|r'], (2.9 x10° K reduces the error in the energy per atom to
2 0.036(3) eV and in K+ V to 0.090(16) eV. The time step
error is larger than the errors of the inaccuracies in the pair
ensity matrices discussed above. The error knt2/ cor-

where

andr andr’ denote the separation of the two particles at
adjacent time slices. The accuracy of these tables_ls crucia sponds to a pressure of a noninteracting molecular gas at
for all computed results. Using the precomputed pair densnyl.: : : . .
matrices allows one to employ a much larger time step be .700(100) K, V.Vh'Ch prowd_es us with an approximate

) ; . limit of accuracy in the equation of state calculated from
cause one starts with a solution of the two-particle problem.man _particle simulations with~1=2x 10f K
Figure 2 shows how accurate this method is. The internal y-p '
energy of an isolated hydrogen atom at sufficiently low tem-
perature T=10000 K) in a large boxl(=26) is compared
with the exact ground state energy ©f13.6 eV. The tem- The estimation of the finite size errors is more difficult to
perature was chosen low enough so that excited states can Assess because the needed PIMC simulations are computa-
neglected; the contribution to the energy from the occupatioionally much more demanding. The required computer time
of the first excited state is>¥10 ° eV at this temperature. increases rapidly with the number of particles making it chal-
Also shown is how well the kinetic enerdy and the poten- lenging to obtain converged results for paths corresponding

tial energyV satisfy the virial theorem R+V=0, thus de- to large systems.

3. Finite size dependence
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FIG. 4. Finite size error of the pressure as a function of tem- FIG. 6. The effect on the pressure of two different nodal sur-
perature relative to simulations witN=64 pairs of protons and faces: of the free particle density matrix and of the variational den-
electrons at a density af=2.6. sity matrix.

Most results from many-body simulations reported in thismately 0.2 eV per atom. For lower densities, we expect this
work were calculated witiN =32 pairs of electrons and pro- value to be smaller because, at high temperature, the finite
tons in a periodically repeated simulation cell. To study thesize errors are primarily caused by the interaction of the
effect onN, we performed simulations foN=16 and 64 charges with their own images in periodic boundary condi-
pairs of protons and electrons for a densityrgt=2.6 and tions. This introduces artificial correlations with a too nega-
T=10000 K. We chose the highest density under considertive potential energy. The correction is inversely propor-
ation because one expects the finite size dependence to tienal to system size (I¥). For lower temperatures, this
largest there due to the stronger interaction between the ainteraction is reduced due to screening effects and the for-
oms. mation of bound states. This explains why the finite size

The finite size dependence of the pressure, shown in Figrror of the internal energy increases with temperature and
4, is small at high temperatures but grows to approximatelyeads to lower values for small systems.

4(2)% nearT=30000 K. In this regime, the hydrogen un-
dergoes structural changes involving the formation of atoms, 4. Nodal Approximation

which .affect the pressure. This study provides us only .With In the above, we have studied controlled approximations.
an estimate of the _f|n|te_ size dependence. An extrapolation Phe only uncontrolled approximation in the restricted PIMC
lem fwoqlgl rectuflre t5|gn|f|ca?tly Iarger s;r/]ste;qdqs, r:otthcur.- method is the use of trial density matrix to constrain the
rently ga§| € ?thow em;z)era Lfféesg'o OnOeOsKou h'nﬁ € di € In[f)aths. The nodal surfaces are important only if the electrons
creased size of the error bars 1bs » WRICh Indl- e degenerate: at low temperatures or at high densities. Re-
cate that the two curves in Figs. 4 and 5 are still in agreemenl | vt in this work we focus on hydrogen only at low
W'th'.n the error bars. L . density, where the electrons are bound in atoms and mol-
Figure 5 shows the finite size error of the internal EN€T9Yx cules and have a low or moderate degeneracy. Even at low
The smaller systems are more strongly bound by approx'éiensity, one still needs a nodal surface in order to prevent the

0.4 T T -5 T T T
-=== Saumon & Chabrier ®
O—OPIMC FP L
02 | 0----0 E —E, == PIMC VDM s
~ 00
>
2 S -0}
=z
< -0.2 .
-0.4 t
-15 |
10000 100000 0 10000 20000 30000 40000
T(K) T(K)

FIG. 5. Finite size error of the internal energy as a function of  FIG. 7. Internal energy computed with PIMC using two differ-
temperature relative to simulations with=64 pairs of particles at ent nodal surfaces: the free particle density matrix and the varia-
a density ofr;=2.6. tional density matrix.
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TABLE I. Pressure and internal energy per atom from PIMC simulations with 32 pairs of particles and
7 1=2x10° K using free particle nodes except fér where VDM nodes were employed instead. The
probabilitiesx for finding a proton in a given state for the three dominant species are derived from a cluster
analysis.Pyemis the permutation probability for the electrons.

rs T(K) P(GPa) E(eV) Xy+ XH XH, P perm

14.0 250000 4.00Q) 62.934) 0.000

14.0 125000 1.958) 29.9714) 0.99 0.01 0.00 0.000
14.0 62 500 0.902) 11.854) 0.95 0.05 0.00 0.000
14.0 31250 0.332) -2.9713) 0.64 0.36 0.00 0.000
14.0 15625 0.122) —-11.3@4) 0.24 0.76 0.00 0.000
14.0 10000 0.08%) —12.436) 0.12 0.72 0.15 0.000
14.0 7812 0.04(B) —13.3413) 0.08 0.58 0.33 0.000
14.0 5000 0.02%) —-15.0q12) 0.01 0.11 0.88 0.000
10.0 250000 10.902) 62.003) 0.000

10.0 125000 5.258) 28.5@3) 0.98 0.02 0.00 0.000
10.0 62 500 2.32%) 9.41(3) 0.90 0.10 0.00 0.000
10.0 31250 0.835) -4.913) 0.57 0.43 0.00 0.000
10.0 15625 0.344) -11.493) 0.23 0.74 0.02 0.000
10.0 10000 0.199) -12.795) 0.11 0.60 0.27 0.000
10.0 7812 0.144) —13.549) 0.03 0.34 0.62 0.000
10.0 5000 0.0685) —15.087) 0.00 0.07 0.92 0.000
6.0 250000 49.4@) 59.334) 0.000

6.0 125000 23.0@) 24.704) 0.94 0.06 0.00 0.000
6.0 62 500 9.5@) 4.793) 0.80 0.20 0.00 0.000
6.0 31250 3.58) -6.924) 0.52 0.46 0.01 0.000
6.0 15625 1.5@) —-11.834) 0.21 0.68 0.09 0.001
6.0 10000 0.7@) —13.386) 0.08 0.49 0.40 0.000
6.0 7812 0.65) —13.987) 0.04 0.38 0.56 0.000
6.0 5000 0.20) -15.17112) 0.00 0.09 0.90 0.000
4.0 250000 162.480) 55.634) 0.000

4.0 125000 73.0@3)* 20.249)* 0.88 0.12 0.00 0.000
4.0 62500 29.796)* 1.236)* 0.72 0.26 0.00 0.001
4.0 31250 11.222)* -8.328)* 0.47 0.46 0.03 0.004
4.0 15625 5.0@7)* -11.8716)* 0.19 0.58 0.18 0.008
4.0 10000 3.280* —-13.4311)* 0.03 0.30 0.63 0.005
4.0 7812 2.2014) —14.296) 0.01 0.18 0.80 0.004
4.0 5000 1.1@5) —-15.2Q9) 0.00 0.11 0.88 0.002
3.0 250000 374.414) 51.792) 0.000

3.0 125000 165.222) 16.584) 0.83 0.15 0.01 0.001
3.0 62500 67.7@5 -1.044) 0.66 0.29 0.01 0.005
3.0 31250 26.624) -9.024) 0.45 0.43 0.06 0.028
3.0 15625 13.029) -12.294) 0.15 0.42 0.34 0.059
3.0 10000 9.2@6) -13.794) 0.03 0.35 0.60 0.037
2.6 250000 566 (4) 49.584) 0.000

2.6 125000 246 ®)* 14.5715)* 0.80 0.17 0.01 0.002
2.6 62 500 101.@)* —2.284)* 0.65 0.28 0.02 0.014
2.6 31250 43.6)* -9.385)* 0.42 0.38 0.09 0.078
2.6 15625 19.8)* -12.519)* 0.14 0.42 0.33 0.168
2.6 10000 11.@)* -13.7310* 0.02 0.34 0.60 0.126
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FIG. 8. Internal energy per atom vs temperature for a density of

r<=10 comparing the SC-EOR] with PIMC calculations.

formation of unphysical clusters likegHtand H, or even the t
collapse of the entire system, but the precise shape of tht
nodes is not important at low density as shown in Fig. 6
Comparing FP and VDM nodes fog=2.6, one only finds
differences in the pressure fdr<15625 K, which is ap-

FIG. 10. Internal energy per atom vs temperature as shown in
Fig. 8 but here for a density af,=2.6.

he path integral formalism by the probability for the elec-
fons to be involved in a permutation. At high temperature,
the paths are very short and permutations are rare. At low
temperature and high density, the paths are long and can
form long permutation cycles. However in hydrogen at low

proximately where, at this density, the system shows a SIgdensity, the paths are localized due to the attraction in atoms

nificant molecular signaturésee Sec. Ill B and Fig. 16In

sure, while simulations with VDM nodes stay closer to the
prediction of a semiempirical chemical modi&]. At a lower

and molecules and permutations are rare. Figure 1 shows that
Yhe permutation probability never reaches 1%rfpr 4 (see
Table |). For higher densities, the permutation probability is
increased as indicated by the contour lines. This is consistent

densityrs=4 results from FP and VDM nodes agree within with the temperature and density dependence of the nodal

the error bars. The differences in the internal energy, a . . | :
shown in Fig. 7, using FP and VDM nodes are significantlyarror in pressure and internal energy discussed above.

smaller than the pressure deviations. One either finds agree-
ment within the error bars or that VDM nodes predict lower
internal energies, which was used[ikb] to show that VDM
nodes are the more accurate nodal surface. The observed
energy differences did not exceed 0.1 eV per atom.
For even lower density, the nodes are less relevant be-
cause they become only important in a collision of two mol-
ecules, which occur less frequently at lower density. This[i
trend can also be understood in terms of the degeneracy 0
the electrons. The degree of degeneracy manifests itself in 11 .

-10

-1

FIG. 9. Internal energy per atom vs temperature for a density of

——~- ldeal molecular gas
—-— ldeal atomic gas

F O—OFVT

==== Saumon & Chabrier
—-— ActEx

20000

Ill. RESULTS
A. Equation of state

Table | gives the complete set of energies and pressures at
six densities and eight temperatures. We now compare these
results with several models for hydrogen. We begin our dis-
cussion by studying the internal energy per atom as a func-
on of temperature shown in Figs. 8-11 for two selected

— —- Ideal molecular gas

==== Saumon & Chabrier 4
—=-=— ActEx P4
-12 F o—oFVT

< PIMC VDM
OPIMC FP

0 10000 20000

FIG. 11. Internal energy per atom vs temperature for a density

rs=10 as shown in Fig. 8 but here for lower temperatures alsoof r;=2.6 as shown in Fig. 10 but here for lower temperatures also

including results from the activity expansi¢ActEx) [20] and the

fluid variational theory(FVT) [21].

including results from the activity expansid¢ActEx) [20] and the
FVT [21].
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FIG. 12. Internal energy per atom vs density for different tem-  FIG. 13. Pressure vs temperature at a densityefl0 showing
peratures from SC-EO8L], the activity expansioffActEx) [20]  results from the fluid variational theof1], the SC-EOS1], and
(not shown for 5000 K since nearly identical to S&d PIMC  PIMC simulations.
calculations.

densiti di ~10.0 and 26. G I discussed in Sec. Il B and could be interpreted as a further
ensities corresponding 1 =10.0 and 2.6. Generally, we indication, in addition to the observed energy deviations, that

find a fairly good overall agreement with the EOS by Sau- : Lo .
man and ChabriefSO) [1] over the entire temperature and the SC model undere§t|mates .the degree of ionization at high
emperatures. For intermediate temperatures 62500

density range discussed in this work. The agreement is palt’- : . .
ticularly good in the molecular and atomic regime foy =15625 K, one finds pressure differences, which are of the

=10.0, as shown in Fig. 9. There the SC energies are withigame magnitude as the finite size effects in PIMC. For tem-
the error bars of the PIMC results. At higher temperaturé’erat“res below 15625 K, the increased statistical errors in
shown in Fig. 8, we find systematic deviations of up to 5 evthe 'PIMC pressure are of the same size as the observed de-
per atom aff =250000 K. They indicate that the SC ener- Viations. _ _
gies are too low at high temperatures and too high at inter- In Fig. 15, we show the pressure as a function of density,
mediate temperaturésee Fig. 8 One possible explanation Which confirms the good agreement. The figure also indi-
for the deviations at high temperature is that the SC modetates that, at 5000 K and=4, the pressure is close to the
underestimates the degree of ionizati@ee discussion in pressure of a noninteracting molecular gas.
[22]). In our comparison, we also included results from the ac-
We also studied these deviations as a function of densitytivity expansion by Roger$20], which shows very good
The cross-over temperature, above which the SC-EOS uragreement in pressure and internal enefgge Figs. 9, 11,
derestimates the energy, increases with density.;At10.0, and 13. The differences are small but increase with density.
the crossover is near 70 000 K compared to 130 00(FiH. In the molecular and atomic regime, one also finds good
10) at rg=2.6. At temperatures below 20000 K for;,  agreement with the FVT by Juranek and Redrft] as
=2.6, one also finds some small deviations up to 0.5 eV peshown in Figs. 9, 11, 13, and 14. For higher temperatures,
atom (Fig. 11). the FVT model is not applicable since it does not include
Figure 12 shows a comparison of energy versus densitionization of atoms.
for several temperatures. It shows that the SC-EOS overesti-

mates the energy fof =5000 K and 31250 K and under- 1000 . .

estimates it for 125000 K for densities higher than those ,;/

corresponding ta =2.6. e e P
Now let us compare the pressure from the SC-EOS with o—aFVT ' e .

that from the PIMC simulation using E¢R.6) in Table I. We T Soumon & Chabrier /'/ 7

find remarkably good agreement of the entire range of tem- OPIMC VDM S 7

perature and density under consideration. For a low density 100 ¢ e / ///

such ag4=10.0, this is shown in Fig. 13. As expected, one = - / -

finds that both methods interpolate between the limit of an %

ideal Fermi gas at high temperatures and noninteracting mo- o

lecular gas at low temperatures. Figure 14 confirms the good

agreement at a higher density of=2.6. As a result of the 10 |

strong interactions at this density, one finds that the pressure A ,

at low temperatures is significantly above the non-interacting 10000 T(K) 100000

molecular gas limit. We find that the SC-EOS underestimates
the pressure by about 3% fdr>62 500 K. This difference FIG. 14. Pressure vs temperature at a density &f2.6 as
is outside the error bar from the approximations in PIMCshown in Fig. 13.

066404-7



B. MILITZER AND D. M. CEPERLEY PHYSICAL REVIEW E63 066404

1000 T T T r=14 r=10 r=6 r=4 r=3 =286 T(K)
— — - |deal molecular gas, T=5000K g 0.4
- ==~ Saumon & Chabrier §
100 t O—OPIMC 4 0.2 a
N N
0.4 °
—_ 10 &
© 0.2 K k o
a
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a4 0.4 e
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f 2 00 \ \
01 r gﬁ 0.4 S
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FIG. 15. Pressure vs density for different temperatures. 8[3
(=]
(=
0.2 2
B. Pair correlation functions 0.0 \\ \ \ & \ & °
0 2 4 0 2 4 0 2 4 2 4 0 2 4 0 2 4

There are four different pair correlation functions that can (;
be directly obtained from many-body simulations and pro-
vide direct information about the state of the system. Shown FIG. 17. Proton-electron pair correlation function multiplied by
in the following figures is an extensive set of pair correla-the densityn. The columns correspond to differentvalues and the
tions that allow one to estimate the microscopic structure ofows to different temperatures

the system and allow a direct comparison with other simula- . L .
tions. The proton-proton pair correlation functions from Perature. Fors=2, we expect that pressure dissociation di-

PIMC simulations with free particle nodes are shown in Fig.Minishes the number of molecules with increasing density
16. For T=20000 K a peak at the bond length of 1.4 [17] but this density range is beyond the scope of this paper.
emerges, which clearly demonstrates the formation of mol- The proton-electron pair correlation function multiplied

ecules. We found it useful to multiply the pair correlation PY the density is shown in Fig. 17. The peak near the origin
function by an extra density factor=N/v so that the area shows the increased probability of finding an electron near a

under the peak is proportional to the molecular fraction. Thé?roton due to the Coulomb attraction. The peak height de-

peak height gets smaller with decreasing density as a resff€2Ses with temperature and increases with density because

of entropic dissociation of the molecules, driven by the num-Of thermal ionization and entropy ionization, respectively. At

ber of unbound states at low density. Thermal dissociation®"V émperature, the peak can be interpreted as occupation of

also reduces the number of molecules with increasing tem20UNd states althougfunbound scattering states can also
contribute. From proton-electron pair correlation alone, one

r=14 (=10 r6 - (3 =26 T cannot distinguish between an atomic and a molecular state.

Figures 18 and 19 show the electron-electron pair corre-
lation functions for pairs with anti-parallel spin. The peak at
small separations comes from the formation of the molecular
bond. For pairs of electrons with parallel spin, one always
finds a strong repulsion due to the Pauli exclusion principle
and to a lesser extent to the Coulomb repulsion. This is
shown in Fig. 19.

62500

31250

15625

o 0 L= C. State of hydrogen
c
s 5 § In this section, we discuss the phase diagram of hydrogen
o N JAN /\/— as shown in Fig. 1. The diagram shows the approximate

location of the molecular, the atomic, and the plasma re-
gimes. The PIMC simulations, since they are based on the
basic description in terms of electrons and protons, do not
directly lend themselves to determining the number of com-
pound particles such as molecules and atdifiethods for
determining this from PIMC simulations will be discussed in
a future publication. In order to obtain an estimate of the
atomic and molecular fraction, we employed a cluster analy-
FIG. 16. Proton-proton pair correlation function multiplied by Sis of the PIMC path configurations. As described8], we
the densityn. The columns correspond tq values and the rows to  consider two protons as belonging to one cluster if they are
different temperatures. less than 1.85 apart. An electron belongs to one particular

A in NN

|

0 2 4 0 2 4 0 2 402 402 402 46
r

5000

HEN
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r=14 r=10 r=6 r=4 r=3 r=26 T K) 1.0
5
g o
2 8 0.8 |
: —
4 o
g & 06
3 —_ ~—— 1o
0 [ >
_ g g 04 |
X I~ ¢
£ g - 02
°© 2 \/_ §
-~ 1 L/\_—‘ -
0 0.0 v
g o 10000 100000
: k\, R T(K)
0
g - FIG. 20. Fraction of molecules and free protons as a function of
2 ,\—(\/ S temperature for ;=10 comparing the cluster analysis of the PIMC
: results with the SC modélL] and the FVT[21].

0 2 4 0 2 4 0 2 4 0 2 4 0 2 40 2 4 6
r
collision, two particles are counted falsely as being part of

_ FIG. 18._ EIect_ron-eIe_ct_ron pair correlati_oq function for electronsihe cluster. We corrected for this by applying an additional
with opposite spin multiplied by the densityis shown. The col-  ¢yitarion: a particle can only be considered as bound if the
?e?]n;ef;:fesg?ond to differemt, values and the rows to different difference in action to remove it from the cluster is positive.

' This method leads to the expected corrections at high tem-

cluster if it is less than 1a, away from any proton in the perature.(The regime boundaries in Fig. 1 discussed below

cluster. The two cut-off radii were chosen from the molecu-2"¢ hardly atfected by_ the additional correc@on.

lar and atomic ground state distribution. This analysis gives. '€ lower dashed line represents the region where 60% of

reasonable estimates for the molecular and atomic fractiod'® Protons are bound in molecules. When the number of

at low temperatures. At high temperature, it overestimate8rotons bound in atomg.e., with an electrondrop below

the number of bound states because even irfuabound  40% we labeled this state as plasma as shown in the upper
dashed-dotted line. It should be emphasized that the location

k  Ofthese lines depends on the choice of these limits as well as
on the cut-off radii used to determine the clusters in this
place. Figure 1 also shows the location of isobars, which
appear as almost straight lines in this double logarithmic

) 2 graph. The slope is different from the ideal gas because the

pressure depends on ionization and dissociation.

Table | shows the fraction of the three most frequently

D S O \ \ L . found species: molecules, atoms, and free protons whisre

defined as the probability of finding a proton in a certain

compound particle. It should be noted that the sy

Xyt Xp, is less than 1 since other clusters have a nonzero

probability. The largest contributions besides those listed are
0 ' : ' '. : H, with a maximum of 0.06 for,=2.6 andT=15625 K
) followed by H; with x<0.03 and H with x<0.02. Even
larger clusters occur very infrequently. The cluster analysis
also gives an estimate for the fraction of free electrons,
which agrees well with the number of ionized protorg: .
0 b Figure 20 shows a comparison of the fraction of mol-
0 5105100 5100 51005105115 ecules and ionized atoms fog=10. One finds that the mo-
r lecular fractions decays rapidly with temperature. The result-
FIG. 19. Electron-electron pair correlation function. The solid INd atoms are then ionized at even higher temperatures
lines correspond to pairs of electrons with parallel spin. For the sakée@ding to the observed increase in the number of free pro-
of comparison, we also show the pair correlation functions of pairdons. The PIMC predictions for the molecular fraction agree
with opposite spin as dashed lines. This function is strongly peaked€ry well with the SC model as well as with the FVT. On the
near the origin in the presence of molecules as shown in Fig. 18ther hand, the PIMC results shows a significantly higher
The columns correspond to differeng values and the rows to dif- degree of ionization than SC. The same comparison for a
ferent temperatures. higher density ofr;=2.6 in Fig. 21 shows that the cluster

r=14 r,=10 r=6 r=4 r=3 =26 T

62500

31250

15625

9eo(r)

10000

7812

5000
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1.0 SRR - body definition of a bound state remains to be applied. Sev-
eral ideas are discussed|[i24].
0.8 |
. IV. CONCLUSIONS
06 el 1 In this work, we studied the high-temperature equation of
< state of hydrogen at low and intermediate densities and find
a remarkably good agreement with the SC-EQS. Generally,
041 e | one finds that the deviations in the energy are more pro-
nounced than the differences in the pressure. We find signifi-
0.2 r cant deviations in the EOS of temperatured00000 K,
most likely caused by an underestimate of the degree of ion-
s ization at those temperatures. In future work, we will extend
0.0 10000 100000 this comparison to higher densities. There one expects to find
T (K) substantial differences between the SC model and PIMC,

which manifest themselves in a different shock Hugoniot
FIG. 21. Fraction of molecules and free protons as shown in Figcurve[15].
20 but here for a density of;=2.6.
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