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Pattern formation in directional solidification under shear flow.
[I. Morphologies and their characterization
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In the preceding paper, we have established an interface equation for directional solidification under the
influence of a shear flow parallel to the interface. This equation is asymptotically valid near the absolute
stability limit. The flow, described by a nonlocal term, induces a lateral drift of the whole pattern due to its
symmetry-breaking properties. We find that at not-too-large flow strengths, the transcritical nature of the
transition to hexagonal patterns shows up via a hexagonal modulation of the stripe pattern even when the linear
instability threshold of the flowless case has not yet been attained. When the flow term is large, the linear
description of the drift velocity breaks down and transitions to flow-dominated morphologies take place. The
competition between flow-induced and diffusion-induced pattécostrolled by the temperature gradient
leads to new phenomena such as the transition to a different lattice structure in an array of hexagonal cells.
Several methods to characterize the morphologies and their transitions are investigated and compared. In
particular, we consider two different ways of defining topological defects useful in the description of patterns
and we discuss how they are related to each other.
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[. INTRODUCTION tion cells was the reduction of the full set of model equations
to an equation for the interface alone. This motivates the
In the companion of this articlgl], henceforth referred to  consideration of rapid solidification, where a strongly non-
as |, a discussion of the experiment of directional solidifica-inear equation of this type can be derivisi6]. It also re-
tion was given, emphasizing its importance as a tool both foptricts the possible flow patterns to simple ones.
applied and fundamental science. Therefore, we can be brief It has now become of paramount importance to consider
here in recalling only some of the more noteworthy features'ghre_e—d!r_nensmnal d|rect!onal growth theoretically, due.to the
Concerning pattern formation, directional solidification 8vailability of new experimental approaches that allowithe
gives the opportunity mainly to study structures arising fromsitu observation of three-dlmen5|_onal growth morphologies
the Mullins-Sekerka(MS) instability [2]. While there are L7:8: In these systems, convection turns out to be a non-
patterns such as lamellar eutecti& that are grown in di- negligible effect.

rectional solidification and the primary structure of which is . The article IS orgam;ed as fo!lows. In Sec. Il, we reca-
not due to this instability, diffusion-induced instabilities do pitulate the basic equation of motion and the definition of the

. ) . parameters arising therein. Section Il describes our methods
play a major role in eutectic structures as wdl.

I ical licati f | h .. of pattern analysis by a variety of statistical and topological
n practical applications of crystal growth, convection is a e g angd gives its applications to a number of simulation

transport mechanism of utmost importance. Hence it seemygits. Conclusions regarding flow effects and the character-
appropriate to try and capture how it affects growth patterns, 4iion of morphologies are summarized in Sec. IV.
and length scales, even though one may be able to under-

stand basic patterns and dynamical aspé&attmdrites, cells, Il. MODEL EQUATION

chaotic behavigrwithout it and to perform experiments in ) ) )

which it is largely suppressed. Moreover, the possibility of 10 Make this presentation self-contained we repeat the
convection-dominated patterns cannot be discarded. asymptotic interface equation from | that was used in all the

The purpose of the work presented in | and in this articleSimulations to be discussed:

is to demonstrate, for a very simple forced flow, an instabil- 1 1
ity mechanism and its influence on patterns tiree- §tt—(2+ PRl v)VzgtJr 1+ E+v2 V4
dimensionalfast directional solidification. In particular, the
interaction of the flow-induced instability with the Mullins- _ 9
Sekerka instability will be a focus of interest here. +8kV?{+8kG{— = LLéd
An important simplification, rendering possible the study
of three-dimensional growth for several hundred solidifica- =2{ V2 + 2(|Vg|2)t_2V2(|V§|2)_2y(vg)v(v2§)
2 2 2
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In this equation, all parameters are already nondimensional.
Positions and times are measured in units ofrescaled
diffusion length and time, respectively. The scalings have
been explained in detail in IV=(dy,dy) is the two-
dimensional gradient operataf(Xx,y,t) the position of the
liquid-solid interface. The temperature gradient is oriented
along thez axis, the direction of the flow is determined by
the directional derivative of the nonlocal temth{], i.e., here

it is parallel to thex axis. £[ ] is defined via its Fourier
transform

F L) =[plF [£1(P), )

wherep is the wave vector in Fourier space.

The nondimensional parameters of the equation are the
segregation coefficieri, the ratiov=D¢/D of the diffusion
coefficients for impurities in the solid and the liquid, the
nondimensional temperature gradi@tand the strengthof

) .. FIG. 1. Division of the plane into black and white regions by
the flow. For completeness, we also recapitulate the deflnlI'evel contours. The whole interfa¢ebtained forG=0.25, no flow,

tion of G in terms of physical parameters: att=>50, after random initializationwas divided into 254 equidis-
tant levels. Cutting at level 145 yields the shown image. At a lower
_ 8D3L%mAc G level, more white regions would be connected, their total area
G= (3 would be larger, and, if the level were taken sufficiently low, there

VzTﬁw \/(\/ef\/)2 would be several disjoint black regions.
Herein,L is the latent heat per unit volume of the transition,
m the absolute value of the slope of the liquidus liAe, the
miscibility gap, y the (isotropig surface energy. The veloc-
ity V, is given byV,=mLAcD/yTk and corresponds to
the absolute stability limitG is the temperature gradient and
V the pulling velocity. In terms of dimensional quantities, the
flow strengthf reads

interface using a meaningfully reduced amount of informa-
tion is thecluster number function |\(z) counting the white
clusters.

Once clusters corresponding to solidification cells are de-
fined (by an appropriate choice=zp), disorder may be
characterized via construction of the minimum spanning tree
on the set of centers of mass of the clusfé@® or by defect

counting in the Voronoi graph of these centers, where a de-
_ 8V fect is any cell with an edge number different from six.
- (4) y cellv ge numbe erent from s _
eVS Both the minimum spanning tree and defects whose defi-
nition is based on the Voronoi construction become pretty
whereV,, is the speed of the flow far from the interface andmuch useless when the structure changes from cellular to
S=, /D is the Schmidt numberif being the kinematic striped, a situation demonstrated in I. Cluster counting re-
viscosity of the liquid. e describes the distance from abso- mains informative, however, as will be clarified by our dis-

lute stability, e=1/2k— yT,,V/2mLAcD. cussion of the Euler characteristic below.
To further reduce the parameter space to be explored, we It has been proposefdl1] that morphological measures
setyr=1 andk=1, choices that have been justified in I. such as the aremof the white regions, their boundary length
s and their Euler characteristjg would be useful in describ-
IIl. GENERAL FEATURES OF THE MORPHOLOGY ing transitions between different morphologies such as hex-
DIAGRAM agonal and striped ones. The Euler characteristic is, up to a
constant factor, the total integral of the curvature of the
A. Morphology characterization boundary between black and white domains, and it can be

How to characterize morphologies that can be classifie¢noWn (o be equal to the difference between the numbers of
as cellular arrays with a varying degree of disorder has beefPnnected white and black regiorisot counting the all-
discussed at length if9]. Since Fourier transforms and cor- €Ncompassing outermost regjoin other words, if we de-
relation functions are not very good at distinguishing disor-fine, besides our clustgr numbe.r function for white regions
dered patterns with similar length scales, different tools werdw(2), the corresponding functiol,(z) for black ones,
employed, based on the analysis of how contour levels of thi1€n the Euler characteristic is given by
interface divide the plane into regions. All interface points _ _ +
above a levek, belong to one area, called white, all those X(2)=Nu(2)=No(2)(=1), ®
below to another, called black. For a sufficiently lamgethe
white area consists of separate clusters, as can be gathenstiere the added or subtracted 1 accounts for a black or white
from the example given in Fig. 1. A way to describe thebackground13]. As soon as we have just white cells on a
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connected black background, the Euler characteristic be- Defects are positions where the complex amplitude be-

comes equal to the cluster number functep(z). comes zero, as the phase gets undefined there and can jump.
It can be proven that the Minkowski functionalss, and  In the case of hexagons, we will consider each defect in an

x form a complete set of additive, motion invariant, condi- underlying stripe system a defect of the whole pattern. Then

tionally continuous functions in two dimension2], i.e.,  defects can be detected by finding the places wherpribe

any functional of sets in the plane satisfying these three condct AjA,A; becomes zero. We will demonstrate the applica-

ditions can be expressed as a linear combination of the threality of the method here but not try to develop the detailed

Minkowski functionals. Additivity means that the functional equations for the complex amplitude.

of the union of two set#\, B is given by

M(AUB)=M(A)+M(B)—M(ANB), (6) B. Generic patterns
We organize our discussion of systematic features of nu-

and motign invariance implies invariance under translation%erica"y simulated patterns by considering the different
and rotations. _ . ~ . morphologies that evolve at fixed temperature gradient as the

We shall see that in particular the Euler characteristicsfiow strength is increased. Next we decrease the temperature
measuring the connectivity of a pattern, is a very good meangradient, moving farther into the unstable region of param-
indeed to distinguish between flow-induced and diffusion-gter space and again study the changes on increase of the
dominated patterns. Nevertheless, the extraction of order papw. The numerical procedure has been described in I. Each
rameters from these measures is not as straightforward @gn is initialized with a random interface at zero velocity
suggested if11]. (£,=0), many of them with the same random seed to allow

A tool of characterization that works for both hexagonalfor a more straightforward comparison. The seed was varied
and oriented striped patterns, as long as the defect density is 5 countercheck of the genericity of arising patterns.

not too high,apdyields 'ghe order pqrame(e} corresponding Running the system for 200@escaledl diffusion times
to an appropriate amplitude equation of known general formyas |argely sufficient to reach (atatistically invariant state
is complex demodulation when hexagonal patterns appeared. Stripe structures usually
The principle is simple. Assume we have a pattern of thgeached a typical state much faster. In this article, we restrict
form ourselves essentially to the part of parameter space, in which
- atterns keep a certain degree of order. Outside this region,
{xy)=A(xy)e*+c.c, @) ﬁe., for evenpsmaller tempgrature gradients and larger flgws,

the typical behavior is complex in time and mostly weakly
jurbulent. We have not yet been able to simulate large
enough systems for a sufficiently long time to give a more
thorough analysis of these spatiotemporal patterns.
5 At G=0.7, the minimum flow strength to see any patterns
f F[Al(p—p")é(p' —ke)dp'=F [A](p—key), at all is |f|=8/\/15~2.066. We start withf=4.0 and con-
(8) sider increasing values &f (Negativef values give equiva-
lent patterns with opposite drift velocily.
i.e., the spectral intensity corresponding to the amplitdie A typical state forf=4.0 at an intermediate timet (
centered aboup=ke,. There will be a second peak at =150) has been given in Fig. 4 of I. Including some addi-
—ke,, stemming from the complex conjugate. Throwing tional information in the picture, we display this pattern once
away this part, i.e., the half of the spectrum in the negativeagain in Fig. 2.
k. half plane, and shifting the remaining pattern in Fourier ~Defects terminate a bright strida crest and start off a
space by—ke, one moves the peak of the transform to thedark one(a trough or vice versa. There are two kinds of
origin of thep plane. All wave numbers with modulus larger defects of opposite topological charge, those that constitute
than a few times are then filtered out. Transforming back to the upper end of a dark stripe and those that constitute the
position space one obtains the complex amplitédd&,y), lower one; of course, these descriptions could also be based
which may directly serve as gmalbeit space dependerdr-  on the complementary behavior of bright stripes. Note that
der parameter of the pattern. For a more elaborate descriptialue to the periodic boundary conditions, defects always oc-
of the procedure as applied to experimental patterns, se&lr in pairs. In a real system, a single defect might exist.
[14]. In the example, all defect pairs except three have already
If the pattern is basically hexagonal, this procedure shouldjone. Elimination of the remaining defects takes rather long,
be analogously performed three tim@mce for each of the with a reduction to two pairs occurring betweten150.0 and
three different orientations of the basic wave vector about=200.0, one more pair disappearing betwéeer900.0 and
which the spectral intensity is centejeid obtain the com- t=1000.0, and the final pair still existing &&9200. Since
plex amplitudes of the three stripe systems from which ahe last two defects travel through the system as a closely
hexagonal pattern can be constructed by superposition. THeound pair(see Fig. 6, it is quite possible that they will
order parameter of the pattern would then be a complexaever recombine. The longer survival of defects with de-
valued three-dimensional vectofA{,A,,A3), describing all  creasing defect number is understandable from the fact that
the stripe patterns. their elimination serves the purpose of wavelength adapta-

whereA is a slowly varying complex amplitude. Using the
convolution theorem, we see that the Fourier transform o
this contains a term of the form
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FIG. 2. Pattern of Fig. 4 of | with superimposed curves of zero  FIG. 4. Absolute value of the complex amplitude of the pattern
real and imaginary parts of the amplitude. of Fig. 2.

tion and that the wavelength is already close to a preferredray to phases betweem and 37/2, and finally white to
value when only a few defects remain. phase angles from#/2 to 2.

A precise definition of a defect, not relying on purely  We also give the modulus of the complex amplitude, in
visual inspection of the pattern, is based on the complex¥ig. 4; bright regions mean large amplitude, dark ones small
demodulation procedure described above. Defects are locamplitude, and defects are “black holes” in this representa-
tions of vanishing complex amplitude, which may be ob-tion.
tained by tracing the curves of vanishing real and imaginary An earlier structure is shown in Fig. 5. It still contains
parts, which are shown in Fig. 2, together with the pattern. many defects producing horizontal bands interrupting the

Black curves correspond to vanishing imaginary e€t,  continuity of the vertical stripes. These are sequences of de-
a purely real amplitude white ones to vanishing real part fects where an array of bright stripes is shifted by half a
(i.e., a purely imaginary amplituglelntersection points give wavelength with respect to their counterparts on the other
defect positions and it is evident that they roughly coincideside of the defects. Most of the defects in such a band dis-
with ending stripes. appear rapidly by an adjustment of the lateral positions of the

The topological charge of a defect may be determinedstripes.
from the sense of rotation about it that leads to an increasing The dynamics of a single defect is easy to describe. The
phase. Figure 3 shows a reduced phase plot for the structuvghole pattern moves to the lefto the side where the flow
of Fig. 2. The reduction consists in restricting the picture tocomes from, but the end of a stripe moves more slowly, so
four gray scales with dark gray corresponding to phases bét curls, moving sideways relative to the stripe pattern until it
tween 0 andr/2, gray to phases between'2 and , light

(‘0 1) (

lll

(i

FIG. 5. Pattern of the system of Fig. 2 at an earlier tine (

RN

FIG. 3. Phase plot for the pattern of Fig. 2. =50.0).
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The idea conveyed so far, that the final pattern will con-
sist of stripes as long &S stays above the threshold value
for the instability in the absence of flow, cannot be upheld. In
fact, aftert=1400.0, the stripes of the pattern of Fig. 2 start
to get modulated in the direction perpendicular to the flow
and almost dissolve into cells. Figure 6 shows the pattern at
t=7000.0. The structure is intermediate between striped and
hexagonal. Its topology is essentially that of the hexagonal
lattice but the hexagonal symmetry is broken due to the non-
equivalence of the grooves between the cells in different di-
rections.

‘ The reason for the appearance of this pattern igrére
scritical nature of the bifurcation to hexagons, signifying that
hexagons can exist alreabiglowthe bifurcation point, if the
amplitude of the pattern becomes large eno(ipky sit on
the subcritical branch of the transcritical bifurcatioBo the
scenario is that the stripe structure serves to destabilize the

planar interface and once it has grown enough, it becomes
nstable to modulations due to the presence of a hexagonal
ranch at finite amplitude. The unmodulated stripes therefore
are but a long-living transient dt=4.0, which is not too far
hits the neighboring stripe. It merges with the latter, a brightabove the critical flow valuef(=2.066).
stripe end thus being eliminated creating a fork-shaped With increasing flow strength, the unmodulated stripe pat-
bright structure. This structure breaks up on the right sidetern does become stable, however. Fer6.0, we have car-
with a bright stripe end reappearing. In consequence, thged the simulation beyont=8000.0 as well and the stripes
stripe end has moved to the right by one wavelength and gkeep their homogeneity. The defect dynamics is not very
it turns out, this movement is fast enough to keep the defedifferent from the casé =4.0; by t=200.0, the number of
almost in place, i.e., to render its motion much slower thardefect pairs has reduced to three, tty400.0, to two, byt
that of the pattern. In terms of amplitude equations, the lat=500.0, to one, and there it stays uptto10 000.0, with the
eral motion of the modulated underlying structure is gov-defects approaching each other but not annihilating.
erned by the flow, whereas the slowly varying amplitude is As the flow is increased further, the stripe patterns first
almost decoupled from it. seem to become more pronounced to reduce their defect
Defects of opposite topological charge annihilate eactnumbers in a shorter time. At a flow of 9.0, defects become
other when they meet, which suggests the final state to bemore frequent again and for larger flows the pattern turns
completely ordered array of stripes, a question to which wavavy and more disordered.
will return shortly. Mutual annihilation requires a certain  Another interesting case 6=0.6, where we can com-
amount of up-dowriclimbing) motion of defects besides the pare with extensive simulations frof]. The most striking
described left-rightgliding) motion. Such a motion is expli- effect of a small flow is that it seems to increase the ordering
cable in terms of an attractive force between oppositeltendency of the hexagonal basic structure. For example,
charged defects. A slightly more detailed description of thecounting the defect cell.e., cells with a number of neigh-
dynamics of pairs of defects can be found r5]. bors different from 6, where neighbor counting is based on
In electroconvection experiments, certain liquid crystalthe \Voronoi constructiof9]) at timet= 2000 for systems of

systems develop morphologically very similar patterns andsjze 128.0x 128.0, we find the following table:
display a comparable defect dynamics, when they have trav-

FIG. 6. Pattern of the system of Fig. 2 at a very late tirhe (
=7000.0). Stripes have become modulated to produce a structu
with a strongly hexagonal aspect.

eling wave states. Of course, in these systems the mere apr No. of defects Total no. of cells % defects
pearance of traveling waves is a much less trivial matter than

in ours — the standard model of electroconvection of nem0.0 44 472 9.32
atics was not capable to predict them. They were found ex1.0 16 475 3.37
perimentally first{16—18 and the defect dynamics in these 2.0 39 473 8.25
systems was linked to the appearance of turbulent §ta%s 3 o 0 472 0.00

To explain thenj20], the theory had to be generalized to the 4 o 0 486 0.00

weak-electrolyte model. In our system, the prediction of

traveling waves can be almost made after a first glance at the The pattern af =2.0 (see Fig. 5 of } has more defects
equation of motion(1), in which the left-right symmetry is than the one at=1.0 but it still looks more ordered than the
already broken, whereas in the electroconvection system wiatter (not shown, its defects being due to the presence of
have spontaneousymmetry breaking. Moreover, in those two domain walls, whereas in the case fof 1.0 they are
systems the case of nontraveling patterns also appears, whishattered all over the system. For the flows 3.0 and 4.0, the
may contain defects, too, with a somewhat different defecsystem is completely ordered. In the former case, the pattern
dynamics. is a perfect hexagonal structure, which we will not show
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FIG. 7. Pattern at= 2000.0,620.6, andf =4.0. System size: FIG. 8. Pattern at:2101.0,6:0.6, andf=5.0. System size:
128.0x128.0. 64.0<64.0.
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here, since everybody can imagine what it looks like. We _ N _ ) )
W|”, howeven give the Second patte(ﬁ|g n1 because |t We shall now consider the Ut|l|ty of Minkowski function-

displays an interesting phenomenon, related to the fact th&ls in characterizing structures and in particular in distin-
the total number of cells suddenly becomes distinctly largeguishing between different “phases” corresponding to dis-
atf=4.0. tinctly different morphologies. First, it should be noticed
The striking feature to be noted here is that the patterfow these measures scale with system size. If we simply
undergoes a transition to a different “crystal structure,” los-increase each length by a fixed facigrthen the area scales
ing its hexagonal symmetry and becoming rhombic. Singleas\?, the boundary length as, and the Euler characteristic
cells still keep their hexagonal shape, but grooves betweeremains invariant. However, for patterns witlwell-defined
cells become deeper in the transverse direction than parallE&ngth scale increasing the system size means a change in
to the flow. This pattern is similar to the modulated stripesthe numberof substructures, not in the pattern scale. If we
discussed before, however, here the cell aspect is much mod®uble the linear dimension of a system, then the number of
pronounced. Both patterns appear by similar dynamic proeells and hence the Euler characteristic will be multiplied by
cesses: Up td=500.0, the system shown in Fig. 7 containsa factor of four. The same holds for area and boundary
stripes that start to get modulated, while there is still anlength. Therefore, measures that allow to compare systems
appreciable number of defects. & 675.0, more than half of different sizes, because they degpart from random fluc-
the system consists of cells that invade the remaining stripeuationg independent of size, are given by the normalized
That is, cells appear earlier here than in the case of Fig. 2 aralea fractiona/N (area measured in units of the pixel size
they develop fully, rendering the final pattern “cellular” divided by the numbeN of pixels), the normalized boundary
rather than “striped.” length s/N, and the normalized Euler characterisji¢N.
A more dramatic transition is imminent: d&t=5.0, the
hexagonal structure gets lost and upfte7.0, we see only
ordered stripe structures, an example of which is shown in
Fig. 8.
The stripe pattern is defect free already=atl10.0 and all
that happens up to the time displayed is a reduction of the
waviness of the structure. Fdr=7.0, the stripes are com- >
pletely straight at=2000.0. There is not much changefés ol _
increased to 8.0, but a new structure arise$=a8.0. This
can be anticipated from a comparison of the drift velocity as 3 . -
computed from linear stability analysis with that measured in
the simulation, given in Fig. 9. —4k L I | =
Whereas up td =8.0 the agreement between the analyti- -5 0 5 10
cal expression for the velocity and the simulation is almost ¢
perfect, strong deviations are obtained for9.0 and f
=11.0. Atf=8.0, the final pattern still consists of perfectly =~ FIG. 9. Comparison of drift velocity as predicted from linear
straight stripes, whereas both the structuresffer9.0 and stability analysis(continuous ling with the measured velocity for
f=11.0 appear turbulent. We show the cdse9.0 in Fig. G=0.6. Squares are data obtained with the mixed code; circles,
10. with the spectral code.
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" 0.30 =
0.20 .":::: Py 7]
) i
0.10 [ f ¢ A
0.00 L -
| 100 150 200 250
contour level
FIG. 12. Boundary length of white region normalized by the
‘ total area as a function of the chosen value of contour level for the
‘ same systems as in Fig. 11. Thick solid lifie; 0.0; thick dashed
line, f=2.0; dotted linef =4.0; dash-dotted lind,=5.0; thin solid

line, f=7.0; thin dashed linef=9.0.

FIG. 10. Pattern at=2000, 520.6, andf=9.0. System size:

64.0<64.0. =4.0, which has a second shoulder near level 130. This

shoulder is due to the fact that there are minima of two

We have verified that for systems with the same parametemifferent depthgthe grooves between lines of cells and those
but different system sizes (64x®4.0 and 128.8128.0, re- between cells in a line which discontinue contributing to
spectively these morphological measures remain the samehe area fraction at different level heights.
apart from statistical fluctuations. The different behavior of the area fractions of hexagonal

After dividing the interval between the minimum and the and stripe structures can be understood from the fact that for
maximum of the interface into 254 equidistant levels, Fig. 11the latter there is an approximate symmetry between protru-
gives the area fraction of white regions as a function of thesions and grooves that makasN nearly point symmetric
level number for several flows. It is quite evident that the[about the poin{127.5,0.5], whereas for hexagons the up-
behavior of this quantity depends strongly on the flow anddown symmetry is strongly broken.
thus seems to characterize the corresponding morphologies Also the second morphological measure, the normalized
well. At small flows (f=<4.0), i.e., for the hexagonal struc- boundary length, undergoes remarkable changes as a func-
tures, the area fraction starts with a horizontal tangent anton of structure. In Fig. 12, it is given for the same systems
bends down smoothlthick solid, dashed, and dotted linges as the area fraction before.
whereas for ordered stripe structures it falls much more The essentially hexagonal structures show big asymmetric
abruptly(dash-dotted and thin solid liness the stripe struc- humps, with the transition at=4.0 leading to an exotic-
tures become turbulent, the white area fraction increase®oking combination of a shoulder and a peak. The two regu-
strongly for threshold values below 15%thin dashed ling  lar stripe structures have constant boundary lengths over a
Note that even the transition from a lattice of hexagonalide range of levels; that this range is wider for 7.0 sug-
symmetry to a rhombic one is visible in the curve fbr gests this pattern to be even more ordered than the ofie at
=5.0, a conjecture that will be confirmed by a look at the
Euler characteristic. Moreover, the turbulent structure has a

1.00 broad rounded-off hump because the interface height varies
0.80 irregularly in space and thus moving the contour level im-
plies its length changing.

— 0.60 Finally, we consider the Euler characterigtiig. 13. For

} a hexagonal structure, it has a pretty distinctive behavior
0.40 (thick solid and dashed lingsthere are approximately twice
0.20 as many minima as maxima in the structure, which produces

‘ twice as many black clusters at low level values than white

0.00 ones at high values. The hump corresponding to the white

clusters is wider than the trough corresponding to the black
ones, because the minima are less pronounced than the
maxima. The characteristics of these two patterns have

FIG. 11. Area fraction of white region as a function of the rounded shapes, they still contain some disorder, either in the
chosen value of contour level for a number of different systemsorm of defects or by cells varying in height — otherwise the
with G=0.6 at a late stage of the evolution. Thick solid life, ~transition fromy <0, i.e., more black than white regions, to
=0.0; thick dashed linef =2.0; dotted line,f=4.0; dash-dotted x>0, i.e., more white than black regions, would be a jump
line, f=5.0; thin solid line,f=7.0; thin dashed linef=9.0. discontinuity.

] 50 100 150 200 250

contour level
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L)

very large range of vanishing characteristic — in this range
of cutting levels(between 20 and 23@he number of black
and white regiongthe regions being stripgss the same —
and a small number of components when the Euler charac-
teristic is nonzero. Here we can see that the pattern corre-
i sponding tof =7.0 is more ordered than that && 5.0, for
i the absolute value of its Euler characteristic remains much
! smaller at small levels and at large ones than that of the
J latter. The number of components never gets larger than the
number of stripes fof =7.0 but it does foif =5.0 (there are
0 B L L I - on the order of 10 stripes andtakes on values on the order
0 50 100 150 200 250 of 50). This is explicable by the stripes having inhomoge-
contour level neous heights and depths in the cése5.0, which lead to
- . their separation into elongated “cells” when they are cut at
FI_G. 13. Euler characteristics normalized by the total area as an aper())priate level. Whegreas they seem to be )[/)retty homo-
function of the chosen value of contour level for the same systems

as in Fig. 11. Thick solid linef=0.0: thick dashed linef=2.0;  Jeneous fof=7.0. o .
dotted line, f=4.0: dash-dotted linef=>5.0: thin solid line, f Finally, the Euler characteristic of the turbulent stripe pat-

—7.0: thin dashed linef=9.0. Since the curve fof=7.0 is un- tern is broad and roundish, showing that disorder is present,
conspicuous among the others, two arrows indicate where it is difa"d almost point symmetric, showing that we have stripes

ferent from zerdbetween level 1 and 10, where it is negative, andfather than hexagons. . .
for levels 251 and 252, where it is positve From the functional dependencies of the morphological

measures presented so far, it should be obvious that they can

That the pattern af =4.0 (dotted ling is topologically  hardly be fitted to a half-decent degree of accuracy by low-
distinct from the others is nowhere more conspicuous than ierder polynomials. Such a fit was suggested ii] as a
the Euler characteristic. The existence of several plateauseans of extracting a small number of order parameters de-
shows the corresponding structure to be very regular— movscribing the morphology. More precisely, the suggestion was
ing a contour level up does not change the number of regionsot to fit the morphological measures themselves but rather
as long as no extrema are crossed; for an irregular structurtee following quantities:
this must happen continuously, with a regular one, many
extrema are crossed at the same time. There is a wide region _,[2a
in which the Euler characteristic is zero. This corresponds to Pa(p)=tanh (N - 1), ©)
a situation where the cutting level is above the minima of the
deep grooves but below those of the smaller grooves be-

o
—
X

- . —
HYA M SO J,/’

H i

H !

\

\

\

tween cells “in a stripe.” Figure 14 clarifies this point: for Ps(p)= ;, (10)
levels in this range the white and black clusters are essen- a(a/N—-1)
tially stripes.
The two ordered stripe patterné=5.0 andf =7.0, dash- X
dotted and thin solid lingsare distinguished by having a PP =73, (13)
't [ wherep was the level value, mapped to the interjall,1].
{

With digitized images of structures in chemical reaction sys-
tems, these quantities seem to be fitted well by polynomials
of at most quadratic ord¢fL1]. In our case, this did not work
at all; attempts to fit the morphological measures themselves
with polynomials gave acceptable results only for the area
fraction but even then higher-order polynomials were needed
(=~ order 10. That polynomials are not good at describing
step functions is well-known. Therefore, our inability to get a
good representation of the Minkowski functionals them-
selves by polynomial fitting may be traced back to the fact
that we have structures that are more ordered than the ones
seen in the experiments on reaction-diffusion patterns. On
the other hand, a fit of the quantities defined in E§5-(11)
does not work well either, which is not too surprisimg(p)
1 diverges logarithmically aa/N approaches the values 0 or 1
andpg(p) diverges algebraicallys(\/1/a for smalla) at the

FIG. 14. Black and white regions for the pattern from Fig. 7 at boundaries of the domain of definition of the functionals.
contour level 120, where the Euler characteristics are #see  Polynomials are notorious for not dealing too well with sin-
Fig. 13. gularities either.
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FIG. 15. A structure near the transition from cells to stripes. F|G. 16. Pattern atG=0.35, f=1.0, system size 128.0
G=0.4, f=7.0,t=2000. x128.0,t=2800.

Thus we are not able to obtain a small number of ordeitess pronounced fof=1.0 than forf=2.0 and they do not
parameters from the Minkowski functionals in this simple seem to prevail in the entire area of the pattern.
manner, even though at least the Euler characteristic is defi- If there is no flow, the structure is a simple disordered
nitely well-suited as an order paramefanctiondescribing hexagonal array without any sign of spatially correlated os-
transitions between patterns. Integrals of the Minkowskicillations. In small systems, patterns may even become or-
functionals when taken as a function of the level might pro-gyered because the dynamics is more violent than at higher
vide useful practical order parameters; nevertheless, a colng defects less likely to be frozen in. Also, a new type of
nection to equations giving their evolution is not straightfor- gefect seems to appear more often at low gradients, describ-

ward. __able as inverted cells, i.e., cells that bulge downward instead
After this somewhat lengthy discussion of the cdBe of upward. Examples are to be seen in Figs. 16 and 17.
=0.6, we can be less detailed about smaller values.dfor In the latter figure we give the lines of vanishing real and

G down to 0.4, the scenario is essentially the same, exceff’@ginary parts of the product of the three amplitudes

that defects are more frequent in the hexagonal structure2: As corresponding to the three stripe systems from which
and the transition to stripes takes place at larger valuds ofth® héxagons can be composed. While probably no deeper

only — nearf=7.0, see Fig. 15. The undulations of the Meaning can be assigned to these lines themsdhiase
stripes in this figure also suggest that the transition is not

stationary as folG=0.6.

Moreover, there are intermediate structures at relatively
large f (f=6.0) that display oscillations, comparable with
but dynamically more complex than, ther3 oscillations
mentioned above. An investigation similar to that of Fig. 9
shows that the difference between the drift velocity from
linear stability analysis and that from the numerical simula-

tion appearsarlier, i.e., at lowerf values than foilG=0.6.
This should caution against direct use of this deviation as a
criterion for a morphology transition. While a transition in
general will lead to a deviation from linear theory, the latter
may also occur without transition, simply due to the increas-
ing influence of nonlinearities as one moves farther away
from the instability threshold.

The new important feature &=0.35 is the appearance
of 27/3 oscillations at small values of the flow. An example
with perfect topological order has been shown itthie flow
wasf=2.0). At a smaller flow {=1.0), a less ordered struc-  FIG. 17. A frozen hexagonal structure in a small system (64.0
ture turns up, the cells of which do not form a perfect hex-x 64.0). G=0.35, f=0.0. t=2000. Superimposed on the picture
agonal lattice. It is shown in Fig. 16. Note that oscillations, are the lines of vanishing reéhite) and imaginaryblack parts of
inferable from the presence of triangles of brighter cells, arehe product of the three amplitudes defining the hexagonal structure.
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FIG. 18. The Voronoi diagram of the cell structure of Fig. 17.
. ) ) ) ) FIG. 19. The other type of defects in hexagonal cellular arrays,
they describe neither of the underlying stripe systemir oonstrated on a structure wih=0.45, f = 3.0, t = 2042. Again
intersectionsare meaningful. They correspond to zeros of thedefects as defined via the amplitude can be found as intersections

product, hence to zeros of one of the underlying amplitudegeyeen the lines of vanishing reathite) and imaginary(black
at least. By this method we may thus identify all the topo-part of the product of amplitudes.

logical defects, apart from possib{but rare degeneracies,
where we might count a double or triple zeldue to more  gee by considering a slightly more complex example, given
than one amplitude vanishing simultaneolis#ts only one i, Fig. 19.

fect. = .
defect Here we have a larger value & and no inverted cells

We note that each of the inverted cells corresponds to WO . ur. Instead. defects are of the standard ttigger or
(oppositely chargeddefects of the underlying stripe sys- smaller cell surrounded by more or less than six neighbors

tems. One of the stripe structures Is defect free, as InSpeCt'OPne figure also contains the lines whose intersections define
of the separate amplitudes reveals, whereas the other tw%plitud e defects

have one defect each near the position of the inverted cell. ", "\, following figure(Fig. 20, the Voronoi graph cor-

Each of the two stripe systems has two defects of OppOSI'“Fesponding to Fig. 19 is given. Defect cells are numbered in

ghgtrgr;(S(;?]Ceea:h;aéﬁt?rlwg;ggiernU_T_Lé)rzfgféo tr|1r:e ?otg?rr']%?r':order to facilitate comparison between the interface picture
y ' . : . ' and the Voronoi diagram. Heptagons are given odd numbers,
ber of topologicalamplitude defectss four.

In order to compare this approach with the method Oﬁﬁntagons even ones, and there are nine pairs of defects in

defining defects in a cellular structure via neighborhood re-

lationships[9], we give the corresponding defect picture aSg and 6.7 and 8, 13 and 14, 15 and 16, are associated with

obtained from the Voronoi diagram of the cell centers in Fig. . . .
18. The construction of this diagram is described in Sec'.[W0 crossings of contours of zero real and imaginary part,

[l C and, in more detail, irf9].
Defects are cells with a number of edges smaller or larger
than six. Since the average number of edges must be equal to
six in the plane, the simplest possible defect configuration is
the penta-hepta defect, consisting of a pair of cells, one of 100
which is a pentagon, the other a heptagon. As it turns out,
most defects occurring at all are pentagons or heptagons. In
the figure, pentagons are presented in dark gray, heptagonsin .
light gray, whereas hexagons remain white. Each of the in-
verted cells corresponds to a pair of penta-hepta defects; due
to the periodic boundary conditions, one of the pentagons of
the left defect appears near the right boundary. Note also that
these are really pentagons although some of them look very
much like quadrangles — their fifth edge is just very short. 0
At this point, it might seem that there is a one-to-one
correspondence between the two different kinds of topologi-
cal defects defined. A zero in a component of the complex
amplitude vector appears to be equivalent to a penta-hepta
defect. Unfortunately, things are not that simple as we shall FIG. 20. The Voronoi diagram of the cell structure of Fig. 19.

We note that certain among these pairs, e.g., no. 3 and 4,

50
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i.e., they correspond to two amplitude defects as before. For
others, such as the pairs 9 and 10, 11 and 12, 17 and 18,
there is only one amplitude defect that is nearby and thus
easily identifiable with the penta-hepta deféfdr the pair

17, 18 even this is doubtful, one might as well associate two
line crossings with the pair 11, 12Finally, the pair 1, 2 is

not easily associable with any amplitude defect at all, and
there is a “freely floating” amplitude defect three cells to its
right.

The reason why the correspondence between amplitude
and Voronoi defects does not work too well in this case is
probably that the basic hexagonal pattern is already too
strongly disturbed by the nine penta-hepta defects for the
description by three amplitudes to be very meaningful. We
do not have just one orientation of the hexagonal lattice but
essentially two grains, one of which is encircled by the
Voronoi defects, while the other is outside of thétme pairs
9, 10 and 17, 18 close the inner grain at its “left” end, due
to the periodic boundary conditionsChoosing just three , .
peaks in the Fourier spectrum for complex demodulation, wé9rd spacingh=0.3), t=

therefore miss some information and some of the amplitudgero flow and for flow values up tb=4.0 seem to be chaotic
defects appear shifted relatively far from the cells generatingn time, with spatial disorder decréasing as the flow in-

them. That in some cases only one amplitude defect appealS.  cas. This can be seen by a comparison of Figs. 21 and
for a given penta-hepta pair may be due to the closeness

the next pair and the ensuing interaction of defects. The four .It is quite obvious, that the structure in Fig. 22 is much
pairs that have only a single amplitude defect associated Witn,] ! )

th h ted b | It " ore ordered than that in Fig. 21, where no flow is present.
otﬁer?r S;?f each separated by only one cell from the neare'ﬁ}ioreover, an oscillatory pattern can be made out that ex-

; _ ) ] tends across most of the system.

Returning now to the_ cas&=0.35, the discussion of Flows beyondf=6.0 have not yet been studied f&
Which was startgq with Fig. 16, we observe that even a flpwg 0.25. A more detailed investigation of these morphologies
of f=1.0 is sufficient to change a state that would otherwise — . .
be mostly steadywith some dynamics only in the vicinity of 2t 10W G, which we believe to be at least close to the bor-
a few defectsinto one that oscillates. In smaller systems, derline (in the direction of decreasin@) of a transition to
oscillations appear even &t 0.1. They seem to be impeded Weak turbulence, is planned for the future.
by disorder of the system, which perturbs the phase relations
between neighboring oscillating cells. Therefore, they will IV. CONCLUSIONS
more easily appear in small systems, which order completely
as long as they are below the typical size of dynamicalar
grains. Because for small flows order increases with increas-
ing flow, the flow promotes oscillations. An oscillatory struc-
ture in turn can get rid of its topological defects more easily
than a basically stationary one, as was demonstrated in Fig. 6
of I.

The scenario of the cagse=0.6 essentially repeats with
the sole difference that the basic hexagonal pattern is now
time dependent. A perfectly synchronized structure would be
quasiperiodic in general, since the oscillation frequency of
the 27/3 oscillations is unrelated to the drift velocity, impos-
ing a second oscillation on each interface point with fixed
coordinate as it is passed by the traveling pattern. Gor
=0.35, the transition to turbulent stripe patterns takes place
at a largerf value than for biggelG. It is located nearf
=9.0.

Finally, at G=0.25, we have so far seen one case, in
which disorder was completely eliminated by the flowfat
=6.0. The final structure is an ordered array of nonoscillat-

ing hexagons drifting at constant velocity. Ordering took FIG. 22. Pattern a6=0.25, f=4.0, system size 76:876.8, t
place relatively fast, being complete &t 500. Patterns at =1500.0.

FIG. 21. Pattern a§=0.25, f=0.0, system size 76x876.8
1500.0.

The generic morphologies and dynamics of this system
e: (a) steady traveling waves taking the form of stripes at
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temperature gradients that would keep a planar front stable in Of course, in a real system, drifting patterns are restricted
the absence of flow — at a later stage these acquire a cellulan their motion by boundaries. Therefore, the lateral motion
modulation for small flows(b) traveling hexagons when the described here would be possible only as a localized phe-
Mullins-Sekerka instability becomes active, awtitraveling  nomenon. This suggests to investigate the same system nu-
hexagonal patterns with superimposed local oscillations, imerically with boundary conditions that are not periodic,
which neighboring cells oscillate at a phase shift af/2. A even though it is a bit difficult to imagine how a constant
variety of intermediate dynamic states arising from the comshear flow could persist in such a system. On the other hand,
petition between stripes and hexagons occur as well. an attempt at an experimental realization of the periodicity of
When the flow becomes large enough, it first changes thboundary conditions in the all importartdirection would
symmetry of the hexagonal pattern produced by the MS indefinitely be valuable. To this end, the solidification experi-
stability and eventually makes the cells disappear altogethement would have to be performed in an annular container
The emerging stripes start to undulate as the flow is insimilar to the type used to impose a shear flow in the inves-
creased further and finally become turbulent. tigation of sand rippleg21]. Clearly, it is a considerable
To observe the latter scenario in experiments, the distancexperimental challenge to combine this rotational motion —
€ to the absolute stability threshold has to be made smalin a way that keeps the far-field flow constant — with the
considering the fact that typical Schmidt numbers of eithempulling of the sample in a temperature gradient.
transparent organic alloys~20) or metals £100) are Finally, we may conclude that theharacterizationof a
rather large. To obtain a flow strengfh=1 at e= %, the  pattern in terms of the defects of its amplitude is not as
flow speed has to be on the order of the pulling velocity.general as appeared at first sight. Although it allows both the
Moreover, to reach the flow-induced destruction of hexagodescription of stripe and hexagonal pattefas opposed to
nal patterns aG<2 this would have to be exceeded by at the Voronoi defects, which are known to be useful only for
least a factor of five. In the case of liquid crystals where ondh€ latter structurgsit requires theglobal dominance of cer-
can approach the limit of absolute stability arbitrarily tain orientations. An amplitude equation description that pre-
closely, this should not present an unsurmountable obstacl&€rves the rotational invariance of the basic equatj@}
It must be kept in mind, however, that the asymptotic analy Night extend the utility of the definition of defects or disor-
sis leading to Eq(1) assumes that the Schmidt numberder[23], but it seems nontrivial to extract the corresponding
scales as . Thus, it should become invalid whenelgx- ~ amplitude from an arbitrary pattern, i.e., to develop the ana-
ceeds the Schmidt number by much. log of complex demodulation. Therefore, at present the best
Nevertheless, the appearance of flow-induced stripe¥@y to distinguish between very different patterns and to
abovethe critical value ofG for the MS instability should be quantify their difference seems to be via the Euler character-

observable, even inevitable, if the critical value is ap—'St'C.’ for which there is, however, no known equation of
proached slowly enough. This is due to the fact that the romet'On'

acts destabilizing in the conditions discussed here. “Pure”

stripes will only be temporary at small flows, due to the ACKNOWLEDGMENTS
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