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Pattern formation in directional solidification under shear flow.
I. Linear stability analysis and basic patterns
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13397 Marseille Ce´dex 20, France
2Institut für Experimentalphysik V, Universita¨t Bayreuth, D-95440 Bayreuth, Germany

3Institut für Theoretische Physik, Otto-von-Guericke-Universita¨t Magdeburg, Postfach 4120, D-39016 Magdeburg, Germany
~Received 12 December 2000; published 14 May 2001!

An asymptotic interface equation for directional solidification near the absolute stabiliy limit is extended by
a nonlocal term describing a shear flow parallel to the interface. In the long-wave limit considered, the flow
acts destabilizing on a planar interface. Moreover, linear stability analysis suggests that the morphology
diagram is modified by the flow near onset of the Mullins-Sekerka instability. Via numerical analysis, the
bifurcation structure of the system is shown to change. Besides the known hexagonal cells, structures consist-
ing of stripes arise. Due to its symmetry-breaking properties, the flow term induces a lateral drift of the whole
pattern, once the instability has become active. The drift velocity is measured numerically and described
analytically in the framework of a linear analysis. At large flow strength, the linear description breaks down,
which is accompanied by a transition to flow-dominated morphologies which is described in the following
paper. Small and intermediate flows lead to increased order in the lattice structure of the pattern, facilitating the
elimination of defects. Locally oscillating structures appear closer to the instability threshold with flow than
without.
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I. INTRODUCTION

Directional solidification is an important experiment
procedure both from the applied and the fundamental po
of view.

On the one hand, growth techniques such as zone me
and the Bridgman method were developed in the 1950
purify semiconductor materials. Subsequently, the basic
cess became an important industrial tool, and it continue
remain the basis of fundamental metallurgical techniques

On the other hand, when an alloy is solidified by push
its melt at a constant velocity along an imposed thermal g
dient toward lower temperatures — this realization of dire
tional solidification is particularly amenable to theoretic
analysis — the interface between the liquid and the so
which is flat at zero velocity, undergoes a morphologi
instability. Fundamental interest in this so-called Mullin
Sekerka ~MS! instability @1# motivated many current re
search studies of directional solidification. The instability
driven by impurity diffusion, it appears at a critical spee
and once it has set in, new structures develop, dependin
a number of factors such as the interface roughness, the
regation coefficient, impurity diffusion, and the impuri
concentration in the liquid. If the latter is high enough, tw
phase eutectic structures may arise@2#, which arenot created
by the MS instability. In this paper, we will rather focus o
the case of smaller concentrations leading to the growth
dilute alloy forming a single-phase solid.

Experimentally, pattern formation in directional solidifi
cation has been studied in great detail using transpa
model substances@3# in order to gain fundamental insigh
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@4–8#. It has also been investigated in metals, with at leas
perspective of applications@9–12#. Recently, successful ob
servations ofthree-dimensionaldirectional solidification of
transparent alloys@13,14# have opened the road to an unde
standing that goes beyond the description of tw
dimensional structures, for which a large amount of theo
ical work does exist@15–28#.

As a consequence, it has now become an important tas
follow up with theoretical work on three-dimensional dire
tional growth. Detailed analysis of three-dimensional p
terns has so far largely been restricted to free growth of sm
structures such as single dendrites, both analytically@29–31#
and numerically @32–34#. Three-dimensional~3D! direc-
tional solidification has been considered in the context
phase-field modeling for small systems consisting of so
ten cells@35#. Only fairly recently, larger systems containin
several thousand cells have been treated within the fra
work of an asymptotic interface equation@36#. The main
advantage of this equation is that it reduces the dynam
problem to a description of the interface alone, which
places the 3D problem with a 2D one, and that, moreove
is a local description, thus rendering large systems tracta
It was obtained by a Sivashinsky-type expansion about
point of absolute stability@28#, neglecting both solute trap
ping and deviations from local interface equilibrium. A
these approximations become doubtful for large solidifi
tion speeds, this model equation had to be considere
qualitative description only and comparison with expe
ments had to rely on genericity arguments. However,
believe that the equation would be quantitatively appropri
for the description of directional ordering experiments
liquid crystals@37–39# and hence we suggest the more i
triguing dynamic long-time effects predicted by it@36# to be
observable in liquid crystals, which also have response tim
more accessible to experiments@40#. In any case, statistica
©2001 The American Physical Society01-1
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properties obtained from the simulation compared reas
ably well with the same properties measured in experime
This holds apart from a systematic deviation allowing us
conclude that experimental cellular patterns donot start
growing from a random~Poissonian! distribution.

In earth-bound experiments, convection always exer
major influence on the arising patterns@41#. Therefore, we
extend our previous work here to include a flow in the d
scription. Since this is but a first approach to a large-sc
system with flow, in order to facilitate the subsequent ana
sis of results, we consider the conceptually simplest case
externally imposed flow parallel to the interface, approa
ing a constant velocity far from it. For this situation, repr
senting the ‘‘poor man’s convection’’@42#, an asymptotic
description has been derived by Hobbs and Metzener@43#.
One-dimensional interfaces in the presence of flow h
been studied in@44#. Whereas in the latter investigation so
ute trapping and the deviations from equilibrium of the
terface were fully taken into account using the Aziz mod
@45#, we will restrict ourselves here to the considerably si
pler situation of a constant segregation coefficient and
glect interface kinetics, to separate generic effects from th
that are only important at high speed. Also the full equat
is more susceptible to numerical instabilities, because its
lutions tend to develop large amplitudes taking them out
the validity domain of the expansion@36#. The only differ-
ence between the interface equation employed in@36# and
here will therefore be the term generated by the flow.
renders the equation nonlocal, which already makes its si
lation much more tedious than that of the original equat
and restricts our simulations to a few hundred solidificat
cells rather than a few thousand.

This article consists of five sections. In Sec. II, we gi
the basic equations together with a linear stability analy
leading to the prediction of new morphologies induced
the flow. Section III describes the numerical approach a
our methods of velocity measurement. We give a numbe
simulation results in Sec. IV, exhibiting the basic patterns
the part of parameter space where some degree of sp
order prevails. A more detailed analysis and characteriza
of these structures is presented in the subsequent article@46#,
henceforth referred to as II. Conclusions regarding flow
fects on pattern dynamics and the bifurcation structure of
system are summarized in Sec. V. Appendix A provides
real-space representation of the flow term thus displaying
nonlocal nature. Some analytical approximations are wor
out in detail in Appendix B.

II. MODEL EQUATION AND LINEAR STABILITY
ANALYSIS

A. Long-wave equation

The equation to be studied is

z tt2S 21
1

k
1n D¹2z t1S 11

1

k
1n2D¹4z

18k¹2z18kḠz2 f
]

]x
L@z#
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52z t¹
2z12~ u¹zu2! t22¹2~ u¹zu2!22n~¹z!¹~¹2z!

2
2

k
¹$~¹z!¹2z%22¹$~¹z!u¹zu2%. ~1!

We denote by¹ the two-dimensional gradient operator,¹
5(]x ,]y). The position of the liquid-solid interface i
z(x,y,t) and coordinates are chosen such that the temp
ture gradient is oriented along thez axis, whereas the flow is
parallel to thex axis.L@z# is a linear but nonlocal functiona
of z, given via its Fourier transform

F †L@z#‡~p!5upuF @z#~p!, ~2!

with F denoting the transform, F @z#
5*2`

` dx*2`
` dy z(x)exp(2ipx), andp its wave vector argu-

ment. Position space representations forL@z# in one and two
dimensions are given in Appendix A.

There are four nondimensional parameters in our eq
tion: the segregation coefficientk, the ration5Ds /D of the
diffusion coefficients for impurities in the solid and the liq
uid, the nondimensional temperature gradientḠ, and the
strengthf of the flow. Theone-sided modelis characterized
by n50, the symmetric modelby n51. Ḡ is related to
physical parameters via:

Ḡ5
8D3L2mDc

g2Tm
2

G

V~Va2V!2
. ~3!

In this expression,L is the latent heat~per unit volume! of
the transition,m the absolute value of the slope of the liqu
dus line,Dc the miscibility gap at the base temperatureT0
(T05Tm2mc0, with Tm the melting temperature of the pur
substance,c05c`1Dc, and c` the initial concentration of
the liquid!, g is the surface energy, assumed isotropic he
Va is the velocity corresponding to the absolute stabil
limit, given by Va5mLDcD/gTmk. G is the temperature
gradient andV the pulling~or pushing! velocity. Finally,f is
given in terms of dimensional quantities as

f 5
8V`

eVS
, ~4!

V` being the speed of the imposed flow far from the int
face,S5nk /D is the Schmidt number (nk is the kinematic
viscosity of the liquid!, ande is the nondimensional distanc
from absolute stability,e51/2k2gTmV/2mLDcD. f is dy-
namically determined by the ratio of the flow and pullin
speeds.

Equation~1! is obtained from an expansion about the a
solute stability limit, where the wavelength of the most u
stable mode diverges as 1/Ae. It takes the form of a strongly
nonlinear long-wave equation, in which wavelengths ha
been rescaled byAe to make themO(1). Thus, nondimen-
sional lengths are measured in units of a rescaled diffus
length along thex and y directions, with a scaling facto
1/Ae; lengths in thez direction are measured as multiples
the unscaled diffusion length. The time unit is a diffusio
1-2
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PATTERN FORMATION IN . . . . I. . . . PHYSICAL REVIEW E63 066301
time (2D/V2) scaled by 1/e. Fork50, the equation become
indefinite, because there is no absolute stability limit in t
case.

For simplicity, we shall setk51 in the following, i.e.,
Dc5const, independently of the reference temperatureT0.
From previous experience, the choice ofk is not expected to
have a strong influence on results, as long ask does not
become very small.

To further reduce the parameter space to be explored
also setn51, thus restricting ourselves to the symmet
model. This is not a particularly realistic model for dire
tional solidification, wheren50 would be more appropriate
However, for directional ordering in liquid crystals, it is
better approximation than the one-sided model. Moreo
the choicen51 is least problematic in numerical simulation
with a direct finite-difference discretization, because de
grooves that may trigger numerical instabilities are le
likely to evolve with diffusion in the solid allowed. Since th
most efficient way to deal with the nonlocal term is to wo
in Fourier space, we have developed a pseudospectral c
which is much less susceptible to these problems. Never
less, a comparison with previous results@36# is easier, if we
keepn at the value then used, and experience suggests@28#
that generic patterns are not strongly influenced by
choice. Finally, because our results must not be expecte
be quantitative except for liquid crystal systems, we stick
the valuen51 here. Tests with various nonzero values on
have been performed but have not revealed interesting
ferences.

Therefore, the important parameters to be varied in
simulations areḠ and f.

The form of Eq.~1! can be guessed from symmetry a
scaling arguments. The linear terms on the left-hand s
~lhs! are determined~including their coefficients! by the lin-
ear stability analysis of the full three-dimensional model,
volving diffusive transport and the coupling to the Navie
Stokes equations. Scaling arguments tell us that the nonli
terms can contain at most four spatial derivatives and
each temporal derivative present there must be two sp
derivatives less~since wave numbers scale asAe but fre-
quencies ase). In the absence of a thermal gradient, we ha
translational symmetry in thez direction, so we know that al
nonlinear terms must contain derivatives ofz only. If there is
no flow, we also have parity symmetry, which constrains
number of spatial derivatives of terms not containingf to
being even. Finally, rotational symmetry can be invoked
exclude terms such as (¹z)4 @28#. From these consider
ations, one obtains all the nonlinear terms on the right-h
side ~rhs!, but not their prefactors, of course, for which th
full expansion must be performed@43,47#. What can also be
guessed is that the flow should lead to a nonlocal term bre
ing the parity symmetry with respect to thex coordinate. It is
not clear beforehand, however, that it doesnot introduce ad-
ditional nonlinearlocal terms. The nonlocal term on the lh
is, in a sense, the simplest nonlocality possible~see Appen-
dix A!.

B. Linear stability analysis

The problem of coupled morphological and convect
instabilities has a long history of detailed study@42,48–51#.
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In the case of buoyancy-driven convection with a lighter s
ute and solidification proceeding upward in the gravitatio
field ~leading to unstable stratification!, it was found that in
most cases the coupling between the instabilities is weak
to a large disparity in unstable wavelengths@52#, even
though an oscillatory instability may occur@53# in special
circumstances. For Rayleigh numbers below the criti
value, convection delays the Mullins-Sekerka instability
the limit of small segregation coefficients, where a lon
wave equation different from ours can be derived. Forc
flows were studied by Coriellet al. @51# and by Forth and
Wheeler @54#, who found that for two-dimensional distur
bances the flow delays the morphological instabili
whereas for disturbances with wave vectors perpendicula
the flow the latter normally does not affect the critical co
ditions of the MS instability. However, for small-wave num
ber modes, the MS instability can be enhanced@54#. Near
absolute stability, the wavelength is much larger than
diffusion length and parallel flow was shown to be desta
lizing to disturbances that travel against it@55#. This is the
situation encountered here.

Equation ~1! has the steady-state solutionz[0. Obvi-
ously, the linear stability analysis of this solution will in
volve only the terms on the lhs of the equation. Inserting
perturbation ansatz@x5(x,y)#

z5z1exp~vt1 iqx! ~5!

into Eq. ~1!, we obtain the dispersion relation (q5uqu)

v21S 21
1

k
1n Dvq21S 11

1

k
1n2Dq4

28kq218kḠ2 i f qxq50. ~6!

The terms stemming from the partial derivatives are obtai
in a straightforward manner, only the one arising from t
nonlocal term may require some explanation. To comp
the nonlocal term for the perturbation~5! we first take the
spatial Fourier transform of z, which is simply
4p2z1exp(vt)d(q1p), then multiply it by upu to obtain the
transform ofL@z#. Transforming back we getz1uquexp(vt
1iqx), the derivative of which with respect tox produces a
prefactoriqx . After dropping the common exponential facto
and the prefactorz1 of all terms, we are left with theq
dependent expression of Eq.~6!.

Settingv5v r1 iv i and decomposing the dispersion r
lation into its real and imaginary parts, we obtain

v r
22v i

21S 21
1

k
1n Dv rq

21S 11
1

k
1n2Dq428kq218kḠ

50, ~7!

v iF2v r1S 21
1

k
1n Dq2G5 f qxq. ~8!

The unstable mode takes the form
1-3
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z5z1expH v r t1 i FqxS x1
v i

qx
t D1qyyG J , ~9!

i.e., it corresponds to a traveling wave moving along thx
axis at velocityVd52v i /qx . On the neutral surface,v r
50, which implies

v i5
f qx

~211/k1n!q
, ~10!

hence we have a Hopf bifurcation whenever the flow is d
ferent from zero and the pattern is oriented such thatqxÞ0.
The velocity of the corresponding traveling wave is simp

Vd52
f

~211/k1n!q
. ~11!

Inserting Eq.~10! into Eq. ~7!, we arrive at the equation fo
the neutral surface:

g~q![S 11
1

k
1n2Dq428kq218kḠ2S f qx

~211/k1n!qD 2

50, ~12!

where the last term depends on the angle between the
and the wave vector only, not on the modulus of the latte
situation that we describe by setting cosf5qx /q. Obviously,
for fixed values off andf the essential change of the neutr
curve ~in the qḠ plane! brought about by the flow is an
increase of the critical value ofḠ where the instability first
appears. Hence the flow has adestabilizingeffect, since the
region of parameter space, where the planar solution is
stable corresponds to values ofḠ below the critical value.
For givenḠ, the flow can be made large enough to rend
the planar front unstable even nearq50, i.e., with respect to
homogeneous perturbations. Figure 1 displays the func
g(q) for two values of the flow~assuming cosf51). With
weak flow, g(q) is positive at q50, and if Ḡ is small
enough, the function has two zeros at positiveq, i.e., a band

FIG. 1. The functiong(q) determining the neutral surface.Ḡ
50.5. Upper curve:f 50, lower curve:f 510.
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of modes containing only finiteq values is unstable. Fo
strong flow,g(q) is negative atq50, i.e., all modes up to
the marginal one are unstable.

The neutral surface is the set of zeros ofg(q) in the space
spanned byq, Ḡ, and f. For convenience, we restrict ou
selves to theq Ḡ plane and draw neutral curves for seve
discrete values of the flow parameterf in Fig. 2, to demon-
strate both theḠ and f dependences of the neutral surface

A calculation of the critical value of the temperature gr
dient in the general case~requiringdv r /dq50) leads to

Ḡc5
2k2

11k1kn2
1

f 2k cos2f

8~112k1kn!2
, ~13!

exhibiting the fact that the instability threshold depends
the angle between the flow and the wave vector of the p
turbation. Without flow, the threshold is given by the fir
term of Eq.~13! @28# and the bifurcation, transcritical in two
dimensions, is known to give rise to hexagonal patterns
onset@56#. From the equation, we can immediately conclu
that for values of the temperature gradient satisfyingḠ

.Ḡc( f 50), there exists a critical flow strength given by

f 25
8~112k1kn!2

k S Ḡ2
2k2

11k1kn2D , ~14!

above which the planar front is destabilized by the flo
alone. In this case, the patterns emerging, as the plana
terface becomes unstable, will not be hexagons but ra
stripes oriented orthogonally to the flow~since these are the
most unstable disturbances!. They should drift against the
flow with a speed approximately given by Eq.~11! and cal-
culated more precisely below. As we shall see in Sec.
these predictions are borne out by the simulations. It is t
an interesting question, how the system will behave on
crease ofḠ below the zero-flow threshold. What happe

FIG. 2. Neutral curve for different flow strengthsf. Lower solid
line, f 50; dashed line,f 51; dash-dotted line,f 52; dotted line,
f 53; solid line, f 54; higher dashed line,f 55. The curves shift
upward with increasingf by an amount proportional tof 2.
1-4
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PATTERN FORMATION IN . . . . I. . . . PHYSICAL REVIEW E63 066301
when the pattern amplitude approaches saturation canno
predicted from the linear analysis but will be discussed
some detail in II.

To get an idea of the behavior of the drift speeds to
expected beyond the bifurcation point, we compute
fastest-growing unstable mode, which should provide a
cent approximation to observed wavelengths close to thr
old. For simplicity, this calculation is restricted to the sym
metric model (n51) with k51. Theq value, at which the
growth rate is maximum is obtained by differentiating Eq
~7!, ~8! and settingdv r /dq50, which gives us two more
relations

22v i

dv i

dq
18qv r112q3216q50, ~15!

8qv i1
dv i

dq
~2v r14q2!52 f qx, ~16!

from which the four unknownsv r , v i , dv i /dq, andq can
be determined. Two simplifications are straightforward, g
ing expressions forv i anddv i /dq:

dv i

dq
5

1

2v r14q2
~2 f qx28qv i !, ~17!

v i5
f qxq

2v r14q2
, ~18!

which leaves us with two equations forv r andq.
Incidentally, we can immediately gather an interesti

consequence from these equations regarding the questio
convectiveversusabsoluteinstability @57#. If we requirev r
50 in Eq. ~18!, this impliesdv i /dq50 by virtue of Eq.
~17!. Hence, at the critical point of the linear instability, w
havedv/dq50, i.e., the group velocity of a localized pe
turbation vanishes. This means the thresholds for convec
and absolute instabilities coincide in our system, wh
therefore is never only convectively unstable. This statem
remains true for arbitrary values ofk andn.

In the following, we will assume that the stripe pattern
oriented orthogonally to the flow~as it usually is if it arises
spontaneously from a random initial condition!, therefore
qx5q. The equations determining the two remaining u
knowns are then

v r
22

f 2q4

4~v r12q2!2
14v rq

213q428q218Ḡ50,

~19!

f 2q2v r

2~v r12q2!3
24v r26q21850. ~20!

The limiting casesf !1 andf @1 of this system of equation
can be treated analytically, detailed expressions are give
Appendix B. For small flow velocities the interface drifts a
speed that is proportional tof, whereas for large velocities
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the drift speed becomes proportional toAf . The imaginary
part of the growth ratev i is proportional tof in both cases
but with different proportionality constants. A numerical s
lution of the system~19!, ~20! is not difficult. The resulting
‘‘drift frequencies’’ v i are given in Fig. 3 for several perti
nent temperature gradients, together with the asymptotic a
lytic expressions from Appendix B. We will compare the
retical with measured drift velocities in Sec. IV.

III. NUMERICAL APPROACH

A. Discretization

Equation~1! was simulated with periodic boundary con
ditions on quadratic grids of sizes between 32332 and 512
3512. The mesh sizeh was usually 0.5, although at therm
gradients below 0.35, we had to reduce it to keep the c
stable. With a 1283128 lattice, hexagonal structures wou
contain on the order of 100 cells forh50.5. Previous simu-
lations @36# have shown that this is roughly the size of
typical dynamical grain, inside which a system at not too lo
a temperature gradient manages to get rid of all its topolo
cal defects and to attain complete hexagonal order. In o
to have several grains in the numerical box, a number
2563256 systems were simulated.

Temporal discretization was done by a simple expli
first-order Euler scheme. Two variants of the code w
implemented; in the first, spatial derivatives were appro
mated by second-order accurate symmetrical sten
whereas in the second, a pseudospectral approach, de
tives were computed via fast Fourier transform, i.e., th
were accurate to orderhN for a mesh sizeh and linear grid
dimensionN. The flow term was always evaluated via i
Fourier representation, as a real-space calculation wo
have required the computation of a double integral on
whole system at each lattice point~see Appendix A!. We will

FIG. 3. Imaginary partv i of the complex growth ratev for the
fastest-growing mode~‘‘drift frequency’’ ! as a function of the flow

parameterf for Ḡ50.1 ~solid line!, Ḡ50.35 ~dashed line!, andḠ
50.6 ~dash-dotted line!. The thin dotted line is the asymptotic ap
proximation for largef, Eq. ~B19!, whereas the other thin line

denote asymptotic expressions for smallf and differentḠ values,
Eq. ~B8!.
1-5
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MARIETTI, DEBIERRE, BOCK, AND KASSNER PHYSICAL REVIEW E63 066301
refer to the first, less accurate approach as the mixed c
and to the second as the~pseudo!spectral one.

The mixed code was useful for the treatment of larg
systems (2563256) over longer times, since it was fast
than the spectral code by a factor of about 6 in this ca
However, the simulation of systems with smaller tempe
ture gradients (Ḡ<0.35) necessitated the use of the spec
code, both for accuracy and stability reasons. In our previ
study of three-dimensional rapid solidification@36#, gradients
below 0.35 remained essentially inaccessible due to num
cal instabilities arising at a mesh size of 0.5. Reduction of
mesh size mitigated the problem, but restricted access
system sizes.

B. Velocity measurement

In the presence of flow, patterns move laterally, so it
came desirable to measure their velocity. This was done
a correlation function method as follows. The dynamic ev
lution of the interface was simulated over a time interv
extending fromt to t1Dt. Then the quantity

c~Dx,Dy,Dt,t !5^@z~x1Dx,y1Dy,t1Dt !2z~x,y,t !#2&
~21!

was evaluated for a number of valuesDx andDy that were
small multiples of the grid spacingh. Angular brackets de-
note spatial averaging~over the whole grid!. Next the mini-
mum of the correlation functionc was determined via para
bolic interpolation from the surroundings of the minimu
value obtained within the discrete set$Dx,Dy%. An approxi-
mation to the velocity at timet1Dt was then obtained a
v5(vx ,vy) with vx5Dx* /Dt andvy5Dy* /Dt, whereDx*
andDy* were the coordinates of the minimum.

We tested this procedure on a variety of analytically p
scribed interfaces. It turned out highly reliable and accur
~in the ppm range and better! whenever the interface had
constant shape, its only dynamics being a lateral drift m
tion, and the time stepDt was not chosen too short. Th
accuracy deteriorated to fall into the percent range, w
shape changes were allowed. This is understandable, as
a shape-changing interface the drift velocity is not even p
cisely defined. A one-dimensional example will clarify th
point. Consider

z~x,t !5sink~x2vt !cosvt, ~22!

where intuitively one would associate the velocityv with the
motion of the pattern. But we also have

z~x,t !5
1

2
sinkFx2S v2

v

k D t G1
1

2
sinkFx2S v1

v

k D t G ,
~23!

that is, the pattern is decomposable into two waves driftin
different velocitiesv2v/k andv1v/k.

In this case, the correlation function can be calcula
analytically:
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c~Dx,Dt,t !5 1
2 @cos2vt1cos2v~ t1Dt !#

2cosk~Dx2vDt !cosvt cosv~ t1Dt !,

~24!

the spatial minimum of which is, for cosvt cosv(t1Dt).0,
given by k(Dx2vDt)52np (n50,61,62, . . . ). The ex-
ample shows that for regular structures,Dx ~as well asDy)
has to be kept smaller than a wavelength in order to av
solutions withnÞ0. Assumingn50, we find Dx/Dt5v.
This means that one obtains the intuitively expected resuv
for the velocity, whenever cosv t̃ does not change sign in th
interval t̃ P@ t,t1Dt# @in these — rare — instances, the a
gorithm will yield Dx/Dt5v6p/kDt, i.e., the ‘‘velocity
signal’’ will display peaks at~twice! the frequencyv]. We
conclude that in general the algorithm is reliable and robu

IV. SIMULATION RESULTS

A. Some basic patterns

The presence of a flow term considerably increases
richness of the system with regard to pattern formati
Whereas stable structures of the system without flow can
described in a summarizing fashion as more or less orde
hexagonal arrays of cells, which may be steady state~with
some movement in the grain boundaries! or oscillatory~with
phase shifts of'2p/3 within a triangle of neighboring cells!
or ~weakly! turbulent @36#, the system with flow has man
more ways of organizing itself. Figures 4 through 7 m
serve to give a first impression. Each of these figures
plays a typical structure for a given temperature gradient
moderate flow.

In Fig. 4, the value of the temperature gradient isḠ

50.7, i.e., larger thanḠc( f 50), hence the planar interfac
is destabilized by the flow only. Therefore, no hexagonal c
structure can develop initially~as long as the pattern is de
scribable by the linear theory!. We obtain a stripe structure
containing defects, some of which disappear pretty fa
whereas the last few persist for a long time. The final evo
tion of this pattern up to several thousand diffusion tim
will be discussed in II.

Figure 5 is atḠ50.6, where the Mullins-Sekerka insta
bility is already present. It can be clearly seen that the fl
has an organizing influence on the structure consisting
hexagonal cells: the dynamical grain boundaries separa
differently oriented hexagonal domains try to orient the
selves perpendicular to the flow, so they become parallel.
did not observe similar ordering of grain boundaries in sim
lations without flow, in which grain boundaries rather tend
form ringlike structures@36#.

At smaller temperature gradients, flows of moderate s
do not appear to strongly perturb the basicstructureimposed
by the MS instability. Thedynamicsis of course different,
since the entire pattern drifts against the direction of
flow. Moreover, comparisons with simulations without flo
show that structures display more order~after the same time
of dynamical evolution and starting from the same rand
initial conditions! with flow than they do without. As the
1-6
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flow is increased, new structures develop that we disc
below.

At Ḡ50.35, we find the flow to promote oscillatory stru
tures. Figure 6 shows an example of atopologically ordered
array of hexagons. Each cell has exactly six neighbors.
brightnesses of the cells indicate their different heigh
white is high, black is low. Different sizes of the cells a
due to their being in different phases of their basic osci
tion. There is a phase shift of approximately 2p/3 between
neighboring cells. Phase coherence is not preserved thro
out the entire array of cells as may be noted by compari
of the lower left and upper right parts of the pictures~not all
big bright cells are exactly the same, and similar stateme
hold for the small bright cells and the dark cells!. By ani-
mated visualization of a series of pictures, the oscillations

FIG. 4. Pattern atḠ50.7, f 54.0, system size 128.03128.0
~grid spacing h50.5), i.e., the lattice is 2563256. t5150.0.
Lengths are given in units of the~rescaled! diffusion length, times
in units of the~rescaled! diffusion time.

FIG. 5. Pattern atḠ50.6, f 52.0, system size 128.03128.0
~grid spacingh50.5). t52000.0.
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easily verified. Large cells are seen to become smaller
larger again, periodically. Small cells behave the same w
the only difference being a phase shift. Unfortunately,
movie cannot be transmitted in this media.

From earlier work@36#, these oscillations are known t
occur even without flow; an analytical discussion, not co
sidering stability issues was given in@56#. For large grid
spacings (h50.5) we saw this dynamical state already
Ḡ50.4 with our finite-difference code. It was, however, o
served to appear later, i.e., at smallerḠ, when the mesh size
was reduced, and we estimated the bifurcation to 2p/3 os-
cillations to happen betweenḠ50.4 andḠ50.35@36#. As it
turns out, the spectral code with its higher accuracy does
yet produce the oscillations atḠ50.35, if flow is absent, but
it does so in the presence of even small flows (f 51.0). In
addition, the cellular lattice becomes more ordered, topolo
cal defects are eliminated more efficiently under flow.

FIG. 6. Pattern atḠ50.35, f 52.0, system size 128.03128.0
~grid spacingh50.5). t52000.0.

FIG. 7. Pattern atḠ50.25, f 52.0, system size 76.8376.8~grid
spacingh50.3). t51500.0.
1-7
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To finish this introductory tour through parameter spa

we consider a temperature gradient ofḠ50.25 ~Fig. 7!,
which was impossible to do with the finite-difference co
because of numerical instabilities. Even with the spec
code we have to reduce the mesh size to obtain numeric

stable results forḠ distinctly smaller than 0.35.
The example suggests that patterns are generically we

turbulent at such a small gradient, i.e., they show tim
dependent nonrelaxational behavior. Nevertheless, some
dering influence of the flow may be noted even here~cells
tend to align along the direction perpendicular to the flo!
and becomes much more conspicuous as the flow is
creased, to the extent of rendering structures regular aga
larger flows. We will return to this question in II.

B. Measured properties

In order to characterize the bifurcation from the plan
front, we introduce the standard deviationA[A^(z2^z&)2&
as a measure for the amplitude of the steady-state struc
reached in the late-stage evolution of an initially sinusoi
interface. Figure 8 shows the amplitude so obtained a
function of the temperature gradient. Due to the small sys
size (16.0316.0), it was possible to keep stripe structur
stable well below the threshold of the appearance of he
gons (Ḡ52/3). As expected@55#, the bifurcation is super-
critical.

In the presence of any nonzero flow, the basic structu
appearing at the instability threshold are stripes rather t
hexagons. Whereas our large-flow predictions, discussed
low ~and, in more detail, in II!, might require some effort to
be realized experimentally, this result should be of imme
ate experimental relevance, since it is valid no matter h
small the flow. Extremely small flows would make the ran
of temperature gradients in which stripes dominate o
hexagons very small, but this range would nevertheless
present and necessarily observed, at least temporarily

FIG. 8. AmplitudeA of steady-state stripe patterns for a fixe
flow of f 52.0 as a function of the temperature gradient. The ini
condition was a sinusoidal pattern with wave number 0.98, with
wave crests oriented parallel to they axis. Measurement of the
amplitude was done aftert51000.0 in units of the~rescaled! diffu-
sion time. The dotted line gives the theoretical position of the
furcation point, according to Eq.~13!.
06630
,

l
lly

ly
-
or-

n-
at

r

re,
l
a

m
s
a-

s
n
e-

i-
w

r
be
on

crossing the bifurcation threshold via reduction ofḠ. Since
the argument for the prevalence of stripes is drawn fr
linear stability analysis, it need not continue to hold, on
amplitudes become large enough for nonlinearities to play
important role. In II, we will see that this indeed happens
long as the flow is not too strong. The transcritical nature
the bifurcation to hexagons will then turn out to be impo
tant.

Measuring the velocity of the interface for values ofḠ
that are sufficiently close to the instability threshold we fi
that it exhibits damped oscillations. Examples forḠ50.7
and Ḡ50.6 are presented in Fig. 9. Our discussion of t
velocity measuring procedure in Sec. III suggests that
phenomenon may be due to some dynamics superimpose
the drift motion. This is corroborated by examining the fr
quency of oscillation.

The figure shows clearly that the frequency is sligh
higher for the larger value ofḠ ~for Ḡ50.7, there are 17
oscillations in the time window displayed, but only 16 fo
Ḡ50.6). A precise determination of the~angular! frequency
reveals that it is very close to the~angular! frequencyv

5A8kḠ of homogeneoussolutions@28# to Eq. ~1!. As has
been noted before@28#, patterns initiated close to the thres
old Ḡc oscillate as a whole before settling down into a stea
state.

The oscillatory velocity pattern is thus an effect of th
temporal modulation of the pattern@similar to the cosvt term
in Eq. ~22!# and we should consider theaverageover these
oscillations as the true velocity. They are a nongeneric f
ture of the current amplitude equation~1!, which is not
shared by other equations such as the Kuramoto-Sivashi
equation. For lower values ofḠ, these oscillations are no
present.

Let us now look at the drift velocities measured for d
ferent values of the temperature gradient and the flow. Fig
10 collects some data corresponding to gradients betw
Ḡ50.35 andḠ50.7. For flow strengths belowu f u56, all
the data points collapse approximately onto one curve. T
is to be expected from the linear-stability result~B9!, which
shows that theḠ dependence of the drift velocity is weak fo

l
e

-

FIG. 9. Oscillations of the lateral pattern velocity after initia

ization with a random structure. Solid line,Ḡ50.6; dashed line,

Ḡ50.7. For the smaller value ofḠ, the oscillations decay faster.
1-8
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small f. The dashed line in the figure shows this result
Ḡ50.6.

On the other hand, the spreading of the data points fof
.6 does not follow from the corresponding result~B20! for
large f. Clearly, the linear theory breaks down here. As
shall see below, the deviation of the drift velocity from th
analytic result happens in the vicinity of the transition to
new pattern, where the drift velocity is determined by no
linear effects. We will discuss this in particular for one tem
perature gradient, but there seems to be a morphology t
sition in all cases where a strong deviation from the lin
theory arises; the transition is not always to the same n
pattern, however.~For Ḡ50.4, there seem to be two trans
tions.!

Without flow, the equation of motion~1! is symmetric
under the parity transformationx→2x. Drifting patterns
arise, because this symmetry is broken by the flow te
meaning that we do not have spontaneous symmetry br
ing as, e.g., with parity breaking patterns in the purely dif
sive case@56#. Whereas those patterns are not stable in
tended systems, the present drifting structures are robus

It is easy to see that flow-induced drifting cells mu
themselves be asymmetric with respect to a mirror plane
allel to the yz plane, even though this asymmetry may
barely perceptible to the eye. To show this, we assume
opposite to be true, i.e.,z to be symmetric underx→2x.
Transforming Eq.~1! to a comoving frame, which results i
z t→z t2vzx , we obtain from the antisymmetric part of th
equation:

vS 21
1

k
1n D¹2zx2 f

]

]x
L@z#522vzx¹

2z22v~ u¹zu2!x .

~25!

But this relation must be invariant under an exchange ox
and2x anda replacement ofv by 2v. Hence, the flow term
must vanish, which means it cannot play any role. This is
contradiction with the fact that drifting patterns on lar
scales are not observed in the absence of flow.

FIG. 10. Measured drift velocity as a function of the flow f

different temperature gradients. Stars,Ḡ50.7; squares,Ḡ50.6; tri-

angles,Ḡ50.5 ~most of them covered by other symbols!; inverted

triangles,Ḡ50.4; circles,Ḡ50.35. Dashed line, analytic velocit

from linear stability analysis forḠ50.6.
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We have probed the asymmetry of cells in a number
different ways as a test of our numerical procedure. The m
distinctive method was as follows: first the 2D interface w
cut by a straight line parallel to thex axis through the middle
of a cell, to get its profile. Then the top part of the ce
~everything above a chosen threshold height! was fitted to a
parabola. The difference between the fit function and
actual cell profile is given for one case without and one w
flow in Fig. 11. Evidently, this difference is symmetric in th
former and asymmetric in the latter case. Since the fl
comes from the left in the picture, we can, moreover, ded
that the cells are steeper on the upflow side than on
downflow one.

V. CONCLUSIONS

The addition of a shear flow to directional solidificatio
near the absolute stability limit affects the system in seve
more or less profound ways.

First, the flow breaks the mirror symmetry of the equati
of motion. This implies that cellular solutions are asymm
ric in general. Symmetry breaking of this type is known
lead to drifting solutions in cases where it appears sponta
ously @28,56#. It produces the same behavior here. The
pearance of a drift velocity can be understood at the leve
a linear stability analysis that, moreover, provides a dec
quantitative estimate for its value. As expected, this desc
tion of the drifting pattern breaks down for larger flow
where nonlinear effects exert a stronger influence.

Second, the patterns appearing at the instability thresh
of the planar interface forḠ.Ḡc( f 50) are not hexagons
but stripes. We shall see that this statement will have to
made more precise in II, because at this moment, we ca
say anything about the stability of stripe structures. The p
nar front becomes unstable via a supercritical Hopf bifur
tion. Since the transition to hexagons of the system with
flow is transcritical, i.e., hexagons can exist even below
threshold of the diffusive instability, we may expect strip
and hexagons to interact, at least at small flow streng
This point will be discussed in some detail in II.

The main effect of the flow in situations where a structu
of hexagonal cells develops@i.e., for Ḡ,Ḡc( f 50) and not

FIG. 11. Deviation of the cell shape from a parabola, for a c
without flow ~solid line! and one with a flowf 52.0 ~dashed line!.

Ḡ50.5.
1-9
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MARIETTI, DEBIERRE, BOCK, AND KASSNER PHYSICAL REVIEW E63 066301
too large a flow# is to promote ordering, i.e., the appearan
of a hexagonal translational lattice. Hence, defects are el
nated more efficiently in the laterally moving pattern than
one at rest. Defects that stay tend to become aligned in
flow to give grain boundaries a preferential orientation~per-
pendicular to the flow!. Finally, the flow increases instabilit
toward local oscillations of cells with relative phase shif
Since these oscillations also act to reduce the numbe
defects@36#, the flow reinforces this tendency, again workin
to improve translational order.
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APPENDIX A: REAL SPACE REPRESENTATION OF THE
FLOW TERM

Since the nonlocal term is given by a product in Four
space

L@z#* [upu z* , ~A1!

~where for brevity we denote the Fourier transform by
asterisk! its position space expression can be obtained a
convolution integral. Care must be taken, however, beca
the inverse Fourier transform ofupu does not exist. There
fore, we first rewriteL@z#* as a different product.

For a one-dimensional interface, the most convenient
proach seems to be to write

L@z#* 5sign~p!p z* 52 isign~p!~]xz!* ~A2!

While the ~inverse! Fourier transform of the sign functio
does not exist as a function, it is defined in the distribut
sense and easily calculable:

s~x![
1

2pE2`

`

eipxsign~p!dp

5
1

2p S E
0

`

eipxdp2E
0

`

e2 ipxdpD 5
i

p

P
x

, ~A3!

the last expression being the distribution that is pointw
equal toi/px but requires any integral in which it appears
be interpreted as a principal value.

Hence we obtain for the flow term in 1D:

2 f ]xL@z#52
f

p
]x E

2`

`

— dx8
1

x2x8
]x8z~x8!, ~A4!

where the bar indicates a principal value integral. More s
cifically, we define

E
2`

`

— dx8•••5 lim
e→01

S E
2`

x2e

dx8•••1E
x1e

`

dx8••• D .

~A5!
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For a two-dimensional interface, another decomposition
more appropriate

L@z#* 52
1

upu ~2p2!z* 52
1

upu ~¹2z!* . ~A6!

~In one dimension, the inverse Fourier transform of 1/upu is
problematic because of the divergence at the origin, which
two dimensions is compensated by the volume eleme!
Hence we have

L@z#5E
2`

`

dx8E
2`

`

dy8s~x2x8!¹82z~x8!, ~A7!

where@p5(px ,py)#

s~x!5
1

4p2E2`

`

dpxE
2`

`

dpy

21

Apx
21py

2
eip•x

52
1

4p2E0

2p

dfE
0

`

dp
p

p
exp~ ipuxucosf!. ~A8!

To obtain the second expression, we have oriented the p
coordinate system such that the rayf50 is parallel tox
~hencep•x5puxucosf). Therefore,

s~x!52
1

4p2E0

2p

dfS iP
uxucosf

1pd~ uxucosf! D
52

i

4p2uxu
E

0

2p

— df
1

cosf

2
1

4pE0

2p

df
1

uxuusinfu FdS f2
p

2 D1dS f2
3p

2 D G
52

1

2puxu
. ~A9!

The principal value integral of 1/cosf vanishes as it extend
over an entire period. Thus we arrive at the following fin
expression for the flow term

2 f ]xL@z#5
f

2p
]xE

2`

`

dx8E
2`

`

dy8
1

ux2x8u
¹82z~x8!.

~A10!

Both the 1D and 2D expressions clearly exhibit the non
cality of the flow term and its odd-parity symmetry. All th
other terms in Eq.~1! have even parity, so the flow term
provides a symmetry-breaking mechanism.

Note also that the nonlocal kernels appearing in these
pressions are almost the simplest possible, if one think
terms of gradient expansions. Local terms produce suc
sive powers of derivatives, corresponding to powers ofp in
Fourier space. Nonlocal terms would be connected w
powers of 1/upu, which must be compensated for~in order to
keep things finite at smallp) by spatial derivatives.
1-10
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APPENDIX B: ANALYTICAL CALCULATION OF DRIFT
VELOCITIES

In order to solve Eqs.~19! and ~20! analytically, we first
cast them in a simpler form introducing

ṽ r5v r12q2. ~B1!

This yields

ṽ r
41ṽ r

2~8Ḡ2q428q2!2
f 2q4

4
50, ~B2!

f 2q2~ṽ r22q2!22ṽ r
3~4ṽ r22q228!50. ~B3!

We then consider the limiting casesf !1 andf @1. The first
of these is very simple. As we know that there are solutio
without flow, we set, as a first approximation,f 50 in Eqs.
~B2! and~B3!. v i will still remain f dependent via Eq.~18!,
which takes the form

v i5
f q2

2ṽ r

. ~B4!

We get immediately

ṽ r521
1

2
q2 ~B5!

and the Eq.~B2! for q can be reduced to quadratic. The res
is

q25241
4

A3
A412Ḡ, ~B6!

v r522q21
2

A3
A412Ḡ, ~B7!

v i5 f S 12
A3

A412Ḡ
D , ~B8!

v52
v i

q
52

fA3

2A412Ḡ
SA412Ḡ

3
21D 1/2

. ~B9!

As an example, forḠ50.7, this gives a drift velocityv
50.218f , and the dependence onḠ is weak. Note that for
this Ḡ value v r,0 and hence the structure will decay to
planar front~moving along as it does at the calculated velo
ity!.

The casef @1 is slightly more complicated. Considerin
Eq. ~B2! and the fact thatḠ is of order 1 in the interesting
parameter range, we see~from the signs in the equation! that
the only possible dominant balance for apair of terms is

ṽ r
4;

f 2q4

4
. ~B10!
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Inserting this in Eq.~B3! and combining the two equations
we find, however,

ṽ r;2q2, ~B11!

which is in contradiction with Eq.~B10! for f @1 and q
5O(1). This implies that dominant balances in Eq.~B2!
must containthreeterms at least and that the wave numbeq
of the fastest-growing mode has to scale, too. It must
crease withf and Eqs.~B10! and ~B11! suggest the scaling
f ;q2. Hence, we set

f 5aq2, ~B12!

assuminga5O(1). Inserting this into Eqs.~B2! and ~B3!
and usingq@1, we arrive at

ṽ r
42ṽ r

2q42
a2q8

4
50, ~B13!

a2q6~ṽ r
222q2!58ṽ r

424ṽ r
3q2. ~B14!

Equation~B13! can be solved forṽ r
2 :

ṽ r
25

q4

2
~11A11a2!. ~B15!

Using this in Eq.~B14!, we end up, after some simplifica
tions, with a relation determininga:

A2

8
~11A11a2!3/22A11a250. ~B16!

The numerical solution of this algebraic equation yieldsa
528.88.~There is only one real solution.! We then obtain

q5A f

a
'0.186Af , ~B17!

v r5SA11A11a2

2
22D f

a
'0.065f , ~B18!

v i5
2 f

A2~11A11a2!
'0.129f , ~B19!

v52
v i

q
'20.695Af . ~B20!

All of these expressions are independent ofḠ, as they must,
being leading-order results forf @Ḡ.
1-11
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hand, the notion of an absolute stabilitylimit in the context of
directional solidification simply means the threshold veloc
above which a planar interface is stabilized by surface tens
even in the absence of a thermal gradient.
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