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Dynamical models for sand ripples beneath surface waves
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We introduce order parameter models for describing the dynamics of sand ripple patterns under oscillatory
flow. A crucial ingredient of these models is the mass transport between adjacent ripples, which we obtain from
detailed numerical simulations for a range of ripple sizes. Using this mass transport function, our models
predict the existence of a stable band of wave numbers limited by secondary instabilities. Small ripples coarsen
in our models and this process leads to a sharply selected final wave number, in agreement with experimental
observations.
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I. INTRODUCTION

When a flat surface of sand is exposed to the flow of ai
water, patterns known as ripples, dunes, sand waves a
draas are formed@1–6#. Here we focus on the so-calledvor-
tex ripples@1# ~Fig. 1! that are created by oscillatory flui
flow, e.g., beneath surface waves. Ripples are of interes
coastal engineers since their properties determine the fric
of the flow in the coastal region@7–10#, the dissipation of
surface waves@11# and the net sediment transport over t
ripples @12#. More recently ripples have attracted the atte
tion of physicists interested in nonequilibrium system
@2,4,13–20#.

The physics underlying sand ripple formation involves t
interaction between the turbulent fluid flow and a granu
medium, and is therefore extremely complex. A descript
of the pattern forming aspects is hindered by the strong n
linearity of the fully developed ripples due to the subcritic
nature of the initial bifurcation from a flat bed. Previou
theoretical studies of this initial bifurcation@21–24# have
described theonsetof ripple formation. Vortex ripple pattern
formation occurs, however, far from equilibrium: typic
wavelengths of fully developed ripples can be a facto
larger than those predicted by~weakly nonlinear! analysis
@24#.

In this paper we will discuss thepattern formingaspects
of fully developed vortex ripples. Many of the problems a
sociated with the complicated underlying phenomenolo
can be circumvented by noting that thesizesof the ripples
are the most relevant parameter for determination of th
dynamics; further details of their shapes are not importa
Dynamical equations for the evolution of the ripples can th
be constructed once the mass exchange between rippl
certain sizes is known. We base our expression for this m
exchange on detailed numerical simulations of the flow a
sand transport over vortex ripples~see below!, hence going
beyond a pure ‘‘toy-model’’ approach. As far as we a
aware, the model presented here is the first to capture
instabilities and coarsening of fully developed vortex rippl

The outline of the paper is as follows. We start with
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brief description of the main phenomenology of ripples
Sec. II. Although the amplitude of the fluid oscillations d
termines the length of the ripples, a dimensional analy
~Sec. II A! reveals that the most relevant dimensionless c
trol parameter is the Shields parameter that character
stress at the sandy surface. We discuss our numerical s
lations of the mass exchange between vortex ripples in S
II B. Section III is devoted to the formulation of simpl
ripple models in one-dimensional geometries. The linear
bility of these models is performed in Sec. III B, and th
coarsening and selection of the final ripple patterns star
from random initial conditions is discussed in Sec. III D.
Sec. IV we extend our model to two dimensions and disc
the impact of defect motion on the selection of the fin
two-dimensional pattern.

II. VORTEX RIPPLES

Following the much earlier work of Ayrton@25#, the study
of vortex ripples was taken up again by Bagnold in 1946@3#.
In this seminal study, Bagnold distinguished between roll
grain ripples and vortex ripples. The former are genera
when starting from an unstable flat bed@5# and consist of
small triangular ridges separated by a comparatively lo
stretch of flat bed. These rolling grain ripples grow a
coarsen to become vortex ripples with no flat bed betw
them. Here the flow is dominated by separation bubbles~vor-
tices! on the lee sides of the fully developed ripples. We w
concentrate on these fully developed vortex ripples, si
recent studies have confirmed@19,20# that rolling grain
ripples essentially constitute a transient.

FIG. 1. Side view of a vortex ripple pattern under oscillato
flow in a long, slender channel~courtesy of J.L. Hansen!. The arrow
indicates the amplitude of the fluid oscillations in the bulk.
©2001 The American Physical Society08-1
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ANDERSEN, CHABANOL, AND van HECKE PHYSICAL REVIEW E63 066308
Many experiments have studied the average wavelen
of fully developed ripples@26–29# as a function of, e.g., the
amplitude and frequency of the fluid motion. It appears t
the~dimensional! length of the ripplesldim is proportional to
the amplitude of the oscillatory flowa, and roughly indepen-
dent of its frequency. Estimates in the literature of the p
portionality constantldim /a range from one to two, with a
preference for values around 1.3~see Fig. 8 in@27#!.

Recently the ripples have also been studied from the v
point of pattern formation. Both Schereret al. @20# and Steg-
ner and Wesfreid@19# studied a one–dimensional annul
system in which the conservation of sand is guarante
Stegner and Wesfried@19# observed strong hysteresis whe
the driving amplitude of fully developed ripples was ramp
up and down: an increase in the amplitude of the driv
yielded larger ripples, while for a decrease, the ripples
not change length. Lofquist also@7# observed hysteretic be
havior, but in this case the ripples were initially stable f
both an increase or decrease of the driving amplitude@7#.
Hysteresis of the ripples was also observed in a recent s
field measurements@29#.

A. Dimensional analysis and setup of the problem

Ripples are governed by a large number of dimensio
parameters that characterize fluid flow and sand. We
show that while in general three dimensionless parame
~density ratio of fluid and sand grainss, settling velocityws ,
and maximumShields parameterumax! characterize the sys
tem, for the case of interest here~sand-water systems in th
regime where suspension is unimportant! the only free pa-
rameter is the Shields parameter.

Ripple formation is driven by an oscillatory fluid motio
with amplitudea and angular frequencyv. The Reynolds
number Re for this situation isa2v/n, wheren is the fluid
viscosity. For water in a typical experimental situationa
55 cm, v53 s21), Re is of order 103, and the flow is
turbulent. Therefore, large scale flow structures such as s
ration bubbles are independent of the Reynolds number
hence viscosity. For turbulent flow, the roughness of the
is of minor importance as long as the typical grain sizes
much smaller thana. The only relevant length scale is thena,
which we use to define the nondimensional ripple length
l5ldim /a. The large scale flow is then completely specifi
by the boundary conditions, i.e., the shape of the ripples

The sand introduces four new dimensional parame
into the problem. These are, respectively, the density of
ter rw and sandrs , the median diameter of the grainsd and
gravity g. From these we form the following three nond
mensional parameters:

s5
rs

rw
, ws5

ws.dim

av
, u5

tbed

rw~s21!gd
, ~1!

The relative density of the grainss has a value of 2.65 for
quartz sand in water. The settling velocityvs characterizes
the amount of sand kept in suspension; here we assum
regime where the settling velocity is large (ws*0.15) such
that suspension is not important. This leaves us with the
06630
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parameteru, which is known as theShields parameter. The
Shields parameter expresses the ratio between the drag
gravitational forces on a single grain and depends on
shear stresstbed(x,t), which varies with time and along th
profile of the ripple. Following@30# we propose to use the
maximum shear stress on aflat bedtmax to characterize the
flow. For laminar flowtmax can be found exactly from the
solution of Stokes’ second problem@31#. For turbulent con-
ditions, which prevail here, an analytical expression does
exist. We will follow coastal engineers in using an empiric
relation for the maximum shear stress@32#:

tmax50.02rwS a

kN
D 20.25

~av!2. ~2!

Note that the instantaneous Shields parameter on arippled
bedu(x,t) can be several times larger thanumax.

The transport of sandq takes place in a thin layer abov
the bed, the so-calledbed loadlayer ~for an introduction to
sediment transport see Chap. 7 in Ref.@32#!. The nondimen-
sionalized flux of sandf[q/Ag(s21)d3 in the bed load
layer is a function of the local Shields parameter and can
modeled as

f5a~u2uc!
b. ~3!

Whenu(x,t) smaller than a critical valueuc for all x, which
for turbulent boundary layers is approximately 0.06@32#,
sand grains do not move and the ripple profile freezes.
constantsa and b have been determined empirically b
Meyer-Peter and Mu¨ller @33# to be approximatelya58 and
b51.5, which are in good agreement with theoretical e
mates@34,35#. The formation and the dynamical propertie
of the ripples are mainly determined by the fluid flow, so t
exact values of the constantsa andb together with the de-
tailed form of Eq.~3!, turn out to be relatively unimportan
for the content of this work.

B. Numerical studies and mass transport

The computational model that we have developed to st
the ripples calculates turbulent fluid flow over ripples bas
on the standardk-v turbulence model@36,37#. Once this
flow is known, the sediment transport, which is governed
the shear stress on the bed, can be calculated from Eq.~3!.

In Fig. 2 we show some results for the flow and the no
dimensionalized shear stressf for l51.15. We see tha
there are two mechanisms that generate the shear stre
the bed, namely, the converging flow on the ‘‘wind’’ side
the ripple~here left! and the separation bubble formed in th
lee ~right! side. Typically, these stresses are several tim
stronger than the stresses on a flat bed. The separa
bubble, where the flow near the bed is directed opposite
the mean flow direction, is clearly visible. This bubb
moves out into the trough of the ripple (vt590°), where it
stays (vt5150°) until it is thrown over the crest as the flo
reverses.

The shear stresses are uphill on both sides of the rip
and consequently sand is transported from the trough tow
8-2
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FIG. 2. The flow over a ripple at three instants in the first half of the wave period. The system consists of a single ripple in a sys
periodic boundary conditions and lengthl51.15. The bottom three figures show the spatial profile of the Shields parameter on the
the corresponding times. For this caseumax50.13.
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the crest; the result is a steepening of the ripple profile. T
steepening continues until the slopes of the ripple reach
angle of repose, where avalanches limit the growth of
ripple slopes. As a consequence, most slopes of the f
developed ripples are close to the angle of repose. Th
fully developed ripples are thus approximately triangul
joined by smooth troughs, which is also evident from expe
ments@19#.

Ripples interact by exchanging sand between their ne
bors over the troughs. The amount of this mass flow
closely connected to the extension and strength of the s
ration bubble. We have studied this mass transport as a f
tion of the nondimensional ripple sizel. In Fig. 3 we show
the net sediment transport during the first half wave peri
for short (l50.6), medium (l51.0) and large ripples (l

FIG. 3. The spatial profile of the net mass transport in the fi
half of the wave period@*0

p/vf(x,t)dt# for ripples of lengthl
50.6, 1.0, and 2.0. Note that the ripple trough is located in
middle of the figure. (umax50.13).
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52.0). For short ripples the separation bubble almost cov
the space between the two ripple crests, but it is not v
strong, giving rise to a small transport. For long ripples, t
separation bubble does not reach over the trough, again
ing only a small mass exchange between adjacent ripp
Most mass is exchanged for medium sized ripples, where
separation bubble is both strong and reaches over the tro

We definef as the amount of sand transported over
trough during the first half wave period

f ~l!52E
0

p/v

f~xtr ,t !dt, ~4!

where xtr is the position of the trough. The minus sign
simply related to the fact that the fluid and mass flows ha
opposite directions during each half period; here we wish
have a positivef (l).

The rescaled mass exchangef (l)/ f (l51.0) is shown in
Fig. 4 for values ofumax ranging from 0.075 to 0.75. The
rescaled graphs of the mass exchange~i! collapse in good
approximation and~ii ! have a single maximum aroundl
51.0. In our model, developed in Sec. III below, we w
incorporate these two properties. If the critical Shields p
rameter had been 0, the rescaling factorf (l51.0) would
have been proportional toumax

1.5 . That this is almost, but no
exactly, the case is seen in the inset in Fig. 4.

III. DISCRETE MODELS FOR ONE-DIMENSIONAL
RIPPLES

In this section we will introduce and study simple mode
for ripples in one-dimensional geometries. We assume
the angles of the ripple slopes are fixed, so that the o
degrees of freedom are the lengths of their left and ri
slopes. Two different versions of the model will be d

t

e
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ANDERSEN, CHABANOL, AND van HECKE PHYSICAL REVIEW E63 066308
scribed. In the simplest case we only take the total rip
sizesl i into account~see Fig. 5!. The ensuing ‘‘minimal
model’’ is formulated in Sec. III A, and is analyzed theore
cally in Sec. III B. A more refined model that takes th
lengths of left and right slopes into account is presented
Sec. III C ~see Fig. 6!, and numerical simulations of thi
model are presented in Sec. III D.

A. Minimal model

In this model ripples are triangular and symmetric a
characterized by their lengthl i . We will now determine the
mass transfer between two ripples with lengthsl1 and l2
~Fig. 5! from the information that we have for the ma
transfer between equal ripples. Whenl1 andl2 are approxi-
mately equal, one expects the size and strength of the s
ration bubble emanating from the crest of ripple 1 to
independent of the size of ripple 2. This is our central
sumption:the mass transport during a half period only d
pends on the size of the ripple that creates the separa
bubble.

Let us denote the first half period of the driving, when t
flow is from left to right, by a subscript I, and the second h
by II. Under our assumption stated above, we obtain:DmI
5 f (l1) andDmII52 f (l2), whereDmI denotes the chang
in the mass of ripple 1 in the first half period. During ea
half period, the amount of mass transported is small in co

FIG. 4. f (l) for umax50.075, 0.15, 0.23, 0.30, 0.45, 0.60 an
0.75, scaled withf (l51.0). The inset show 7umax

1.5 ~full line! and
f (l51.0) ~dashed line! in double log scaling.

FIG. 5. An example of how the transport in the trough betwe
two ripples is constructed as the transport in the two half perio
06630
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parison to the mass of a single ripple. We therefore can
glect changes in the ripple shapes during a half period,
obtain the mass flow during a full period,Dm, by simply
adding up the half period mass flows

Dm5 f ~l1!2 f ~l2!. ~5!

Clearly Eq. ~5! can be extended to the case of a row
ripples. Then the mass flow to ripplei, Dmi , is due to inter-
actions with both ripple i 21 and i 11: Dmi52 f (l i)
2 f (l i 11)2 f (l i 21).

To close the equations we need to relate the mass flow
a change in the size of the ripples. Since the mass-flow
small, it is reasonable to assume that the change in rip
size is linear in the mass transport. The greatest simplifi
tion is obtained if we assume all ripples to be of near eq
size, so that the ratioDm/Dl is equal for all ripples. Taking
the continuum time limit and rescaling time to absorb a p
portionality constant we obtain

dl i /dt52 f ~l i 21!12 f ~l i !2 f ~l i 11!. ~6!

The total length of a system of ripples evolving according
Eq. ~6! is conserved, but the total mass is not; we will d
cuss this further in Sec. III C.

Finally, we supplement the model with an annihilatio
rule that removes ripples that have shrunk to size zero, a
creation rule, which adds ripples in the troughs betwe
ripples of sizes larger than a certain lengthlmax that will be
specified in the next section.

B. Equilibria and stability

There are three types of equilibria in the minimal mod
~6!: ~i! Homogeneous states where alll ’s are equal;~ii ! ‘‘Pe-
riod two’’ states, for whichf (l i)5 f (l i 11) but l iÞl i 11
~see Fig. 16 in@20# for similar states!; and ~iii ! More com-
plicated equilibria constructed by arbitrary juxtapositions
ripples of lengthsla or lb when f (la)5 f (lb).

The linear stability of the homogeneous state follo
from settingl i5leq1d i and linearizing Eq.~6!

FIG. 6. A sketch of the ripple profile with the triangular ripple
and the quantities used to describe the ripples. Note that the rip
do not need to be symmetric. Also shown is the exchange of s
ment from the right ripple to the left ripple during the first ha
wave period.
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DYNAMICAL MODELS FOR SAND RIPPLES BENEATH . . . PHYSICAL REVIEW E63 066308
dd i /dt52 f 8~leq!~d i 2122d i1d i 11!. ~7!

This is the linear stability equation for the space-discretiz
diffusion equation, with diffusion coefficient2 f 8(leq), and
the sign off 8 will be important. As we demonstrated in Se
II B, the mass transportf displays a single maximum as
function ofl at a value that we will refer to aslmin . When
leq is larger ~smaller! than lmin , 2 f 8(leq) is positive
~negative! and the pattern is stable~unstable!. Hence the
smallest possible stable wavelength islmin , where f has a
maximum. This instability can be seen directly from t
mass transport: when we inspect two unequal adjac
ripples with sizes larger thanlmin we obtain from Eq.~5!
that mass will flow from the larger to the smaller rippl
hence leading to a stable equilibrium, while if their sizes
smaller thanlmin mass flows from the smaller to the larg
ripple, leading to an instability.

An additional instability occurs forlarge ripples when
their troughs lie outside the separation zone~seel52.0 in
Fig. 3!; in this case the flow creates new ripples in t
troughs. This instability has been observed in experime
@4,7# and also in our numerical studies@37#. This instability
is consistent with our models when we assume thatf is de-
fined for arbitrary small ripples. For a homogeneous patt
of large ripples wheref (leq), f (0), infinitesimal ripples in-
serted between the large ripples will gain mass and gr
and the maximum valuelmax where homogeneous pattern
are stable, is given byf (lmax)5 f (0). This is the motivation
for having a creation rule in the model.

The period 2 and more complicated equilibrium states
be shown to be unstable in our framework@38#. Thus our
model illustrates an important consequence of the shap
the mass exchange function. There is aband of wavelengths
for which ripple patterns are stable; outside this band, sh
wavelength instabilities occur.

C. Refined model

Both our numerical studies and experiments@19# fre-
quently display ripples that are asymmetric during their e
lution ~although, on average, they are not!. We extend the
minimal model from the previous section to allow for asym
metric ripples by characterizing the ripples by the length
both their left (l i) and right (r i) slopes; obviouslyl i5 l i
1r i ~see Fig. 6!. In addition, such a model can be tuned so
to conserve mass.

As before we assume that the lee side of ripples de
mines the size of the separation bubbles. During the first
period the bubble takesDmI mass from the left slope o
ripple i 11, and transports this mass to ripplei; the ratio
between the mass deposited on the left and right slope
ripple i is given by a parameters that we always fix at a
value of 0.5 ~see Fig. 6!. The mass flow in the first hal
period is therefore

Dmli .I52 f ~2r i 21!1~12s! f ~2r i !,

Dmri .I5s f ~2r i !. ~8!
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The mass flow in the second half period follows by symm
try. Assuming that the mass transport is small, we can
glect the change in ripple size during one half cycle, and a
the contributions from each half period.

To obtain a closed set of dynamical equations we have
establish how the lengthsl i and r i evolve under a certain
mass flow. When an amount of massM is deposited on the
right slope of ripplei, we incorporate this by an increase ofl i
and a subsequent decrease ofl i 11; the lengthr i itself does
not change. Assuming for simplicity the angle of repose
be 45°, we can calculate the volume of the slab of depos
sand and find that the change in the length of nearby ripp
is

D l i5Dmri /~2r i !, ~9!

D l i 1152Dmri /~2r i !. ~10!

Ignoring higher order effects we obtain the total change
the length as a function of the mass changes as

Dr i52
Dmli 11

2l i 11
1

Dmli

2l i
,

D l i5
Dmri

2r i
2

Dmri 21

2r i 21
. ~11!

This relation together with the mass flow from Eq.~8! de-
fines the refined model. This model has the same linear
bility properties as the minimal model defined in Eq.~5!.

The total length of the system is conserved, and the t
mass is approximately conserved. The masses that are
nored are associated with the small areas that are cr
hatched in Fig. 6. It is possible to formulate the model in
strictly mass-conserving manner, by updating the slo
lengths when both removing and depositing mass, but
does not alter the model in any substantial way.

In our numerical simulations two different forms of th
mass transport functionf (l) were used. Both functions hav
a maximum atl5lmin51/2 and are zero at 0 andlmax.
The simplest function that satisfies these requirements i
linear, while a smooth function with a quadratic maximu
that satisfiesf (0)5 f (lmax)50 can be constructed as th
sum of a linear function and a square root~see Fig. 7!

f ~z!5
4z

22lmax
1

lmax~lmax24!

2~lmax22!2

1
lmax

2~lmax22!2
A16~lmax22!z1~lmax24!2.

~12!

This smooth function forlmax51.6 resembles the on
found from the computational flow model in Sec. II B.

D. Coarsening of fully developed ripples

When ripples are grown experimentally from a flat be
initially many small ripples are created. They subsequen
8-5
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ANDERSEN, CHABANOL, AND van HECKE PHYSICAL REVIEW E63 066308
coarsen and form a final regular steady state with a w
defined final wavelength~see for example Fig. 1 in@19#!.
Our model shows the same behavior for initial conditions
~disordered! unstable small wavelength patterns. An exam
of such evolution is shown in Fig. 8. A fast coarsening p
cess is seen in the beginning (t,1), followed by a slower
relaxation toward an equilibrium state. The important d
namical process leading to the equilibrium state is the a
hilation of ripples, with each annihilation resulting in
longer average ripple length; creation does not play a
here. After the final annihilation, slow diffusive dynamic
sets in.

The stability analysis performed in Sec. III B shows tha
wide range of ripple wave lengths can be linearly stab
namely lmin,l,lmax. We will show here that, starting
from small ripples, the dynamics leads to the selection o
sharply defined final wavelength. We assume perio
boundary conditions in our simulations. The parameters
tering the model are the length of the domainL and the
maximum ripple lengthlmax. The initial conditions are dis-
ordered ripples with an average wavelengthl0,lmin .

FIG. 7. The interaction functions used in the models. Smo
function, ~full line! and the bilinear function~broken line!, for a
value oflmax51.5.

FIG. 8. An example of the dynamics of the model using t
linear interaction function andlmax51.35 The time scale is arbi
trary.
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We found that the final wavelength is quite independ
upon the initial average wavelengthl0 ~when this is suffi-
ciently small! and the initial degree of disorder. This resu
could not have been predicteda priori from the model equa-
tions, but is in good agreement with experimental eviden

The final wavelength does, however, depend on the sh
of the interaction function and the value oflmax. In Fig. 9,
leq is plotted as a function oflmax for the two interaction
functions. The final wavelength appears to be a nontriv
function of lmax for both interaction functions. The interac
tion function that resembles the one from the numerical fl
calculations~the smooth function withlmax51.6) results in
an equilibrium wavelength ofleq51.2860.03, a result that
is in good agreement with ripple lengths measured in exp
ments.

IV. TWO-DIMENSIONAL RIPPLE PATTERNS

Unless one forces the ripple patterns to occur in a nar
channel or annulus, ripple patterns are two dimensional, e
though the alignment perpendicular to the flow yields qua
one-dimensional patterns. However, during the evolution
ward the final state the pattern contains many defects@4#. We
have thus extended our model to study their role in the
lection of the final state.

In our two-dimensional model the individual rows o
ripples are similar to those in Fig. 6 and are labeled by in
cesi andj, wherej is the new coordinate perpendicular to th
driving direction. In thei direction, the mass flow is given b
expression~8!. We then determine which ripples are neig
bors in thej direction, and impose an angle of repose in t
j direction by inducing a flow of mass between ripplej and
j 11 when their height difference is above a certain ma
mum. At a defect, such mass flow can nucleate a new rip
in the trough of an adjacent row. Finally, it is reasonable
expect that aj flow is induced when the ripples are no

h FIG. 9. The equilibrium wavelength as a function oflmax. The
squares correspond to results obtained using the bilinear intera
function, the open circles correspond to the smooth function and
filled circles correspond to the two-dimensional~2D! model. The
dashed line indicates the maximum possible wavelengthl5lmax.
The initial number of ripples were 1200 and the initial ripple leng
was 0.760.05.
8-6
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aligned perpendicular to the main flow, and the simpl
choice for such flow between ripplej and j 11 is 2Dml j
5Cx(xj 112xj ). The coupling in thej direction is thus dif-
fusive, and basically acts to align the ripple crests perp
dicular to the oscillatory motion. In the simulations that a
presented, the value ofCx has been fixed to 0.08. The qua
tative results are not sensitive to a change of this parame

To study the motion of defects in this model, we initia
the system with two patches of nearby wavelengthsl1 and
l2 separated by two defects. The motion of these defe
depends on the values of the wavelengths~Fig. 10!, and we
find that when these are larger than 1.2860.02 the defect
climbs in the direction of the lowest wavelength, otherwise
moves in the direction of the largest wavelength. Thus i
pattern with many defects, as encountered during the co
ening process, one expects that only regions with wa
lengths larger thanlde f51.28 will survive. We can therefore
expect the final wavelengthleq in a two-dimensional system
to lie betweenlde f andlmax.

To check this we have performed simulations in lar
systems with initial conditions consisting of unstable ripp
patterns of wavelength 0.5. The system rapidly coarsens
evolves to a state where most of the wavelengths lie in
1D stable regimelmin,l,lmax. The dynamics then slow
down dramatically and becomes dominated by defect clim
ing. In the final relaxed state of the system the peak of
distribution of ripples lengths lie betweenlde f and lmax.
Runs with different values oflmax have confirmed that the
equilibrium wavelength in the two-dimensional model is sy

FIG. 10. An example of a climbing defect in a system with
ripples in the middle and 31 ripples at the top and bottom. (l1

51.29, l251.33).
e
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tematically larger than in the one-dimensional case~see
Fig. 9!.

V. DISCUSSION AND CONCLUSION

By focusing on a realistic law for the mass exchange
tween adjacent ripples, simple models have been formula
that capture a number of phenomena observed in real ripp
First of all, our model predicts the existence of a finite ba
of stable ripple wave numberslmin,l,lmax, which is
consistent with the hysteresis observed in experime
@7,29#. The model predicts that the instabilities encounte
once these boundaries are crossed are of short wavele
nature, in agreement with experiments on one- and tw
dimensional sand patterns performed in Copenhagen@4#.

Coarsening that occurs in the intermediate stages of
development of vortex ripples is present in our models, a
we predict that even though there is a finite band of sta
ripple patterns, the dynamics selects a well defined fi
wave length. The exact value of the final wave length d
pends on the details of the mass exchange function, how
for a function similar to the results from our simulations
the fluid and sand flow, we find an equilibrium waveleng
of l51.28.

A good collapse of the mass exchange function with
maximum shear stressumax indicates that the final wave
number should be independent ofumax as long as suspensio
is not important.

Following the picture of the mass exchange as in the m
els, it is clear that the maximum value of the mass excha
function sets a time scale for the evolution of the ripples. W
have shown that this maximum value is approximately p
portional toumax

1.5 . Thus the time scale of the evolution of th
ripples can be expected to scale asumax

1.5 .
Finally we have demonstrated that the models can be

plied to two-dimensional ripple patterns, and have found t
defect motion renders the final wavelength of ripples in t
dimensions larger than in one dimension.

All these predictions are open to experimental verific
tion. In particular, we are eager to see how consistent
mass exchange mechanism proposed here is for real da
ripple evolution.
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