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Pattern formation in directional solidification under shear flow.
II. Morphologies and their characterization
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In the preceding paper, we have established an interface equation for directional solidification under the
influence of a shear flow parallel to the interface. This equation is asymptotically valid near the absolute
stability limit. The flow, described by a nonlocal term, induces a lateral drift of the whole pattern due to its
symmetry-breaking properties. We find that at not-too-large flow strengths, the transcritical nature of the
transition to hexagonal patterns shows up via a hexagonal modulation of the stripe pattern even when the linear
instability threshold of the flowless case has not yet been attained. When the flow term is large, the linear
description of the drift velocity breaks down and transitions to flow-dominated morphologies take place. The
competition between flow-induced and diffusion-induced patterns~controlled by the temperature gradient!
leads to new phenomena such as the transition to a different lattice structure in an array of hexagonal cells.
Several methods to characterize the morphologies and their transitions are investigated and compared. In
particular, we consider two different ways of defining topological defects useful in the description of patterns
and we discuss how they are related to each other.
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I. INTRODUCTION

In the companion of this article@1#, henceforth referred to
as I, a discussion of the experiment of directional solidific
tion was given, emphasizing its importance as a tool both
applied and fundamental science. Therefore, we can be
here in recalling only some of the more noteworthy featur

Concerning pattern formation, directional solidificatio
gives the opportunity mainly to study structures arising fro
the Mullins-Sekerka~MS! instability @2#. While there are
patterns such as lamellar eutectics@3# that are grown in di-
rectional solidification and the primary structure of which
not due to this instability, diffusion-induced instabilities d
play a major role in eutectic structures as well@4#.

In practical applications of crystal growth, convection is
transport mechanism of utmost importance. Hence it se
appropriate to try and capture how it affects growth patte
and length scales, even though one may be able to un
stand basic patterns and dynamical aspects~dendrites, cells,
chaotic behavior! without it and to perform experiments i
which it is largely suppressed. Moreover, the possibility
convection-dominated patterns cannot be discarded.

The purpose of the work presented in I and in this arti
is to demonstrate, for a very simple forced flow, an insta
ity mechanism and its influence on patterns inthree-
dimensionalfast directional solidification. In particular, th
interaction of the flow-induced instability with the Mullins
Sekerka instability will be a focus of interest here.

An important simplification, rendering possible the stu
of three-dimensional growth for several hundred solidific

*Email address: Klaus.Kassner@Physik.Uni-Magdeburg.de
1063-651X/2001/63~6!/066302~13!/$20.00 63 0663
-
r

ief
s.

s
s
er-

f

e
-

-

tion cells was the reduction of the full set of model equatio
to an equation for the interface alone. This motivates
consideration of rapid solidification, where a strongly no
linear equation of this type can be derived@5,6#. It also re-
stricts the possible flow patterns to simple ones.

It has now become of paramount importance to consi
three-dimensional directional growth theoretically, due to
availability of new experimental approaches that allow thein
situ observation of three-dimensional growth morpholog
@7,8#. In these systems, convection turns out to be a n
negligible effect.

The article is organized as follows. In Sec. II, we rec
pitulate the basic equation of motion and the definition of
parameters arising therein. Section III describes our meth
of pattern analysis by a variety of statistical and topologi
means and gives its applications to a number of simula
results. Conclusions regarding flow effects and the charac
ization of morphologies are summarized in Sec. IV.

II. MODEL EQUATION

To make this presentation self-contained we repeat
asymptotic interface equation from I that was used in all
simulations to be discussed:
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In this equation, all parameters are already nondimensio
Positions and times are measured in units of a~rescaled!
diffusion length and time, respectively. The scalings ha
been explained in detail in I.¹5(]x ,]y) is the two-
dimensional gradient operator,z(x,y,t) the position of the
liquid-solid interface. The temperature gradient is orien
along thez axis, the direction of the flow is determined b
the directional derivative of the nonlocal termL@z#, i.e., here
it is parallel to thex axis. L@z# is defined via its Fourier
transform

F †L@z#‡~p!5upuF @z#~p!, ~2!

wherep is the wave vector in Fourier space.
The nondimensional parameters of the equation are

segregation coefficientk, the ration5Ds /D of the diffusion
coefficients for impurities in the solid and the liquid, th
nondimensional temperature gradientḠ, and the strengthf of
the flow. For completeness, we also recapitulate the de
tion of Ḡ in terms of physical parameters:

Ḡ5
8D3L2mDc

g2Tm
2

G

V~Va2V!2
. ~3!

Herein,L is the latent heat per unit volume of the transitio
m the absolute value of the slope of the liquidus line,Dc the
miscibility gap,g the ~isotropic! surface energy. The veloc
ity Va is given byVa5mLDcD/gTmk and corresponds to
the absolute stability limit.G is the temperature gradient an
V the pulling velocity. In terms of dimensional quantities, t
flow strengthf reads

f 5
8V`

eVS
, ~4!

whereV` is the speed of the flow far from the interface a
S5nk /D is the Schmidt number (nk being the kinematic
viscosity of the liquid!. e describes the distance from abs
lute stability,e51/2k2gTmV/2mLDcD.

To further reduce the parameter space to be explored
setn51 andk51, choices that have been justified in I.

III. GENERAL FEATURES OF THE MORPHOLOGY
DIAGRAM

A. Morphology characterization

How to characterize morphologies that can be classi
as cellular arrays with a varying degree of disorder has b
discussed at length in@9#. Since Fourier transforms and co
relation functions are not very good at distinguishing dis
dered patterns with similar length scales, different tools w
employed, based on the analysis of how contour levels of
interface divide the plane into regions. All interface poin
above a levelz0 belong to one area, called white, all tho
below to another, called black. For a sufficiently largez0, the
white area consists of separate clusters, as can be gath
from the example given in Fig. 1. A way to describe t
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interface using a meaningfully reduced amount of inform
tion is thecluster number function Nw(z) counting the white
clusters.

Once clusters corresponding to solidification cells are
fined ~by an appropriate choicez5z0), disorder may be
characterized via construction of the minimum spanning t
on the set of centers of mass of the clusters@10# or by defect
counting in the Voronoi graph of these centers, where a
fect is any cell with an edge number different from six.

Both the minimum spanning tree and defects whose d
nition is based on the Voronoi construction become pre
much useless when the structure changes from cellula
striped, a situation demonstrated in I. Cluster counting
mains informative, however, as will be clarified by our di
cussion of the Euler characteristic below.

It has been proposed@11# that morphological measure
such as the areaa of the white regions, their boundary lengt
s and their Euler characteristicx would be useful in describ-
ing transitions between different morphologies such as h
agonal and striped ones. The Euler characteristic is, up
constant factor, the total integral of the curvature of t
boundary between black and white domains, and it can
shown to be equal to the difference between the number
connected white and black regions~not counting the all-
encompassing outermost region!. In other words, if we de-
fine, besides our cluster number function for white regio
Nw(z), the corresponding functionNb(z) for black ones,
then the Euler characteristic is given by

x~z!5Nw~z!2Nb~z!~61!, ~5!

where the added or subtracted 1 accounts for a black or w
background@13#. As soon as we have just white cells on

FIG. 1. Division of the plane into black and white regions b

level contours. The whole interface~obtained forḠ50.25, no flow,
at t550, after random initialization! was divided into 254 equidis-
tant levels. Cutting at level 145 yields the shown image. At a low
level, more white regions would be connected, their total a
would be larger, and, if the level were taken sufficiently low, the
would be several disjoint black regions.
2-2
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connected black background, the Euler characteristic
comes equal to the cluster number functionNw(z).

It can be proven that the Minkowski functionalsa, s, and
x form a complete set of additive, motion invariant, con
tionally continuous functions in two dimensions@12#, i.e.,
any functional of sets in the plane satisfying these three c
ditions can be expressed as a linear combination of the t
Minkowski functionals. Additivity means that the function
of the union of two setsA, B is given by

M ~AøB!5M ~A!1M ~B!2M ~AùB!, ~6!

and motion invariance implies invariance under translati
and rotations.

We shall see that in particular the Euler characterist
measuring the connectivity of a pattern, is a very good me
indeed to distinguish between flow-induced and diffusio
dominated patterns. Nevertheless, the extraction of order
rameters from these measures is not as straightforwar
suggested in@11#.

A tool of characterization that works for both hexagon
and oriented striped patterns, as long as the defect dens
not too high,andyields the order parameter~s! corresponding
to an appropriate amplitude equation of known general fo
is complex demodulation.

The principle is simple. Assume we have a pattern of
form

z~x,y!5A~x,y!eikx1c.c., ~7!

whereA is a slowly varying complex amplitude. Using th
convolution theorem, we see that the Fourier transform
this contains a term of the form

E F @A#~p2p8!d~p82kex!d
2p85F @A#~p2kex!,

~8!

i.e., the spectral intensity corresponding to the amplitudeA is
centered aboutp5kex . There will be a second peak a
2kex , stemming from the complex conjugate. Throwin
away this part, i.e., the half of the spectrum in the nega
kx half plane, and shifting the remaining pattern in Four
space by2kex one moves the peak of the transform to t
origin of thep plane. All wave numbers with modulus large
than a few timesk are then filtered out. Transforming back
position space one obtains the complex amplitudeA(x,y),
which may directly serve as an~albeit space dependent! or-
der parameter of the pattern. For a more elaborate descrip
of the procedure as applied to experimental patterns,
@14#.

If the pattern is basically hexagonal, this procedure sho
be analogously performed three times~once for each of the
three different orientations of the basic wave vector ab
which the spectral intensity is centered! to obtain the com-
plex amplitudes of the three stripe systems from which
hexagonal pattern can be constructed by superposition.
order parameter of the pattern would then be a comp
valued three-dimensional vector (A1 ,A2 ,A3), describing all
the stripe patterns.
06630
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Defects are positions where the complex amplitude
comes zero, as the phase gets undefined there and can
In the case of hexagons, we will consider each defect in
underlying stripe system a defect of the whole pattern. Th
defects can be detected by finding the places where theprod-
uct A1A2A3 becomes zero. We will demonstrate the applic
bility of the method here but not try to develop the detail
equations for the complex amplitude.

B. Generic patterns

We organize our discussion of systematic features of
merically simulated patterns by considering the differe
morphologies that evolve at fixed temperature gradient as
flow strength is increased. Next we decrease the tempera
gradient, moving farther into the unstable region of para
eter space and again study the changes on increase o
flow. The numerical procedure has been described in I. E
run is initialized with a random interface at zero veloci
(z t50), many of them with the same random seed to all
for a more straightforward comparison. The seed was va
as a countercheck of the genericity of arising patterns.

Running the system for 2000~rescaled! diffusion times
was largely sufficient to reach a~statistically! invariant state
when hexagonal patterns appeared. Stripe structures us
reached a typical state much faster. In this article, we res
ourselves essentially to the part of parameter space, in w
patterns keep a certain degree of order. Outside this reg
i.e., for even smaller temperature gradients and larger flo
the typical behavior is complex in time and mostly weak
turbulent. We have not yet been able to simulate la
enough systems for a sufficiently long time to give a mo
thorough analysis of these spatiotemporal patterns.

At Ḡ50.7, the minimum flow strength to see any patter
at all is u f u58/A15'2.066. We start withf 54.0 and con-
sider increasing values off. ~Negativef values give equiva-
lent patterns with opposite drift velocity.!

A typical state for f 54.0 at an intermediate time (t
5150) has been given in Fig. 4 of I. Including some ad
tional information in the picture, we display this pattern on
again in Fig. 2.

Defects terminate a bright stripe~a crest! and start off a
dark one~a trough! or vice versa. There are two kinds o
defects of opposite topological charge, those that consti
the upper end of a dark stripe and those that constitute
lower one; of course, these descriptions could also be ba
on the complementary behavior of bright stripes. Note t
due to the periodic boundary conditions, defects always
cur in pairs. In a real system, a single defect might exist

In the example, all defect pairs except three have alre
gone. Elimination of the remaining defects takes rather lo
with a reduction to two pairs occurring betweent5150.0 and
t5200.0, one more pair disappearing betweent5900.0 and
t51000.0, and the final pair still existing att59200. Since
the last two defects travel through the system as a clo
bound pair~see Fig. 6!, it is quite possible that they will
never recombine. The longer survival of defects with d
creasing defect number is understandable from the fact
their elimination serves the purpose of wavelength ada
2-3
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tion and that the wavelength is already close to a prefe
value when only a few defects remain.

A precise definition of a defect, not relying on pure
visual inspection of the pattern, is based on the comp
demodulation procedure described above. Defects are l
tions of vanishing complex amplitude, which may be o
tained by tracing the curves of vanishing real and imagin
parts, which are shown in Fig. 2, together with the patter

Black curves correspond to vanishing imaginary part~i.e.,
a purely real amplitude!, white ones to vanishing real pa
~i.e., a purely imaginary amplitude!. Intersection points give
defect positions and it is evident that they roughly coinc
with ending stripes.

The topological charge of a defect may be determin
from the sense of rotation about it that leads to an increa
phase. Figure 3 shows a reduced phase plot for the struc
of Fig. 2. The reduction consists in restricting the picture
four gray scales with dark gray corresponding to phases
tween 0 andp/2, gray to phases betweenp/2 andp, light

FIG. 2. Pattern of Fig. 4 of I with superimposed curves of ze
real and imaginary parts of the amplitude.

FIG. 3. Phase plot for the pattern of Fig. 2.
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gray to phases betweenp and 3p/2, and finally white to
phase angles from 3p/2 to 2p.

We also give the modulus of the complex amplitude,
Fig. 4; bright regions mean large amplitude, dark ones sm
amplitude, and defects are ‘‘black holes’’ in this represen
tion.

An earlier structure is shown in Fig. 5. It still contain
many defects producing horizontal bands interrupting
continuity of the vertical stripes. These are sequences of
fects where an array of bright stripes is shifted by hal
wavelength with respect to their counterparts on the ot
side of the defects. Most of the defects in such a band
appear rapidly by an adjustment of the lateral positions of
stripes.

The dynamics of a single defect is easy to describe. T
whole pattern moves to the left~to the side where the flow
comes from!, but the end of a stripe moves more slowly,
it curls, moving sideways relative to the stripe pattern unti

FIG. 4. Absolute value of the complex amplitude of the patte
of Fig. 2.

FIG. 5. Pattern of the system of Fig. 2 at an earlier timet
550.0).
2-4
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hits the neighboring stripe. It merges with the latter, a bri
stripe end thus being eliminated creating a fork-sha
bright structure. This structure breaks up on the right s
with a bright stripe end reappearing. In consequence,
stripe end has moved to the right by one wavelength an
it turns out, this movement is fast enough to keep the de
almost in place, i.e., to render its motion much slower th
that of the pattern. In terms of amplitude equations, the
eral motion of the modulated underlying structure is go
erned by the flow, whereas the slowly varying amplitude
almost decoupled from it.

Defects of opposite topological charge annihilate ea
other when they meet, which suggests the final state to
completely ordered array of stripes, a question to which
will return shortly. Mutual annihilation requires a certa
amount of up-down~climbing! motion of defects besides th
described left-right~gliding! motion. Such a motion is expli
cable in terms of an attractive force between opposit
charged defects. A slightly more detailed description of
dynamics of pairs of defects can be found in@15#.

In electroconvection experiments, certain liquid crys
systems develop morphologically very similar patterns a
display a comparable defect dynamics, when they have t
eling wave states. Of course, in these systems the mere
pearance of traveling waves is a much less trivial matter t
in ours — the standard model of electroconvection of ne
atics was not capable to predict them. They were found
perimentally first@16–18# and the defect dynamics in thes
systems was linked to the appearance of turbulent states@19#.
To explain them@20#, the theory had to be generalized to t
weak-electrolyte model. In our system, the prediction
traveling waves can be almost made after a first glance a
equation of motion~1!, in which the left-right symmetry is
already broken, whereas in the electroconvection system
have spontaneoussymmetry breaking. Moreover, in thos
systems the case of nontraveling patterns also appears, w
may contain defects, too, with a somewhat different def
dynamics.

FIG. 6. Pattern of the system of Fig. 2 at a very late timet
57000.0). Stripes have become modulated to produce a stru
with a strongly hexagonal aspect.
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The idea conveyed so far, that the final pattern will co
sist of stripes as long asḠ stays above the threshold valu
for the instability in the absence of flow, cannot be upheld.
fact, aftert51400.0, the stripes of the pattern of Fig. 2 sta
to get modulated in the direction perpendicular to the fl
and almost dissolve into cells. Figure 6 shows the patter
t57000.0. The structure is intermediate between striped
hexagonal. Its topology is essentially that of the hexago
lattice but the hexagonal symmetry is broken due to the n
equivalence of the grooves between the cells in different
rections.

The reason for the appearance of this pattern is thetran-
scritical nature of the bifurcation to hexagons, signifying th
hexagons can exist alreadybelowthe bifurcation point, if the
amplitude of the pattern becomes large enough~they sit on
the subcritical branch of the transcritical bifurcation!. So the
scenario is that the stripe structure serves to destabilize
planar interface and once it has grown enough, it becom
unstable to modulations due to the presence of a hexag
branch at finite amplitude. The unmodulated stripes there
are but a long-living transient atf 54.0, which is not too far
above the critical flow value (f 52.066).

With increasing flow strength, the unmodulated stripe p
tern does become stable, however. Forf 56.0, we have car-
ried the simulation beyondt58000.0 as well and the stripe
keep their homogeneity. The defect dynamics is not v
different from the casef 54.0; by t5200.0, the number of
defect pairs has reduced to three, byt5400.0, to two, byt
5500.0, to one, and there it stays up tot510 000.0, with the
defects approaching each other but not annihilating.

As the flow is increased further, the stripe patterns fi
seem to become more pronounced to reduce their de
numbers in a shorter time. At a flow of 9.0, defects beco
more frequent again and for larger flows the pattern tu
wavy and more disordered.

Another interesting case isḠ50.6, where we can com
pare with extensive simulations from@9#. The most striking
effect of a small flow is that it seems to increase the order
tendency of the hexagonal basic structure. For exam
counting the defect cells~i.e., cells with a number of neigh
bors different from 6, where neighbor counting is based
the Voronoi construction@9#! at timet52000 for systems of
size 128.03128.0, we find the following table:

f No. of defects Total no. of cells % defec

0.0 44 472 9.32
1.0 16 475 3.37
2.0 39 473 8.25
3.0 0 472 0.00
4.0 0 486 0.00

The pattern atf 52.0 ~see Fig. 5 of I! has more defects
than the one atf 51.0 but it still looks more ordered than th
latter ~not shown!, its defects being due to the presence
two domain walls, whereas in the case off 51.0 they are
scattered all over the system. For the flows 3.0 and 4.0,
system is completely ordered. In the former case, the pat
is a perfect hexagonal structure, which we will not sho

re
2-5
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here, since everybody can imagine what it looks like. W
will, however, give the second pattern~Fig. 7!, because it
displays an interesting phenomenon, related to the fact
the total number of cells suddenly becomes distinctly lar
at f 54.0.

The striking feature to be noted here is that the patt
undergoes a transition to a different ‘‘crystal structure,’’ lo
ing its hexagonal symmetry and becoming rhombic. Sin
cells still keep their hexagonal shape, but grooves betw
cells become deeper in the transverse direction than par
to the flow. This pattern is similar to the modulated strip
discussed before, however, here the cell aspect is much m
pronounced. Both patterns appear by similar dynamic p
cesses: Up tot5500.0, the system shown in Fig. 7 contai
stripes that start to get modulated, while there is still
appreciable number of defects. Att5675.0, more than hal
the system consists of cells that invade the remaining stri
That is, cells appear earlier here than in the case of Fig. 2
they develop fully, rendering the final pattern ‘‘cellular
rather than ‘‘striped.’’

A more dramatic transition is imminent: atf 55.0, the
hexagonal structure gets lost and up tof 57.0, we see only
ordered stripe structures, an example of which is shown
Fig. 8.

The stripe pattern is defect free already att5110.0 and all
that happens up to the time displayed is a reduction of
waviness of the structure. Forf 57.0, the stripes are com
pletely straight att52000.0. There is not much change asf is
increased to 8.0, but a new structure arises atf 59.0. This
can be anticipated from a comparison of the drift velocity
computed from linear stability analysis with that measured
the simulation, given in Fig. 9.

Whereas up tof 58.0 the agreement between the analy
cal expression for the velocity and the simulation is alm
perfect, strong deviations are obtained forf 59.0 and f
511.0. At f 58.0, the final pattern still consists of perfect
straight stripes, whereas both the structures forf 59.0 and
f 511.0 appear turbulent. We show the casef 59.0 in Fig.
10.

FIG. 7. Pattern att52000.0,Ḡ50.6, andf 54.0. System size:
128.03128.0.
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We shall now consider the utility of Minkowski function
als in characterizing structures and in particular in dist
guishing between different ‘‘phases’’ corresponding to d
tinctly different morphologies. First, it should be notice
how these measures scale with system size. If we sim
increase each length by a fixed factorl, then the area scale
asl2, the boundary length asl, and the Euler characteristi
remains invariant. However, for patterns with awell-defined
length scale, increasing the system size means a change
the numberof substructures, not in the pattern scale. If w
double the linear dimension of a system, then the numbe
cells and hence the Euler characteristic will be multiplied
a factor of four. The same holds for area and bound
length. Therefore, measures that allow to compare syst
of different sizes, because they are~apart from random fluc-
tuations! independent of size, are given by the normaliz
area fractiona/N ~area measured in units of the pixel siz
divided by the numberN of pixels!, the normalized boundary
length s/N, and the normalized Euler characteristicx/N.

FIG. 8. Pattern att52101.0,Ḡ50.6, andf 55.0. System size:
64.0364.0.

FIG. 9. Comparison of drift velocity as predicted from line
stability analysis~continuous line! with the measured velocity for

Ḡ50.6. Squares are data obtained with the mixed code; circ
with the spectral code.
2-6
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PATTERN FORMATION IN . . . . II. . . . PHYSICAL REVIEW E63 066302
We have verified that for systems with the same parame
but different system sizes (64.0364.0 and 128.03128.0, re-
spectively! these morphological measures remain the sa
apart from statistical fluctuations.

After dividing the interval between the minimum and th
maximum of the interface into 254 equidistant levels, Fig.
gives the area fraction of white regions as a function of
level number for several flows. It is quite evident that t
behavior of this quantity depends strongly on the flow a
thus seems to characterize the corresponding morpholo
well. At small flows (f <4.0), i.e., for the hexagonal struc
tures, the area fraction starts with a horizontal tangent
bends down smoothly~thick solid, dashed, and dotted lines!,
whereas for ordered stripe structures it falls much m
abruptly~dash-dotted and thin solid lines!; as the stripe struc
tures become turbulent, the white area fraction increa
strongly for threshold values below 150~thin dashed line!.
Note that even the transition from a lattice of hexago
symmetry to a rhombic one is visible in the curve forf

FIG. 10. Pattern att52000, Ḡ50.6, andf 59.0. System size:
64.0364.0.

FIG. 11. Area fraction of white region as a function of th
chosen value of contour level for a number of different syste

with Ḡ50.6 at a late stage of the evolution. Thick solid line,f
50.0; thick dashed line,f 52.0; dotted line,f 54.0; dash-dotted
line, f 55.0; thin solid line,f 57.0; thin dashed line,f 59.0.
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54.0, which has a second shoulder near level 130. T
shoulder is due to the fact that there are minima of t
different depths~the grooves between lines of cells and tho
between cells in a line!, which discontinue contributing to
the area fraction at different level heights.

The different behavior of the area fractions of hexago
and stripe structures can be understood from the fact tha
the latter there is an approximate symmetry between pro
sions and grooves that makesa/N nearly point symmetric
@about the point~127.5,0.5!#, whereas for hexagons the up
down symmetry is strongly broken.

Also the second morphological measure, the normali
boundary length, undergoes remarkable changes as a f
tion of structure. In Fig. 12, it is given for the same syste
as the area fraction before.

The essentially hexagonal structures show big asymme
humps, with the transition atf 54.0 leading to an exotic-
looking combination of a shoulder and a peak. The two re
lar stripe structures have constant boundary lengths ov
wide range of levels; that this range is wider forf 57.0 sug-
gests this pattern to be even more ordered than the onef
55.0, a conjecture that will be confirmed by a look at t
Euler characteristic. Moreover, the turbulent structure ha
broad rounded-off hump because the interface height va
irregularly in space and thus moving the contour level i
plies its length changing.

Finally, we consider the Euler characteristic~Fig. 13!. For
a hexagonal structure, it has a pretty distinctive behav
~thick solid and dashed lines!: there are approximately twice
as many minima as maxima in the structure, which produ
twice as many black clusters at low level values than wh
ones at high values. The hump corresponding to the w
clusters is wider than the trough corresponding to the bl
ones, because the minima are less pronounced than
maxima. The characteristics of these two patterns h
rounded shapes, they still contain some disorder, either in
form of defects or by cells varying in height — otherwise t
transition fromx,0, i.e., more black than white regions, t
x.0, i.e., more white than black regions, would be a jum
discontinuity.

s

FIG. 12. Boundary length of white region normalized by t
total area as a function of the chosen value of contour level for
same systems as in Fig. 11. Thick solid line,f 50.0; thick dashed
line, f 52.0; dotted line,f 54.0; dash-dotted line,f 55.0; thin solid
line, f 57.0; thin dashed line,f 59.0.
2-7
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That the pattern atf 54.0 ~dotted line! is topologically
distinct from the others is nowhere more conspicuous tha
the Euler characteristic. The existence of several plate
shows the corresponding structure to be very regular— m
ing a contour level up does not change the number of reg
as long as no extrema are crossed; for an irregular struc
this must happen continuously, with a regular one, ma
extrema are crossed at the same time. There is a wide re
in which the Euler characteristic is zero. This correspond
a situation where the cutting level is above the minima of
deep grooves but below those of the smaller grooves
tween cells ‘‘in a stripe.’’ Figure 14 clarifies this point: fo
levels in this range the white and black clusters are es
tially stripes.

The two ordered stripe patterns (f 55.0 andf 57.0, dash-
dotted and thin solid lines! are distinguished by having

FIG. 13. Euler characteristics normalized by the total area a
function of the chosen value of contour level for the same syst
as in Fig. 11. Thick solid line,f 50.0; thick dashed line,f 52.0;
dotted line, f 54.0; dash-dotted line,f 55.0; thin solid line, f
57.0; thin dashed line,f 59.0. Since the curve forf 57.0 is un-
conspicuous among the others, two arrows indicate where it is
ferent from zero~between level 1 and 10, where it is negative, a
for levels 251 and 252, where it is positive!.

FIG. 14. Black and white regions for the pattern from Fig. 7
contour level 120, where the Euler characteristics are zero~see
Fig. 13!.
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very large range of vanishing characteristic — in this ran
of cutting levels~between 20 and 230! the number of black
and white regions~the regions being stripes! is the same —
and a small number of components when the Euler cha
teristic is nonzero. Here we can see that the pattern co
sponding tof 57.0 is more ordered than that atf 55.0, for
the absolute value of its Euler characteristic remains m
smaller at small levels and at large ones than that of
latter. The number of components never gets larger than
number of stripes forf 57.0 but it does forf 55.0 ~there are
on the order of 10 stripes andx takes on values on the orde
of 50!. This is explicable by the stripes having inhomog
neous heights and depths in the casef 55.0, which lead to
their separation into elongated ‘‘cells’’ when they are cut
an appropriate level, whereas they seem to be pretty ho
geneous forf 57.0.

Finally, the Euler characteristic of the turbulent stripe p
tern is broad and roundish, showing that disorder is pres
and almost point symmetric, showing that we have strip
rather than hexagons.

From the functional dependencies of the morphologi
measures presented so far, it should be obvious that they
hardly be fitted to a half-decent degree of accuracy by lo
order polynomials. Such a fit was suggested in@11# as a
means of extracting a small number of order parameters
scribing the morphology. More precisely, the suggestion w
not to fit the morphological measures themselves but ra
the following quantities:

pa~r!5tanh21S 2a

N
21D , ~9!

ps~r!5
s

a~a/N21!
, ~10!

px~r!5
x

s
, ~11!

wherer was the level value, mapped to the interval@21,1#.
With digitized images of structures in chemical reaction s
tems, these quantities seem to be fitted well by polynom
of at most quadratic order@11#. In our case, this did not work
at all; attempts to fit the morphological measures themse
with polynomials gave acceptable results only for the a
fraction but even then higher-order polynomials were nee
(' order 10!. That polynomials are not good at describin
step functions is well-known. Therefore, our inability to ge
good representation of the Minkowski functionals the
selves by polynomial fitting may be traced back to the f
that we have structures that are more ordered than the
seen in the experiments on reaction-diffusion patterns.
the other hand, a fit of the quantities defined in Eqs.~9!–~11!
does not work well either, which is not too surprising.pa(r)
diverges logarithmically asa/N approaches the values 0 or
andps(r) diverges algebraically (}A1/a for small a) at the
boundaries of the domain of definition of the functiona
Polynomials are notorious for not dealing too well with si
gularities either.
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Thus we are not able to obtain a small number of or
parameters from the Minkowski functionals in this simp
manner, even though at least the Euler characteristic is d
nitely well-suited as an order parameterfunction describing
transitions between patterns. Integrals of the Minkow
functionals when taken as a function of the level might p
vide useful practical order parameters; nevertheless, a
nection to equations giving their evolution is not straightfo
ward.

After this somewhat lengthy discussion of the caseḠ

50.6, we can be less detailed about smaller values ofḠ. For
Ḡ down to 0.4, the scenario is essentially the same, ex
that defects are more frequent in the hexagonal struct
and the transition to stripes takes place at larger valuesf
only — near f 57.0, see Fig. 15. The undulations of th
stripes in this figure also suggest that the transition is
stationary as forḠ50.6.

Moreover, there are intermediate structures at relativ
large f ( f 56.0) that display oscillations, comparable wi
but dynamically more complex than, the 2p/3 oscillations
mentioned above. An investigation similar to that of Fig.
shows that the difference between the drift velocity fro
linear stability analysis and that from the numerical simu
tion appearsearlier, i.e., at lowerf values than forḠ50.6.
This should caution against direct use of this deviation a
criterion for a morphology transition. While a transition
general will lead to a deviation from linear theory, the lat
may also occur without transition, simply due to the incre
ing influence of nonlinearities as one moves farther aw
from the instability threshold.

The new important feature atḠ50.35 is the appearanc
of 2p/3 oscillations at small values of the flow. An examp
with perfect topological order has been shown in I~the flow
was f 52.0). At a smaller flow (f 51.0), a less ordered struc
ture turns up, the cells of which do not form a perfect he
agonal lattice. It is shown in Fig. 16. Note that oscillation
inferable from the presence of triangles of brighter cells,

FIG. 15. A structure near the transition from cells to strip

Ḡ50.4, f 57.0, t52000.
06630
r

fi-

i
-
n-

-

pt
es
f

t

ly

-

a

r
-
y

-
,
e

less pronounced forf 51.0 than forf 52.0 and they do not
seem to prevail in the entire area of the pattern.

If there is no flow, the structure is a simple disorder
hexagonal array without any sign of spatially correlated
cillations. In small systems, patterns may even become
dered because the dynamics is more violent than at higheḠ
and defects less likely to be frozen in. Also, a new type
defect seems to appear more often at low gradients, des
able as inverted cells, i.e., cells that bulge downward inst
of upward. Examples are to be seen in Figs. 16 and 17.

In the latter figure we give the lines of vanishing real a
imaginary parts of the product of the three amplitudesA1 ,
A2 , A3 corresponding to the three stripe systems from wh
the hexagons can be composed. While probably no de
meaning can be assigned to these lines themselves~since

. FIG. 16. Pattern atḠ50.35, f 51.0, system size 128.0
3128.0, t52800.

FIG. 17. A frozen hexagonal structure in a small system (6

364.0). Ḡ50.35, f 50.0. t52000. Superimposed on the pictur
are the lines of vanishing real~white! and imaginary~black! parts of
the product of the three amplitudes defining the hexagonal struc
2-9
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they describe neither of the underlying stripe systems!, their
intersectionsare meaningful. They correspond to zeros of t
product, hence to zeros of one of the underlying amplitu
at least. By this method we may thus identify all the top
logical defects, apart from possible~but rare! degeneracies
where we might count a double or triple zero~due to more
than one amplitude vanishing simultaneously! as only one
defect.

We note that each of the inverted cells corresponds to
~oppositely charged! defects of the underlying stripe sys
tems. One of the stripe structures is defect free, as inspec
of the separate amplitudes reveals, whereas the other
have one defect each near the position of the inverted
Each of the two stripe systems has two defects of oppo
charge~since the total charge must be zero in a perio
system!, one at each inverted cell. Therefore, the total nu
ber of topologicalamplitude defectsis four.

In order to compare this approach with the method
defining defects in a cellular structure via neighborhood
lationships@9#, we give the corresponding defect picture
obtained from the Voronoi diagram of the cell centers in F
18. The construction of this diagram is described in S
III C and, in more detail, in@9#.

Defects are cells with a number of edges smaller or lar
than six. Since the average number of edges must be equ
six in the plane, the simplest possible defect configuratio
the penta-hepta defect, consisting of a pair of cells, one
which is a pentagon, the other a heptagon. As it turns
most defects occurring at all are pentagons or heptagon
the figure, pentagons are presented in dark gray, heptago
light gray, whereas hexagons remain white. Each of the
verted cells corresponds to a pair of penta-hepta defects;
to the periodic boundary conditions, one of the pentagon
the left defect appears near the right boundary. Note also
these are really pentagons although some of them look
much like quadrangles — their fifth edge is just very sho

At this point, it might seem that there is a one-to-o
correspondence between the two different kinds of topolo
cal defects defined. A zero in a component of the comp
amplitude vector appears to be equivalent to a penta-h
defect. Unfortunately, things are not that simple as we s

FIG. 18. The Voronoi diagram of the cell structure of Fig. 17.
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see by considering a slightly more complex example, giv
in Fig. 19.

Here we have a larger value ofḠ and no inverted cells
occur. Instead, defects are of the standard type~bigger or
smaller cell surrounded by more or less than six neighbo!.
The figure also contains the lines whose intersections de
amplitude defects.

In the following figure~Fig. 20!, the Voronoi graph cor-
responding to Fig. 19 is given. Defect cells are numbered
order to facilitate comparison between the interface pict
and the Voronoi diagram. Heptagons are given odd numb
pentagons even ones, and there are nine pairs of defec
all.

We note that certain among these pairs, e.g., no. 3 an
5 and 6, 7 and 8, 13 and 14, 15 and 16, are associated
two crossings of contours of zero real and imaginary p

FIG. 19. The other type of defects in hexagonal cellular arra

demonstrated on a structure withḠ50.45, f 53.0, t52042. Again
defects as defined via the amplitude can be found as intersec
between the lines of vanishing real~white! and imaginary~black!
part of the product of amplitudes.

FIG. 20. The Voronoi diagram of the cell structure of Fig. 19.
2-10
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i.e., they correspond to two amplitude defects as before.
others, such as the pairs 9 and 10, 11 and 12, 17 and
there is only one amplitude defect that is nearby and t
easily identifiable with the penta-hepta defect~for the pair
17, 18 even this is doubtful, one might as well associate
line crossings with the pair 11, 12!. Finally, the pair 1, 2 is
not easily associable with any amplitude defect at all, a
there is a ‘‘freely floating’’ amplitude defect three cells to i
right.

The reason why the correspondence between ampli
and Voronoi defects does not work too well in this case
probably that the basic hexagonal pattern is already
strongly disturbed by the nine penta-hepta defects for
description by three amplitudes to be very meaningful. W
do not have just one orientation of the hexagonal lattice
essentially two grains, one of which is encircled by t
Voronoi defects, while the other is outside of them~the pairs
9, 10 and 17, 18 close the inner grain at its ‘‘left’’ end, d
to the periodic boundary conditions!. Choosing just three
peaks in the Fourier spectrum for complex demodulation,
therefore miss some information and some of the amplit
defects appear shifted relatively far from the cells genera
them. That in some cases only one amplitude defect app
for a given penta-hepta pair may be due to the closenes
the next pair and the ensuing interaction of defects. The f
pairs that have only a single amplitude defect associated
them are each separated by only one cell from the nea
other pair.

Returning now to the caseḠ50.35, the discussion o
which was started with Fig. 16, we observe that even a fl
of f 51.0 is sufficient to change a state that would otherw
be mostly steady~with some dynamics only in the vicinity o
a few defects! into one that oscillates. In smaller system
oscillations appear even atf 50.1. They seem to be impede
by disorder of the system, which perturbs the phase relat
between neighboring oscillating cells. Therefore, they w
more easily appear in small systems, which order comple
as long as they are below the typical size of dynami
grains. Because for small flows order increases with incre
ing flow, the flow promotes oscillations. An oscillatory stru
ture in turn can get rid of its topological defects more eas
than a basically stationary one, as was demonstrated in F
of I.

The scenario of the caseḠ50.6 essentially repeats wit
the sole difference that the basic hexagonal pattern is
time dependent. A perfectly synchronized structure would
quasiperiodic in general, since the oscillation frequency
the 2p/3 oscillations is unrelated to the drift velocity, impo
ing a second oscillation on each interface point with fixex
coordinate as it is passed by the traveling pattern. FoḠ
50.35, the transition to turbulent stripe patterns takes pl
at a largerf value than for biggerḠ. It is located nearf
59.0.

Finally, at Ḡ50.25, we have so far seen one case,
which disorder was completely eliminated by the flow, af
56.0. The final structure is an ordered array of nonoscil
ing hexagons drifting at constant velocity. Ordering to
place relatively fast, being complete att5500. Patterns a
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zero flow and for flow values up tof 54.0 seem to be chaotic
in time, with spatial disorder decreasing as the flow
creases. This can be seen by a comparison of Figs. 21
22.

It is quite obvious, that the structure in Fig. 22 is mu
more ordered than that in Fig. 21, where no flow is prese
Moreover, an oscillatory pattern can be made out that
tends across most of the system.

Flows beyondf 56.0 have not yet been studied forḠ
<0.25. A more detailed investigation of these morpholog
at low Ḡ, which we believe to be at least close to the bo
derline ~in the direction of decreasingḠ) of a transition to
weak turbulence, is planned for the future.

IV. CONCLUSIONS

The generic morphologies and dynamics of this syst
are: ~a! steady traveling waves taking the form of stripes

FIG. 21. Pattern atḠ50.25, f 50.0, system size 76.8376.8
~grid spacingh50.3), t51500.0.

FIG. 22. Pattern atḠ50.25, f 54.0, system size 76.8376.8, t
51500.0.
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temperature gradients that would keep a planar front stab
the absence of flow — at a later stage these acquire a cel
modulation for small flows,~b! traveling hexagons when th
Mullins-Sekerka instability becomes active, and~c! traveling
hexagonal patterns with superimposed local oscillations
which neighboring cells oscillate at a phase shift of 2p/3. A
variety of intermediate dynamic states arising from the co
petition between stripes and hexagons occur as well.

When the flow becomes large enough, it first changes
symmetry of the hexagonal pattern produced by the MS
stability and eventually makes the cells disappear altoget
The emerging stripes start to undulate as the flow is
creased further and finally become turbulent.

To observe the latter scenario in experiments, the dista
e to the absolute stability threshold has to be made sm
considering the fact that typical Schmidt numbers of eit
transparent organic alloys ('20) or metals ('100) are
rather large. To obtain a flow strengthf 51 at e5 1

10 , the
flow speed has to be on the order of the pulling veloc
Moreover, to reach the flow-induced destruction of hexa
nal patterns atḠ, 2

3 this would have to be exceeded by
least a factor of five. In the case of liquid crystals where o
can approach the limit of absolute stability arbitrar
closely, this should not present an unsurmountable obsta
It must be kept in mind, however, that the asymptotic ana
sis leading to Eq.~1! assumes that the Schmidt numb
scales as 1/e. Thus, it should become invalid when 1/e ex-
ceeds the Schmidt number by much.

Nevertheless, the appearance of flow-induced stri
abovethe critical value ofḠ for the MS instability should be
observable, even inevitable, if the critical value is a
proached slowly enough. This is due to the fact that the fl
acts destabilizing in the conditions discussed here. ‘‘Pu
stripes will only be temporary at small flows, due to t
transcritical nature of the bifurcation to hexagons, enablin
final transition to hexagonally modulated stripe patter
Since this transition appears after a long time only~on the
order of 1000 rescaled diffusion times!, the preceding stripe
dynamics should nonetheless remain observable.
d-

.
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Of course, in a real system, drifting patterns are restric
in their motion by boundaries. Therefore, the lateral mot
described here would be possible only as a localized p
nomenon. This suggests to investigate the same system
merically with boundary conditions that are not period
even though it is a bit difficult to imagine how a consta
shear flow could persist in such a system. On the other h
an attempt at an experimental realization of the periodicity
boundary conditions in the all importantx direction would
definitely be valuable. To this end, the solidification expe
ment would have to be performed in an annular contai
similar to the type used to impose a shear flow in the inv
tigation of sand ripples@21#. Clearly, it is a considerable
experimental challenge to combine this rotational motion
in a way that keeps the far-field flow constant — with t
pulling of the sample in a temperature gradient.

Finally, we may conclude that thecharacterizationof a
pattern in terms of the defects of its amplitude is not
general as appeared at first sight. Although it allows both
description of stripe and hexagonal patterns~as opposed to
the Voronoi defects, which are known to be useful only f
the latter structures!, it requires theglobal dominance of cer-
tain orientations. An amplitude equation description that p
serves the rotational invariance of the basic equations@22#
might extend the utility of the definition of defects or diso
der @23#, but it seems nontrivial to extract the correspondi
amplitude from an arbitrary pattern, i.e., to develop the a
log of complex demodulation. Therefore, at present the b
way to distinguish between very different patterns and
quantify their difference seems to be via the Euler charac
istic, for which there is, however, no known equation
motion.
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