PHYSICAL REVIEW E, VOLUME 63, 066308
Dynamical models for sand ripples beneath surface waves
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We introduce order parameter models for describing the dynamics of sand ripple patterns under oscillatory
flow. A crucial ingredient of these models is the mass transport between adjacent ripples, which we obtain from
detailed numerical simulations for a range of ripple sizes. Using this mass transport function, our models
predict the existence of a stable band of wave numbers limited by secondary instabilities. Small ripples coarsen
in our models and this process leads to a sharply selected final wave number, in agreement with experimental

observations.
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[. INTRODUCTION brief description of the main phenomenology of ripples in

Sec. Il. Although the amplitude of the fluid oscillations de-
When a flat surface of sand is exposed to the flow of air otermines the length of the ripples, a dimensional analysis
water, patterns known as ripples, dunes, sand waves andSec. Il A) reveals that the most relevant dimensionless con-
draas are formeflLl—6]. Here we focus on the so-calledr-  trol parameter is the Shields parameter that characterizes
tex ripples[1] (Fig. 1) that are created by oscillatory fluid Stress at the sandy surface. We discuss our numerical simu-
flow, e.g., beneath surface waves. Ripples are of interest t@tions of the mass exchange between vortex ripples in Sec.
coastal engineers since their properties determine the frictio B. Section 1l is devoted to the formulation of simple
of the flow in the coastal regiof7—10], the dissipation of fipple models in one-dimensional geometries. The linear sta-
surface wave$11] and the net sediment transport over thebility of these models is performed in Sec. Il B, and the
ripples[12]. More recently ripples have attracted the atten-coarsening and selection of the final ripple patterns starting
tion of physicists interested in nonequilibrium systemsfrom random initial conditions is discussed in Sec. Ill D. In
[2,4,13-20. Sec. IV we extend our model to two dimensions and discuss
The physics under|ying sand r|pp|e formation involves thethe ImpaCt .Of defect motion on the selection of the final
interaction between the turbulent fluid flow and a granulatWo-dimensional pattern.
medium, and is therefore extremely complex. A description
of the pattern forming aspects is hindered by the strong non- Il. VORTEX RIPPLES
linearity of the fully developed ripples due to the subcritical i i
nature of the initial bifurcation from a flat bed. Previous Following the much earlier work of Ayrtof25], the study
theoretical studies of this initial bifurcatiofp1-24 have Of vortex ripples was taken up again by Bagnold in 108k
described thensetof ripple formation. Vortex ripple pattern !N this seminal study, Bagnold distinguished between rolling
formation occurs, however, far from equilibrium: typical 9rain ripples and vortex ripples. The former are generated
wavelengths of fully developed ripples can be a factor svhen starting from an unstable flat bg8l and consist of

larger than those predicted Hyveakly nonlinear analysis small triangular ridges separated by a comparatively long
[24]. stretch of flat bed. These rolling grain ripples grow and

In this paper we will discuss thgattern formingaspects ~COarsen to become.vortex_ ripples with no f_Iat bed between
of fully developed vortex ripples. Many of the problems as-them. Here the flow is dominated by separation bubbles
sociated with the complicated underlying phenomenolog)ﬁ'ces) on the lee sides of the fully developed npp!es. We vyﬂl
can be circumvented by noting that teizesof the ripples concentrate_on these fuIIy_ developed vortex _rlpples,_smce
are the most relevant parameter for determination of theifécent studies have confirmed9,2q that rolling grain
dynamics; further details of their shapes are not importantiPPIes essentially constitute a transient.

Dynamical equations for the evolution of the ripples can then

be constructed once the mass exchange between ripples of s

certain sizes is known. We base our expression for this mass e

exchange on detailed numerical simulations of the flow and

sand transport over vortex ripplésee below, hence going o~

beyond a pure “toy-model” approach. As far as we are

aware, the model presented here is the first to capture both FIG. 1. Side view of a vortex ripple pattern under oscillatory

instabilities and coarsening of fully developed vortex ripples.flow in a long, slender channé&ourtesy of J.L. HansenThe arrow
The outline of the paper is as follows. We start with aindicates the amplitude of the fluid oscillations in the bulk.
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Many experiments have studied the average wavelengtharameterg, which is known as th&hields parameteiThe
of fully developed ripple$26—29 as a function of, e.g., the  ghields parameter expresses the ratio between the drag and
amplitude and frequency of the fluid motion. It appears thabravitational forces on a single grain and depends on the
the (dimensional length of the ripples\ 4, is proportional to  ghear stresspeq(X,t), Which varies with time and along the
the amplitude of the oscillatory floa, and roughly indepen- profile of the ripple. Following30] we propose to use the
dent of its frequency. Estimates in the literature of the proyaximum shear stress orflat bed Tmax t0 Characterize the
portionality constani g, /a range from one to two, with @ fiow, For laminar flowry,, can be found exactly from the
preference for values around Xsee Fig. 8 if27]). solution of Stokes’ second problef1]. For turbulent con-

Recently the ripples have also been studied from the viewitions, which prevail here, an analytical expression does not
point of pattern formation. Both Scherer al.[20] and Steg-  gxist. We will follow coastal engineers in using an empirical
ner and Wesfreid19] studied a one—dimensional annular (g|ation for the maximum shear Stre@2]:

system in which the conservation of sand is guaranteed.

Stegner and Wesfrie[l9] observed strong hysteresis when

the driving amplitude of fully developed ripples was ramped Tmax— O.OQpW(k—
up and down: an increase in the amplitude of the driving N
yielded larger ripples, while for a decrease, the ripples di
not change length. Lofquist al§@] observed hysteretic be-
havior, but in this case the ripples were initially stable for
both an increase or decrease of the driving amplitlicle
Hysteresis of the ripples was also observed in a recent set
field measurement9].

~0.25
(aw)?. 2

q\lote that the instantaneous Shields parameter oppded
bed 6(x,t) can be several times larger thé@p .

The transport of sand takes place in a thin layer above
the bed, the so-callebed loadlayer (for an introduction to
Ldiment transport see Chap. 7 in R8R]). The nondimen-
sionalized flux of sandp=gq/\/g(s—1)d® in the bed load

layer is a function of the local Shields parameter and can be
A. Dimensional analysis and setup of the problem modeled as

Ripples are governed by a large number of dimensional 8
parameters that characterize fluid flow and sand. We will $=a(6-06:)" €
show that while in general three dimensionless parameters . ,
(density ratio of fluid and sand graisssettling velocityws, When 6(x,t) smaller than a cr|t|c_:al valué _for all x, which
and maximunShields paramete#,,,,) characterize the sys- [OF turbulent boundary layers is approximately 0.0%),
tem, for the case of interest hefgand-water systems in the Sand grains do not move and the ripple profile freezes. The
regime where suspension is unimporiattite only free pa- constantse and B have been determm_ed empirically by
rameter is the Shields parameter. Meyer—Petgr and Mler [33] to be approxu"natelyx=8' and '

Ripple formation is driven by an oscillatory fluid motion 8=1.5, which are in good agreement with theoretical esti-
with amplitudea and angular frequency. The Reynolds Mates[34,39. The formation and the dynamical properties
number Re for this situation ia2w/v, wherev is the fluid of the ripples are mainly determined by the flwq flow, so the
viscosity. For water in a typical experimental situaticn ( €*act values of the constanisand 3 together with the de-
=5 cm, =3 s %), Re is of order 18 and the flow is tailed form of Eq.(3), turn out to be relatively unimportant

turbulent. Therefore, large scale flow structures such as sepf®" the content of this work.
ration bubbles are independent of the Reynolds number and
hence viscosity. For turbulent flow, the roughness of the bed B. Numerical studies and mass transport

is of minor importance as long as the typical grain sizes are The computational model that we have developed to study
much smaller thaa. The only relevant length scale is then ¢ ripples calculates turbulent fluid flow over ripples based
which we use to define the nondimensional ripple length ag, the standark-o turbulence mode[36,37]. Once this
A= Agim/a. The large scale flow is then completely specifiedy|q\y is known, the sediment transport, which is governed by
by the boundary conditions, i.e., the shape of the ripples. iha shear stress on the bed, can be calculated fronf3Eq.
The sand introduces four new dimensional parameters |, Fig. 2 we show some results for the flow and the non-
into the problem. These are, respectively, the density of Wagimensjonalized shear stregs for A=1.15. We see that
ter p,, and sangs, the median diameter of the graid®nd  here are two mechanisms that generate the shear stress on
grawty g. From these we form the following three nondi- o bed, namely, the converging flow on the “wind” side of
mensional parameters: the ripple(here lefy and the separation bubble formed in the
lee (right) side. Typically, these stresses are several times
. W , = (1)  stronger than the stresses on a flat bed. The separation
Pw aw pw(s—1)gd bubble, where the flow near the bed is directed opposite to
the mean flow direction, is clearly visible. This bubble
The relative density of the grairsshas a value of 2.65 for moves out into the trough of the ripplex{=90°), where it
quartz sand in water. The settling velocibg characterizes stays t=150°) until it is thrown over the crest as the flow
the amount of sand kept in suspension; here we assumeraverses.
regime where the settling velocity is largevd=0.15) such The shear stresses are uphill on both sides of the ripple,
that suspension is not important. This leaves us with the lasind consequently sand is transported from the trough toward

Ps Ws.dim Thed
S=—, We=——
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FIG. 2. The flow over a ripple at three instants in the first half of the wave period. The system consists of a single ripple in a system with
periodic boundary conditions and length= 1.15. The bottom three figures show the spatial profile of the Shields parameter on the bed at
the corresponding times. For this cagg,,=0.13.
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the crest; the result is a steepening of the ripple profile. This=2.0). For short ripples the separation bubble almost covers
steepening continues until the slopes of the ripple reach théhe space between the two ripple crests, but it is not very
angle of repose, where avalanches limit the growth of thestrong, giving rise to a small transport. For long ripples, the
ripple slopes. As a consequence, most slopes of the fullgeparation bubble does not reach over the trough, again giv-
developed ripples are close to the angle of repose. Thesag only a small mass exchange between adjacent ripples.
fully developed ripples are thus approximately triangular,Most mass is exchanged for medium sized ripples, where the
joined by smooth troughs, which is also evident from experi-separation bubble is both strong and reaches over the trough.
ments[19]. We definef as the amount of sand transported over the

Ripples interact by exchanging sand between their neightrough during the first half wave period
bors over the troughs. The amount of this mass flow is
closely connected to the extension and strength of the sepa- fN)=— J’T"”d)(x t)dt 4)
ration bubble. We have studied this mass transport as a func- 0 tr '
tion of the nondimensional ripple si2e In Fig. 3 we show
the net sediment transport during the first half wave periodwherex, is the position of the trough. The minus sign is
for short \=0.6), medium §£=1.0) and large ripplesN(  Simply related to the fact that the fluid and mass flows have

opposite directions during each half period; here we wish to
2 have a positivef (N\).

The rescaled mass exchange.)/f(A=1.0) is shown in
Fig. 4 for values of,,, ranging from 0.075 to 0.75. The
rescaled graphs of the mass exchafigecollapse in good
approximation andii) have a single maximum around
=1.0. In our model, developed in Sec. Ill below, we will
incorporate these two properties. If the critical Shields pa-
rameter had been 0, the rescaling fact¢x =1.0) would
have been proportional té-> .. That this is almost, but not
exactly, the case is seen in the inset in Fig. 4.

1.5

T fw
/ oz, t)dt
a

Ill. DISCRETE MODELS FOR ONE-DIMENSIONAL

0 0.2 04 0.6 0.8 1 RIPPLES
z/A

In this section we will introduce and study simple models
FIG. 3. The spatial profile of the net mass transport in the firstfor ripples in one-dimensional geometries. We assume that
half of the wave period [7'“¢(x,t)dt] for ripples of lengthx the angles of the ripple slopes are fixed, so that the only
=0.6, 1.0, and 2.0. Note that the ripple trough is located in thedegrees of freedom are the lengths of their left and right
middle of the figure. @ma,=0.13). slopes. Two different versions of the model will be de-
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f(\=1.0) (dashed lingin double log scaling. ment from the right ripple to the left ripple during the first half
wave period.
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scribed. In the simplest case we only take the total ripple__ . . .
) . : L parison to the mass of a single ripple. We therefore can ne-
sizes\; into account(see Fig. 5. The ensuing “minimal

model” is formulated in Sec. lll A, and is analyzed theoreti- glect changes in the ripple shapes during a half period, and

cally in Sec. lll B. A more refined model that takes the obtain the mass flow during a full periodm, by simply

lengths of left and right slopes into account is presented ir‘;Jlddlng up the half period mass flows

Sec. Il C (see Fig. 6 and numerical simulations of this Am=F(Ay)—F(\y). (5)
model are presented in Sec. Il D.
Clearly Eg.(5) can be extended to the case of a row of
A. Minimal model ripples. Then the mass flow to rippleAm;, is due to inter-

. . . . actions with both ripplei—1 and i+1: Am;=2f(\;)
In this model ripples are triangular and symmetric and_f()\. D—f\ )
i+ i—1/-

characterized by their lengt " We will how determine the To close the equations we need to relate the mass flow to
mass transfer between two ripples with lengisand, 5 change in the size of the ripples. Since the mass-flow is
(Fig. 5) from the |nform_at|on that we have for the MasSS gmall, it is reasonable to assume that the change in ripple
transfer between equal ripples. V_\/h)epand)\z areé approxi- - gjze js linear in the mass transport. The greatest simplifica-
mately equal, one expects the size and strength of the SePgsn, is obtained if we assume all ripples to be of near equal
ration bubble emanating from the crest of ripple 1 t0 begj ¢ o4 that the ratiam/A is equal for all ripples. Taking

independent of the size of ripplq 2. This is our central 8Sthe continuum time limit and rescaling time to absorb a pro-
sumption:the mass transport during a half period only de- Rortionality constant we obtain

pends on the size of the ripple that creates the separatio
bubble. d/dt=—F(Ni—1) +2F() = F(Ai0). )
Let us denote the first half period of the driving, when the

flow is from left to right, by a subscript I, and the second half The total length of a system of ripples evolving according to

by Il. Under our assumption stated above, we obtaim, Eq. (6) is conserved, but the total mass is not; we will dis-

=f(\y) andAm;=—f(\,), whereAm, denotes the change cuss this further in Sec. Il C.

in the mass of ripple 1 in the first half period. During each  Finally, we supplement the model with an annihilation

half period, the amount of mass transported is small in comrule that removes ripples that have shrunk to size zero, and a
creation rule, which adds ripples in the troughs between

! (%) ripples of sizes larger than a certain length, that will be

- specified in the next section.

B. Equilibria and stability

There are three types of equilibria in the minimal model
(6): (i) Homogeneous states where)l$ are equalfii) “Pe-
riod two” states, for whichf(\;)=f(\;;1) but \;#N; ¢
(see Fig. 16 if20] for similar statey and (iii) More com-
plicated equilibria constructed by arbitrary juxtapositions of
ripples of lengths\, or A, whenf(\,)=f(\p).

FIG. 5. An example of how the transport in the trough between The linear stability of the homogeneous state follows
two ripples is constructed as the transport in the two half periods.from settinghj=X\q4+ 6; and linearizing Eq(6)
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do /dt=—f"(Neg)(8i_1— 28+ 51 1). (7) The mass flow in the second half period follows by symme-
try. Assuming that the mass transport is small, we can ne-
lect the change in ripple size during one half cycle, and add
he contributions from each half period.

To obtain a closed set of dynamical equations we have to
establish how the lengthls andr; evolve under a certain
mass flow. When an amount of massis deposited on the
right slope of ripplé, we incorporate this by an increasel pf
and a subsequent decreasd;qf;; the lengthr; itself does
_ ) not change. Assuming for simplicity the angle of repose to
smallest possible stable wavelengthhigi,, wheref has a o y50 \ye can calculate the volume of the slab of deposited

maximum. This instability can be seen directly from. the cand and find that the change in the length of nearby ripples
mass transport: when we inspect two unequal adjacqu

ripples with sizes larger thah,;, we obtain from Eq.(5)

This is the linear stability equation for the space-discretize
diffusion equation, with diffusion coefficient f'(\¢y), and
the sign off’ will be important. As we demonstrated in Sec.
I B, the mass transpoit displays a single maximum as a
function of \ at a value that we will refer to as,,;,. When
Neq is larger (smalley than Apin, —f'(Neg) is positive
(negative and the pattern is stabl@unstable. Hence the

that mass will flow from the larger to the smaller ripple, Alj=Am/(2r)), 9)
hence leading to a stable equilibrium, while if their sizes are
smaller than\,,;, mass flows from the smaller to the larger Al 1=—Am,; /(2ry). (10
ripple, leading to an instability.

An additional instability occurs fotarge ripples when Ignoring higher order effects we obtain the total change in

their troughs lie outside the separation zqeeex=2.0 in  the length as a function of the mass changes as
Fig. 3); in this case the flow creates new ripples in the

troughs. This instability has been observed in experiments AT
[4,7] and also in our numerical studigd7]. This instability !
is consistent with our models when we assume fhatde-
fined for arbitrary small ripples. For a homogeneous pattern
of large ripples wheré(\¢,) <f(0), infinitesimal ripples in-
serted between the large ripples will gain mass and grow,
and the maximum valug,,,, Where homogeneous patterns This relation together with the mass flow from H§) de-

are stable, is given bf(\ ,.,) = f(0). This is the motivation fines the refined model. This model has the same linear sta-
for having a creation rule in the model. bility properties as the minimal model defined in E§).

The period 2 and more complicated equilibrium states can The total length of the system is conserved, and the total
be shown to be unstable in our framewd88]. Thus our mass is approximately conserved. The masses that are ig-
model illustrates an important consequence of the shape eofored are associated with the small areas that are cross-
the mass exchange function. There isamd of wavelengths hatched in Fig. 6. It is possible to formulate the model in a
for which ripple patterns are stable; outside this band, shortstrictly mass-conserving manner, by updating the slope
wavelength instabilities occur. lengths when both removing and depositing mass, but this
does not alter the model in any substantial way.

In our numerical simulations two different forms of the
mass transport functiof{\) were used. Both functions have

Both our numerical studies and experimefi®] fre- a maximum at\=\.,;,=1/2 and are zero at 0 and,,.
quently display ripples that are asymmetric during their evo-The simplest function that satisfies these requirements is bi
lution (although, on average, they are ndtVe extend the linear, while a smooth function with a quadratic maximum
minimal model from the previous section to allow for asym- that satisfiesf(0)="f(\,a0 =0 can be constructed as the
metric ripples by characterizing the ripples by the length ofsum of a linear function and a square réste Fig. 7
both their left (;) and right ;) slopes; obviouslyn;=1;
+r; (see Fig. 6. In addition, such a model can be tuned so as 4z Nmad Amax—4)

_ Amyiy g +Amli ,
2liy1 2l

_Amri Amrifl

B 2ri 2ri_1 ’

Al; (11)

C. Refined model

to conserve mass. f(2)= 2 Nmax | 2(hm—2)2
As before we assume that the lee side of ripples deter- max
mines the size of the separation bubbles. During the first half N max
period the bubble takeAm, mass from the left slope of VLA max—2)Z+ (N max—4)%.
ripple i +1, and transports this mass to ripglethe ratio 2(Mmax—2)
between the mass deposited on the left and right slopes of (12)

ripple i is given by a parametar that we always fix at a _ _
value of 0.5(see Fig. 6 The mass flow in the first half This smooth function for\p,a=1.6 resembles the one
period is therefore found from the computational flow model in Sec. Il B.

Amy =—1(2ri_) +(1-0)f(2r), D. Coarsening of fully developed ripples

When ripples are grown experimentally from a flat bed,
Amy  =af(2ry). (8) initially many small ripples are created. They subsequently
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FIG. 7. The interaction functions used in the models. Smooth ~ FIG. 9. The equilibrium wavelength as a function\af,,,. The
function, (full line) and the bilinear functior{broken ling, for a  squares correspond to results obtained using the bilinear interaction
value of\ ya,=1.5. function, the open circles correspond to the smooth function and the

filled circles correspond to the two-dimensior{dD) model. The

coarsen and form a final regular steady state with a welldashed line indicates the maximum possible wavelengt max-
defined final wavelengtlisee for example Fig. 1 ifi19]). The initial number of ripples were 1200 and the initial ripple length
Our model shows the same behavior for initial conditions of#s 0-#-0.05.

(disordereglunstable small wavelength patterns. An example

of such evolution is shown in Fig. 8. A fast coarsening pro-
cess is seen in the beginning<(1), followed by a slower
relaxation toward an equilibrium state. The important dy-

namical process leading to the equilibrium state is the anniz L . , ,
hilation of ripples, with each annihilation resulting in a tions, but is in good agreement with experimental evidence.

longer average ripple length; creation does not play a role]c '[]he_flnal Wavel;ength doesahﬁwewler, dependl or;_thegshape
here. After the final annihilation, slow diffusive dynamics ort € interaction unctlon and the value mﬂaX', nrg. 9
sets in. Neq is plotted as a function ok, for the two interaction

The stability analysis performed in Sec. Il B shows that afunctions. The final wavelength appears to be a nontrivial
wide range of ripple wave lengths can be linearly staplefunction of A5, for both interaction functions. The interac-

namely <A <\,... We will show here that, starting tion function that resembles the one from the numerical flow

from small ripples, the dynamics leads to the selection of £alculations(the smooth function with = 1.6) results in
sharply defined final wavelength. We assume periodi@n €quilibrium wavelength afeq=1.28+0.03, a result that
boundary conditions in our simulations. The parameters erS IN 90od agreement with ripple lengths measured in experi-
tering the model are the length of the domainand the =~ Ments.

maximum ripple length\ ;.. The initial conditions are dis-

ordered ripples with an average wavelen§x \ min - IV. TWO-DIMENSIONAL RIPPLE PATTERNS

Unless one forces the ripple patterns to occur in a narrow
channel or annulus, ripple patterns are two dimensional, even
though the alignment perpendicular to the flow yields quasi-
one-dimensional patterns. However, during the evolution to-
ward the final state the pattern contains many defeédtsVe
have thus extended our model to study their role in the se-
lection of the final state.

In our two-dimensional model the individual rows of
ripples are similar to those in Fig. 6 and are labeled by indi-
cesi andj, wherej is the new coordinate perpendicular to the
driving direction. In thd direction, the mass flow is given by
expression8). We then determine which ripples are neigh-
bors in thej direction, and impose an angle of repose in the
j direction by inducing a flow of mass between rippland
j+1 when their height difference is above a certain maxi-

FIG. 8. An example of the dynamics of the model using themum. At a defect, such mass flow can nucleate a new ripple
linear interaction function andl,,,=1.35 The time scale is arbi- in the trough of an adjacent row. Finally, it is reasonable to
trary. expect that g flow is induced when the ripples are not

We found that the final wavelength is quite independent
upon the initial average wavelengily (when this is suffi-
ciently smal) and the initial degree of disorder. This result
could not have been predictedpriori from the model equa-
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60 0 60 L ? tematically larger than in the one-dimensional cdsee
Fig. 9.
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V. DISCUSSION AND CONCLUSION

30

By focusing on a realistic law for the mass exchange be-
tween adjacent ripples, simple models have been formulated
0 that capture a number of phenomena observed in real ripples.
First of all, our model predicts the existence of a finite band
of stable ripple wave numbers,;,<<A<Apayx, Which is
consistent with the hysteresis observed in experiments
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* INEE IR * | once these boundaries are crossed are of short wavelength
20 , ” lIH o E nature, in agreement with experiments on one- and two-
10 pr s pos © 0 py p pvs 30 dimensional sand patterns performed in Copenhddégn

x

x Coarsening that occurs in the intermediate stages of the

FIG. 10. An example of a climbing defect in a system with 30 development of vortex ripples is p“?se”t,”! our models, and
ripples in the middle and 31 ripples at the top and bottow, (W€ Predict that even though there is a finite band of stable
=1.29,\,=1.33). ripple patterns, the dynamics selects a well defined final
wave length. The exact value of the final wave length de-
pends on the details of the mass exchange function, however
{or a function similar to the results from our simulations of
he fluid and sand flow, we find an equilibrium wavelength
of A=1.28.

: : : : _ A good collapse of the mass exchange function with the
fusive, and basically acts to align the ripple crests perpenmaximum shear stres, ., indicates that the final wave

dicular to the oscillatory motion. In the simulations that are . .
presented, the value @, has been fixed to 0.08. The quali- number should be independentéfax as long as suspension
' X is not important.

tative results are not sensitive to a change of this parameteljé. X . .

To study the motion of defects in this model, we initiate Fpl[owmg the picture of Fhe mass exchange as in the mod-
the system with two patches of nearby wavelengthsand els, itis clear th_at the maximum value (_)f the mass exchange
\, separated by two defects. The motion of these defect nction sets a time scale for the evolution of the ripples. We

' ave shown that this maximum value is approximately pro-

depends on the values of the wavelendtfig. 10, and we : . .
fing that when these are larger than %lﬂjﬂ?ozot)he defect Portional tod2,. Thus the time scale of the evolution of the

climbs in the direction of the lowest wavelength, otherwise it"IPPI€s can be expected to scaledts,.

moves in the direction of the largest wavelength. Thus in a Finally we have demonstrated that the models can be ap-
pattern with many defects, as encountered during the coar®/iéd to two-dimensional ripple patterns, and have found that
ening process, one expects that only regions with Waved_efect motion renders the final v_vavele_ngth of ripples in two

lengths larger thai o= 1.28 will survive. We can therefore dimensions larger than in one dimension.

expect the final wavelengthy, in a two-dimensional system All these_predictions are open to experimental .verifica—
to lie betweem go; and\ tion. In particular, we are eager to see how consistent the
e max-

To check this we have performed simulations in largeMass exchange mechanism proposed here is for real data of
systems with initial conditions consisting of unstable ripple"iPPI& évolution.
patterns of wavelength 0.5. The system rapidly coarsens and
evolves to a state where most of the wavelengths lie in the
1D stable regime\ min<A<Amax. The dynamics then slows It is a pleasure to acknowledge discussions with Markus
down dramatically and becomes dominated by defect climbAbel, Tomas Bohr, dgen Fredse, Jonas Lundbek Hansen,
ing. In the final relaxed state of the system the peak of theNigel Marsh, and Alexandre Stegner. M.v.H. acknowledges
distribution of ripples lengths lie betweetyes and \ ,ay- financial support from the EU under Contract No. ERBFM-
Runs with different values of 5, have confirmed that the BICT 972554. M.-L.C. thanks the Niels Bohr Institute for
equilibrium wavelength in the two-dimensional model is sys-hospitality.

aligned perpendicular to the main flow, and the simples
choice for such flow between rippleand j+1 is —Am;
=Cy(Xj+1—X;). The coupling in thg direction is thus dif-
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