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Pattern formation in directional solidification under shear flow.
I. Linear stability analysis and basic patterns
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An asymptotic interface equation for directional solidification near the absolute stabiliy limit is extended by
a nonlocal term describing a shear flow parallel to the interface. In the long-wave limit considered, the flow
acts destabilizing on a planar interface. Moreover, linear stability analysis suggests that the morphology
diagram is modified by the flow near onset of the Mullins-Sekerka instability. Via numerical analysis, the
bifurcation structure of the system is shown to change. Besides the known hexagonal cells, structures consist-
ing of stripes arise. Due to its symmetry-breaking properties, the flow term induces a lateral drift of the whole
pattern, once the instability has become active. The drift velocity is measured numerically and described
analytically in the framework of a linear analysis. At large flow strength, the linear description breaks down,
which is accompanied by a transition to flow-dominated morphologies which is described in the following
paper. Small and intermediate flows lead to increased order in the lattice structure of the pattern, facilitating the
elimination of defects. Locally oscillating structures appear closer to the instability threshold with flow than
without.
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[. INTRODUCTION [4-8]. It has also been investigated in metals, with at least a
perspective of applicatio®—-12]. Recently, successful ob-
Directional solidification is an important experimental servations ofthree-dimensionatiirectional solidification of
procedure both from the applied and the fundamental pointyansparent alloygl13,14 have opened the road to an under-
of view. standing that goes beyond the description of two-
On the one hand, growth techniques such as zone meltingimensional structures, for which a large amount of theoret-
and the Bridgman method were developed in the 1950s tifal work does exisf15-28. _
purify semiconductor materials. Subsequently, the basic pro- AS & consequence, it has now become an important task to
cess became an important industrial tool, and it continues tfp!low up with theoretical work on three-dimensional direc-

remain the basis of fundamental metallurgical techniques. fional growth. Detailed analysis of three-dimensional pat-
terns has so far largely been restricted to free growth of small

On the other hand, when an alloy is solidified by pushing - i :
its melt at a constant velocity along an imposed thermal grag,tructures such as single dendrites, both analyti¢ay-31

dient toward lower temperatures — this realization of direc-"’.lnd num.erllg:ally[32—3zﬂ. Thfee'd'me"‘s'o”_a'(3'3) direc-
. e . .~ tional solidification has been considered in the context of
tional solidification is particularly amenable to theoretical

. ) - . phase-field modeling for small m nsisting of som
analysis — the interface between the liquid and the solldp ase-field modeling for small systems consisting of some

hich is fi loci d holoa Iten cells[35]. Only fairly recently, larger systems containing
which Is flat at zero velocity, undergoes a morphologica several thousand cells have been treated within the frame-

instability. Fundamental interest in this so-called Mullins- o of an asymptotic interface equatidB6]. The main
Sekerka(MS) instability [1] motivated many current re- 4qyantage of this equation is that it reduces the dynamical
search studies of directional solidification. The instability ISproblem to a description of the interface alone, which re-
driven by impurity diffusion, it appears at a critical speed, pjaces the 3D problem with a 2D one, and that, moreover, it
and once it has set in, new structures develop, depending Q8 a local description, thus rendering large systems tractable.
a number of factors such as the interface roughness, the seig-was obtained by a Sivashinsky-type expansion about the
regation coefficient, impurity diffusion, and the impurity point of absolute stability28], neglecting both solute trap-
concentration in the liquid. If the latter is high enough, two- ping and deviations from local interface equilibrium. As
phase eutectic structures may afigg which arenotcreated these approximations become doubtful for large solidifica-
by the MS instability. In this paper, we will rather focus on tion speeds, this model equation had to be considered a
the case of smaller concentrations leading to the growth of gualitative description only and comparison with experi-
dilute alloy forming a single-phase solid. ments had to rely on genericity arguments. However, we
Experimentally, pattern formation in directional solidifi- believe that the equation would be quantitatively appropriate
cation has been studied in great detail using transparerfibr the description of directional ordering experiments on
model substance3] in order to gain fundamental insight liquid crystals[37—39 and hence we suggest the more in-
triguing dynamic long-time effects predicted by &6] to be
observable in liquid crystals, which also have response times
*Email address: Klaus.Kassner@Physik.Uni-Magdeburg.de more accessible to experimen#0]. In any case, statistical
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properties obtained from the simulation compared reason-  =2¢V2;+2(|V¢]?)—2V2(|V{|?)—2v(V)V (V)
ably well with the same properties measured in experiments.
This holds apart from a systematic deviation allowing us to
conclude that experimental cellular patterns dot start
growing from a randongPoissoniajp distribution.

In earth-bound experiments, convection always exerts &/e denote byV the two-dimensional gradient operatdf,
major influence on the arising patterpél]. Therefore, we  =(dy,d,). The position of the liquid-solid interface is
extend our previous work here to include a flow in the de-{(x,y,t) and coordinates are chosen such that the tempera-
scription. Since this is but a first approach to a large-scaléure gradient is oriented along texis, whereas the flow is
system with flow, in order to facilitate the subsequent analyparallel to thex axis. £[ {] is a linear but nonlocal functional
sis of results, we consider the conceptually simplest case, af £, given via its Fourier transform
externally imposed flow parallel to the interface, approach-
ing a constant velocity far from it. For this situation, repre- FLLLONp) =plF [£1(p), )
senting the “poor man’s convection42], an asymptotic
description has been derived by Hobbs and Metz¢4g) ~ With JF  denoting the transform,  F[{]
One-dimensional interfaces in the presence of flow have=”.dx/”.dy {(x)exp(-ipx), andp its wave vector argu-
been studied if44]. Whereas in the latter investigation sol- ment. Position space representations4p{] in one and two
ute trapping and the deviations from equilibrium of the in-dimensions are given in Appendix A.
terface were fully taken into account using the Aziz model There are four nondimensional parameters in our equa-
[45], we will restrict ourselves here to the considerably sim-tion: the segregation coefficiekf the ratiov=D¢/D of the
pler situation of a constant segregation coefficient and nediffusion coefficients for impurities in the solid and the lig-
glect interface kinetics, to separate generic effects from thosgid, the nondimensional temperature gradigu and the
that are only important at high speed. Also the full equationstrengthf of the flow. Theone-sided modek characterized

:s more suzcepgble Ito nlumerlcal |r|1.st%b|l|t|e|s(,_ becrelluse its s 5y v=0, the symmetric modeby v=1. G is related to
utions tend to develop large amplitudes taking them out ol sjca| parameters via:

the validity domain of the expansidi36]. The only differ-

2
VOV =2V{(VO) |V )

ence between the interface equation employe@38] and 8D3L2mAc G
here will therefore be the term generated by the flow. It G= 5 . 3)
renders the equation nonlocal, which already makes its simu- YTa  V(Va—V)?

lation much more tedious than that of the original equation

and restricts our simulations to a few hundred solidificationln this expressionl. is the latent heatper unit volume of

cells rather than a few thousand. the transitionm the absolute value of the slope of the liqui-

This article consists of five sections. In Sec. I, we givedus line,Ac the miscibility gap at the base temperatdig

the basic equations together with a linear stability analysis(To=Tm—mMCcy, With T, the melting temperature of the pure

leading to the prediction of new morphologies induced bysubstance¢,=c..+Ac, andc.. the initial concentration of

the flow. Section Ill describes the numerical approach andhe liquid), y is the surface energy, assumed isotropic here,

our methods of velocity measurement. We give a number o¥, is the velocity corresponding to the absolute stability

simulation results in Sec. IV, exhibiting the basic patterns inlimit, given by V,=mLAcD/yT k. G is the temperature

the part of parameter space where some degree of spatigtadient and/ the pulling(or pushing velocity. Finally,f is

order prevails. A more detailed analysis and characterizatiogiven in terms of dimensional quantities as

of these structures is presented in the subsequent dale

henceforth referred to as Il. Conclusions regarding flow ef- _8V.

fects on pattern dynamics and the bifurcation structure of the f= €Vs’ @

system are summarized in Sec. V. Appendix A provides the

real-space representation of the flow term thus displaying it¥., being the speed of the imposed flow far from the inter-

nonlocal nature. Some analytical approximations are worke¢ace, S= v, /D is the Schmidt numberi, is the kinematic

out in detail in Appendix B. viscosity of the liquid, ande is the nondimensional distance
from absolute stabilitye=1/2k—yT,V/2mLAcD. f is dy-
namically determined by the ratio of the flow and pulling

IIl. MODEL EQUATION AND LINEAR STABILITY speeds.
ANALYSIS Equation(1) is obtained from an expansion about the ab-
A. Long-wave equation solute stability limit, where the wavelength of the most un-

stable mode diverges asy¥. It takes the form of a strongly
nonlinear long-wave equation, in which wavelengths have
been rescaled by/e to make themO(1). Thus, nondimen-
V4 sional lengths are measured in units of a rescaled diffusion
length along thex andy directions, with a scaling factor
1/\/e; lengths in thez direction are measured as multiples of
the unscaled diffusion length. The time unit is a diffusion

The equation to be studied is

fu— V2 +

1+l 2
E+V

2ty
E 14

— Jd
2 _
+8KV2+8KG¢ ~f- L[ {]
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time (2D/V?) scaled by 1¢. Fork=0, the equation becomes In the case of buoyancy-driven convection with a lighter sol-
indefinite, because there is no absolute stability limit in thisute and solidification proceeding upward in the gravitational

case.

For simplicity, we shall sek=1 in the following, i.e.,
Ac=const, independently of the reference temperaiye
From previous experience, the choicekas not expected to
have a strong influence on results, as longkadoes not

field (leading to unstable stratificatipnt was found that in
most cases the coupling between the instabilities is weak due
to a large disparity in unstable wavelengtfs2], even
though an oscillatory instability may occi@is3] in special
circumstances. For Rayleigh numbers below the critical

become very small. value, convection delays the Mullins-Sekerka instability in
To further reduce the parameter space to be explored, W |imit of small segregation coefficients, where a long-
also setv=1, thus restricting ourselves to the symmetric,aye equation different from ours can be derived. Forced
model. This is not a particularly realistic model for direc- .. < \were studied by Coriekt al. [51] and by Forth and
tional solidification, wherez=0 would be more appropriate. Wheeler[54], who found that for two-dimensional distur-

However, for directional ordering in liquid crystals, it is a ; . o
better approximation than the one-sided model. Moreoverbances the flow delays the morphological instabiliy,

the choicev=1 is least problematic in numerical simulations whereas for disturbances with wave vectors perpendicular to

with a direct finite-difference discretization, because deeﬁhe.3 flow the latter normally does not affect the critical con-
grooves that may trigger numerical instabilities are Ies%'tlonS of the MS |nst_ab|I|ty._ _However, for small-wave num-
likely to evolve with diffusion in the solid allowed. Since the °€f modes, the MS instability can be enhanggd]. Near
most efficient way to deal with the nonlocal term is to work absolute stability, the wavelength is much larger than the
in Fourier space, we have developed a pseudospectral Cod_gf_fusmn I(_angth and parallel flow was shown to .be_ destabi-
which is much less susceptible to these problems. Neverthdizing to disturbances that travel agains{%5]. This is the
less, a comparison with previous resy$] is easier, if we  Situation encountered here.
keepv at the value then used, and experience suggesis Equation (1) has the steady-state solutig=0. Obvi-
that generic patterns are not strongly influenced by thiusly, the linear stability analysis of this solution will in-
choice. Finally, because our results must not be expected tlve only the terms on the |hs of the equation. Inserting the
be quantitative except for liquid crystal systems, we stick toperturbation ansatzx= (x,y) ]
the valuer=1 here. Tests with various nonzero values-of
have been performed but have not revealed interesting dif- {=explot+igx) )
ferences.

Therefore, the important parameters to be varied in thénto Eq. (1), we obtain the dispersion relation#|q|)
simulations areés andf.

The form of Eq.(1) can be guessed from symmetry and .

1
1+E+V2

1
2+ E+ V) wq2+

scaling arguments. The linear terms on the left-hand side w?+ q
(Ihs) are determinedincluding their coefficientsby the lin-
ear stability analysis of the full three-dimensional model, in- —8kg?+8kG—ifq,q=0. (6)

volving diffusive transport and the coupling to the Navier-

Stokes equations. Scaling arguments tell us that the nonlinegg, ¢ torms stemming from the partial derivatives are obtained
terms can contain at most four spatial derivatives and fof, o straightforward manner, only the one arising from the
each temporal derivative present there must be two spatigloniocal term may require some explanation. To compute
derivatives lesgsince wave numbers scale &5 but fre-  he nonlocal term for the perturbatiad) we first take the
guencies ag). In the absence of a thermal gradient, we havespatial Fourier transform of ¢, which is simply
translational symmetry in thedirection, so we know that all 4m2¢ explt) &g+ p), then multiply it by|p| to obtain the
nonlinear terms must contain derivativesiabnly. If there is  t.ansform of £[£]. Transforming back we gef,|glexp(t

no flow, we also have parity symmetry, which constrains the, jq.) the derivative of which with respect toproduces a
number of spatial derivatives of terms not containin® — ,efactoriq, . After dropping the common exponential factor

being even. Finally, rotational symmetry can be invoked to, 4 he prefacto; of all terms, we are left with the
exclude terms such asv{)* [28]. From these consider- dependent expression of E@).

ations, one obtains all the nonlinear terms on the right-hand Settingw=w, +iw; and decomposing the dispersion re-
side (rhs), but not their prefactors, of course, for which the lation into its reral ana imaginary parts, we obtain

full expansion must be perform¢d3,47]. What can also be '
guessed is that the flow should lead to a nonlocal term break-

ing the parity symmetry with respect to tReoordinate. Itis ;2 2+ | 2+ 1 + ,,) w2+ | 1+ 1 +12|q*—8kg2+8kG
not clear beforehand, however, that it does introduce ad- k k
ditional nonlinearocal terms. The nonlocal term on the Ihs ~0 @
is, in a sense, the simplest nonlocality possilsiee Appen- '
dix A). 1

B. Linear stability analysis wi| 20,+| 2+ KTY q?|=faa. ®

The problem of coupled morphological and convective

instabilities has a long history of detailed study2,48—51.  The unstable mode takes the form
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FIG. 1. The functiong(q) determining the neutral surfac& FIG. 2. Neutral curve for different flow strengthsLower solid
=0.5. Upper curvef=0, lower curve:f=10. line, f=0; dashed linef=1; dash-dotted linef=2; dotted line,
f=3; solid line,f=4; higher dashed linef,=5. The curves shift
w; upward with increasind by an amount proportional té?.
{=1exp o t+i| gyl x+ q—t +ayy|is 9
X

of modes containing only finite] values is unstable. For

i.e., it corresponds to a traveling wave moving along the Strong flow,g(q) is negative ag=0, i.e.,all modes up to
axis at velocityVy=—w;/q,. On the neutral surfacap,  the marginal one are unstable.

=0, which implies The neutral surface is the set of zerog(f) in the space
spanned byg, G, andf. For convenience, we restrict our-
o= fax , (10) s_elves to they G plane and draw neqtral_curves for several

(2+1k+v)q discrete values of the flow paramefein Fig. 2, to demon-

strate both thes andf dependences of the neutral surface.
A calculation of the critical value of the temperature gra-
dient in the general cageequiringdw,/dq=0) leads to

hence we have a Hopf bifurcation whenever the flow is dif-
ferent from zero and the pattern is oriented such tat0.
The velocity of the corresponding traveling wave is simply

f " o 2k? . 2k cog ¢
(2+1k+v)q’ (1) ¢ 1+k+kr? 8(1+2k+kv)?’

Vy= (13)

Inserting Eq.(10) into Eq. (7), we arrive at the equation for - gyhipiting the fact that the instability threshold depends on
the neutral surface: the angle between the flow and the wave vector of the per-
2 turbation. Without flow, the threshold is given by the first

g(q)= ( 1+ 1 + ,,2) q%— 8k +8KG— _fa term of Eq.(13) [28] and the bifurcation, transcritical in two
K (2+1k+v)q dimensions, is known to give rise to hexagonal patterns at
-0 (12) onset[56]. From the equation, we can immediately conclude

that for values of the temperature gradient satisfyﬁg
where the last term depends on the angle between the flowgc(f=0), there exists a critical flow strength given by
and the wave vector only, not on the modulus of the latter, a

situqtion that we describe by setting ebsq,/g. Obviously, 8(1+2k+kv)? [ — 2K2
for fixed values of and ¢ the essential change of the neutral f2= K (

curve (in the qG plane brought about by the flow is an
increase of the critical value & where the instability first

: (14)

14kt k2

o g above which the planar front is destabilized by the flow
appears. Hence the flow haglastabilizingeffect, since the alone. In this case, the patterns emerging, as the planar in-

region of parameter space, where the planar solution is Uffg 56 hecomes unstable, will not be hexagons but rather
stable corresponds to values Gf belowthe critical value. stripes oriented orthogonally to the flosince these are the
For givenG, the flow can be made large enough to rendemost unstable disturbangesThey should drift against the
the planar front unstable even nepr 0, i.e., with respectto flow with a speed approximately given by Ed.1) and cal-
homogeneous perturbations. Figure 1 displays the functionulated more precisely below. As we shall see in Sec. IV,
g(q) for two values of the flow(assuming cog=1). With  these predictions are borne out by the simulations. It is then
weak flow, g(q) is positive atq=0, and if G is small ~an interesting question, how the system will behave on de-
enough, the function has two zeros at positiyée., a band crease ofG below the zero-flow threshold. What happens
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when the pattern amplitude approaches saturation cannot be
predicted from the linear analysis but will be discussed in
some detail in Il

To get an idea of the behavior of the drift speeds to be
expected beyond the bifurcation point, we compute the
fastest-growing unstable mode, which should provide a de- .-
cent approximation to observed wavelengths close to thresh-
old. For simplicity, this calculation is restricted to the sym-
metric model ¢=1) with k=1. Theq value, at which the
growth rate is maximum is obtained by differentiating Egs.
(7), (8) and settingdw, /dg=0, which gives us two more
relations

d .
—2wid—0;'+8qwr+12q3—16q=0, (15) f

FIG. 3. Imaginary part; of the complex growth rate for the
fastest-growing modé&'drift frequency”) as a function of the flow
parameterf for G=0.1 (solid line), G=0.35 (dashed ling andG
=0.6 (dash-dotted line The thin dotted line is the asymptotic ap-
from which the four unknowns, , w;, dw;/dq, andq can proximation for largef, Eqg. (B19), whereas the other_thin lines
be determined. Two simplifications are straightforward, giv-denote asymptotic expressions for snfadind differentG values,

dwi
8quw;+ ﬁ(zwr+4q2)=2qu, (16)

ing expressions fow; anddw; /dq: Eq. (B8).
%_ 1 (2fq,— 8qw;) 17 the drift speed becomes proportional {®. The imaginary
dg _Zwr+4q2 D= Sqen), part of the growth ratev; is proportional tof in both cases

but with different proportionality constants. A numerical so-
lution of the systen{19), (20) is not difficult. The resulting

wi_fq—xq' (18  “drift frequencies” w; are given in Fig. 3 for several perti-
2w, +4q? nent temperature gradients, together with the asymptotic ana-
. . ) lytic expressions from Appendix B. We will compare theo-
which leaves us with two equations far, andg. retical with measured drift velocities in Sec. IV.

Incidentally, we can immediately gather an interesting
consequence from these equations regarding the question of
convectiveversusabsoluteinstability [57]. If we requirew, ll. NUMERICAL APPROACH
=0 in Eq. (18), this impliesdw;/dg=0 by virtue of Eq.
(17). Hence, at the critical point of the linear instability, we
havedw/dq=0, i.e., the group velocity of a localized per-  Equation(1) was simulated with periodic boundary con-
turbation vanishes. This means the thresholds for convectiveitions on quadratic grids of sizes betweenx3®2 and 512
and absolute instabilities coincide in our system, whichX512. The mesh sizk was usually 0.5, although at thermal
therefore is never only convectively unstable. This statemergradients below 0.35, we had to reduce it to keep the code
remains true for arbitrary values &fand v. stable. With a 128128 lattice, hexagonal structures would

In the following, we will assume that the stripe pattern is contain on the order of 100 cells fbr=0.5. Previous simu-
oriented orthogonally to the floas it usually is if it arises lations [36] have shown that this is roughly the size of a
spontaneously from a random initial conditjprtherefore  typical dynamical grain, inside which a system at not too low
g,=9. The equations determining the two remaining un-a temperature gradient manages to get rid of all its topologi-
knowns are then cal defects and to attain complete hexagonal order. In order

to have several grains in the numerical box, a number of

A. Discretization

f2q4 e a ey o= 256X 256 systems were simulated.
wy— m+4qu +30"-8q°+8G=0, Temporal discretization was done by a simple explicit
(@207 19 first-order Euler scheme. Two variants of the code were
(19 implemented; in the first, spatial derivatives were approxi-
5 5 mated by second-order accurate symmetrical stencils,
&_40) —69%+8=0 (20) whereas in the second, a pseudospectral approach, deriva-
2(w,+20%)3 ' ' tives were computed via fast Fourier transform, i.e., they

were accurate to ordér™ for a mesh sizén and linear grid
The limiting cases <1 andf>1 of this system of equations dimensionN. The flow term was always evaluated via its
can be treated analytically, detailed expressions are given iRourier representation, as a real-space calculation would
Appendix B. For small flow velocities the interface drifts at a have required the computation of a double integral on the
speed that is proportional o whereas for large velocities, whole system at each lattice poisee Appendix A We will
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refer to the first, less accurate approach as the mixed code ¢(Ax,At,t)=3%[coSwt+coSw(t+At)]
and to the second as tlipseudgspectral one.

The mixed code was useful for the treatment of larger —cosk(Ax—vAt)coswt cosw(t+At),
systems (258 256) over longer times, since it was faster (24)
than the spectral code by a factor of about 6 in this case.

However, the simulation of systems with smaller temperathe spatial minimum of which is, for cest cosw(t+At)>0,
ture gradients G=<0.35) necessitated the use of the spectraBiven by k(Ax—vAt)=2nm (n=0,+1,%£2,...). The ex-
code, both for accuracy and stability reasons. In our previougmple shows that for regular structuréss (as well asAy)
study of three-dimensional rapid solidificatif86], gradients has to be kept smaller than a wavelength in order to avoid
below 0.35 remained essentially inaccessible due to numergolutions withn#0. Assumingn=0, we find Ax/At=v.

cal instabilities arising at a mesh size of 0.5. Reduction of thd his means that one obtains the intuitively expected result
mesh size mitigated the problem, but restricted accessibifar the velocity, whenever cast does not change sign in the

system sizes. intervalt e [t,t+At] [in these — rare — instances, the al-
gorithm will yield Ax/At=v*w/kAt, i.e., the “velocity
B. Velocity measurement signal” will display peaks aftwice) the frequencyw]. We
In the presence of flow, patterns move laterally, so it peLonclude that in general the algorithm is reliable and robust.
came desirable to measure their velocity. This was done via
a correlation function method as follows. The dynamic evo- IV. SIMULATION RESULTS
lution of the interface was simulated over a time interval A. Some basic patterns
extending fromt to t+ At. Then the quantity '
The presence of a flow term considerably increases the
C(AX,AY, At ) =([L(X+AX,y+ Ay, t+At) — {(X,y,1)]%) richness of the system with regard to pattern formation.
(21)  Whereas stable structures of the system without flow can be
described in a summarizing fashion as more or less ordered
was evaluated for a number of valuds andAy that were hexagonal arrays of cells, which may be steady staith
small multiples of the grid spacink. Angular brackets de- some movement in the grain boundayies oscillatory(with
note spatial averagin@ver the whole grijl Next the mini-  phase shifts of=2#/3 within a triangle of neighboring cells
mum of the correlation function was determined via para- or (weakly) turbulent[36], the system with flow has many
bolic interpolation from the surroundings of the minimum more ways of organizing itself. Figures 4 through 7 may
value obtained within the discrete detx,Ay}. An approxi- serve to give a first impression. Each of these figures dis-
mation to the velocity at timé+ At was then obtained as plays a typical structure for a given temperature gradient at a
v=(vy,vy) With v,=Ax*/At andv,=Ay*/At, whereAx*  moderate flow. B
andAy* were the coordinates of the minimum. In Fig. 4, the value of the temperature gradientGs
We tested this procedure on a variety of analytically pre-— 7 je. larger thaiG (f=0), hence the planar interface
s_cribed interfaces. It turned out highly reliable and accurates gestabilized by the flow only. Therefore, no hexagonal cell
(in the ppm range and betlewhenever the interface had a gyyycture can develop initialljas long as the pattern is de-
constant shape, its only dynamics being a lateral drift MOs¢yibable by the linear theoryWe obtain a stripe structure
tion, and the time stej\t was not chosen too short. The ¢ontaining defects, some of which disappear pretty fast,
accuracy deteriorated to fall into the percent range, whekyhereas the last few persist for a long time. The final evolu-

shape changes were allowed. This is understandable, as Wil of this pattern up to several thousand diffusion times
a shape-changing interface the drift velocity is not even pregiil pe discussed in II.

cisely defined. A one-dimensional example will clarify this

point. Consider Figure 5 is atG=0.6, where the Mullins-Sekerka insta-

bility is already present. It can be clearly seen that the flow
has an organizing influence on the structure consisting of
{(x,t)=sink(x—vt)coswt, (220 hexagonal cells: the dynamical grain boundaries separating
differently oriented hexagonal domains try to orient them-
where intuitively one would associate the veloaityvith the ~ Selves perpendicular to the flow, so they become parallel. We
motion of the pattern. But we also have did not observe similar ordering of grain boundaries in simu-
lations without flow, in which grain boundaries rather tend to
form ringlike structure$36].
x—| v+ b t|, At smaller temperature gradients, flows of moderate size
k do not appear to strongly perturb the basticictureimposed
(23 by the MS instability. Thedynamicsis of course different,
since the entire pattern drifts against the direction of the
that is, the pattern is decomposable into two waves drifting aflow. Moreover, comparisons with simulations without flow

1.
+ =sink

2

(O]
v— —

T

1
L(x,t)= Esmk

different velocitiesy — w/k andv + w/k. show that structures display more ordafter the same time
In this case, the correlation function can be calculatedf dynamical evolution and starting from the same random
analytically: initial conditiong with flow than they do without. As the
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FIG. 4. Pattern atG=0.7, f=4.0, system size 128:0128.0 FIG. 6. Pattern atG=0.35, f=2.0, system size 128:0128.0
(grid spacingh=0.5), i.e., the lattice is 256256. t=150.0.  (grid spacingh=0.5). t=2000.0.
Lengths are given in units of thigescaled diffusion length, times
in units of the(rescaled diffusion time. easily verified. Large cells are seen to become smaller and
larger again, periodically. Small cells behave the same way,
flow is increased, new structures develop that we discusd!® only difference being a phase shift. Unfortunately, a
below. movie cannot be transmitted in this media.

At G=0.35, we find the flow to promote oscillatory struc- From earllgr work[36]., these os_czlllathns are known to
occur even without flow; an analytical discussion, not con-

tures. Figure 6 shows an example dipologically ordered sidering stability issues was given [56]. For large grid

array of hexagons. Each cell has exactly six neighbors. The . - . )
brightnesses of the cells indicate their different heights;s_paCIngS =0.5) we saw this dynamical state already at

white is high, black is low. Different sizes of the cells are G= 0.4 with our finite-difference code. It was, however, ob-
due to their being in different phases of their basic oscilla-served to appear later, i.e., at smalarwhen the mesh size
tion. There is a phase shift of approximately/3 between was reduced, and we estimated the bifurcation td320s-
neighboring cells. Phase coherence is not preserved througbilations to happen betwedd= 0.4 andG = 0.35[36]. As it

out the entire array of cells as may be noted by comparisofurns out, the spectral code with its higher accuracy does not
of the lower left and upper right parts of the pictutest all e hroduce the oscillations &= 0.35, if flow is absent, but
big bright cells are exactly the same, and similar statement$ yoes so in the presence of even small flovis:(.0). In

hold for the small bright cells and the dark celi8y ani-  5qgition, the cellular lattice becomes more ordered, topologi-
mated visualization of a series of pictures, the oscillations arg,| yefects are eliminated more efficiently under flow.

FIG. 5. Pattern a§=0.6, f=2.0, system size 128:0128.0 FIG. 7. Pattern a€=0.25,f=2.0, system size 762876.8(grid
(grid spacingh=0.5). t=2000.0. spacingh=0.3). t=1500.0.
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FIG. 8. AmplitudeA of steady-state stripe patterns for a fixed FIG. 9. Oscillations of the lateral pattern velocity after initial-

flow of f=2.0 as a function of the temperature gradient. The initialiZation with a random structure. Solid lin&=0.6; dashed line,
condition was a sinusoidal pattern with wave number 0.98, with theéG=0.7. For the smaller value @8, the oscillations decay faster.
wave crests oriented parallel to tlyeaxis. Measurement of the ) . ) . L=
amplitude was done aftér1000.0 in units of thérescaledl diffu- crossing the bifurcation threshold via reduction®f Since
sion time. The dotted line gives the theoretical position of the bi-the argument for the prevalence of stripes is drawn from
furcation point, according to Eq13). linear stability analysis, it need not continue to hold, once
amplitudes become large enough for nonlinearities to play an
- o important role. In 1, we will see that this indeed happens as

To finish this introductory tour through parameter Sloace1ong as the flow is not too strong. The transcritical nature of
we consider a temperature gradient @=0.25 (Fig. 7),  the bifurcation to hexagons will then turn out to be impor-
which was impossible to do with the finite-difference codetant.

because of numerical instabilities. Even with the spectral \jeasuring the velocity of the interface for values @f
code we have to reduce the mesh size to obtain numerically,at are sufficiently close to the instability threshold we find

stable results fo6 distinctly smaller than 0.35. _ that it exhibits damped oscillations. Examples f8r=0.7
The example suggests that patterns are generically weakly,y G- .6 are presented in Fig. 9. Our discussion of the

turbulent at such a small gradient, i.e., they show timeye|acity measuring procedure in Sec. Il suggests that this
dependent nonrelaxational behavior. Nevertheless, some %Bhenomenon may be due to some dynamics superimposed on

dering influence of the flow may be noted even herells ¢ qrift motion. This is corroborated by examining the fre-
tend to align along the direction perpendicular to the jlow quency of oscillation.

and becomes much more conspicuous as the flow is in- 1he figure shows clearly that the frequency is slightly
creased, to the extent of rendering structures regular again ﬁ|t her for the larger value o6 (for G=07 there are 17
larger flows. We will return to this question in Il gner for the larger value or ©5=0.7, there are

oscillations in the time window displayed, but only 16 for
G=0.6). A precise determination of tHangulay frequency

] ) ) reveals that it is very close to th@ngulaj frequency w
In order to characterize the bifurcation from the planar_

_ o = \8KG of homogeneousolutions[28] to Eg. (1). As has
front, we introduce the Sta'?dafd deviatir= V(£ (£))%) been noted beforg28], patterns initiated close to the thresh-
as a measure for the amplitude of the steady-state structure

reached in the late-stage evolution of an initially sinusoida®'d Gc oscillate as a whole before settling down into a steady
interface. Figure 8 shows the amplitude so obtained as gtate.

function of the temperature gradient. Due to the small system The oscnlatory_ velocity pattern is thus an effect of the
temporal modulation of the pattefsimilar to the cosot term

size (16.0<16.0), it was possible to keep stripe structures, .
stable well below the threshold of the appearance of hexd Ed: (22)] and we should consider ttaverageover these

—~ . L oscillations as the true velocity. They are a nongeneric fea-
gﬁgsal(G_Z/?’)' As expected53], the bifurcation is super- ture of the current amplitude equatidd), which is not

. shared by other equations such as the Kuramoto-Sivashinsky
In the presence of any nonzero flow, the basic structures . — _
on. For lower values db, these oscillations are not

appearing at the instability threshold are stripes rather thafd4atl

hexagons. Whereas our large-flow predictions, discussed pBresent. . . .
low (and, in more detail, in )| might require some effort to Let us now look at the drift velocities measured for dif-

be realized experimentally, this result should be of immediferent values of the temperature gra@ient and the flow. Figure
ate experimental relevance, since it is valid no matter howtO Collécts some data corresponding to gradients between
small the flow. Extremely small flows would make the rangeG="0.35 andG=0.7. For flow strengths belof|=6, all

of temperature gradients in which stripes dominate ovefhe data points collapse approximately onto one curve. This
hexagons very small, but this range would nevertheless b to be expected from the linear-stability res@®®), which
present and necessarily observed, at least temporarily, ®hows that th& dependence of the drift velocity is weak for

B. Measured properties
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FIG. 11. Deviation of the cell shape from a parabola, for a case
FIG. 10. Measured drift velocity as a function of the flow for without flow (solid line) and one with a flowf =2.0 (dashed ling
different temperature gradients. Stdess 0.7; squaresz=0.6; tri- G=0.5.
angles,G=0.5 (most of them covered by other symbplgverted
triangles,G=0.4; circles,G=0.35. Dashed line, analytic velocity We have probed the asymmetry of cells in a number of
from linear stability analysis fo6s=0.6. different ways as a test of our numerical procedure. The most
distinctive method was as follows: first the 2D interface was
small f. The dashed line in the figure shows this result forcut by a straight line parallel to theaxis through the middle
G=06 of a cell, to get its profile. Then the top part of the cell
On the other hand, the spreading of the data pointd for (everything abov_e a chosen threshold he_|gimls f'.tted toa
~6 does not follow frbm the corresponding res(@0) for parabola. The difference between the fit function and the
largef. Clearly, the linear theory breaks down here. As Weactual cell profile is given for one case without and one with
shall see below, the deviation of the drift velocity from theﬂoW in Fig. 11. Evidently, this difference is symmetric in the

analytic result happens in the vicinity of the transition to aformer fand g]syTnfT?trt'ﬁ m_t?e latter case. Since thde ;Iow
new pattern, where the drift velocity is determined by non-cOMes from the fett in the picture, we can, moreover, deduce

linear effects. We will discuss this in particular for one tem-that the cells are steeper on the upflow side than on the

perature gradient, but there seems to be a morphology traH—ownﬂOW one.
sition in all cases where a strong deviation from the linear
theory arises; the transition is not always to the same new V. CONCLUSIONS

pattern, however(For G=0.4, there seem to be two transi-
tions)
Without flow, the equation of motioiil) is symmetric

under the parity transformatior— —x. Drifting patterns First, the flow breaks the mirror symmetry of the equation
arise, because this symmetry is broken by the flow termgt ohion. This implies that cellular solutions are asymmet-

meaning that we do not have spontaneous symmetry brealg. iy general. Symmetry breaking of this type is known to
ing as, e.g., with parity breaking patterns in the purely diffu- 1044 (5 grifting solutions in cases where it appears spontane-
sive casg56]. Whereas those patterns are not stable in Xpusly [28,56. It produces the same behavior here. The ap-
tended systems, the present drifting structures are robust. hoarance of a drift velocity can be understood at the level of
It is easy to see that flow-induced drifting cells must, jinear stability analysis that, moreover, provides a decent

themselves be asymmetric with respect to a mirror plane paly antitative estimate for its value. As expected, this descrip-

allel to theyz plane, even though this asymmetry may beiqn of the drifting pattern breaks down for larger flows,
barely perceptible to the eye. To show this, we assume thghere nonlinear effects exert a stronger influence.

_clJ_pposfite to beEtrule,ti.eg to be .syrrf]metric ur?dﬁx—> _I;(. , Second, the patterns appearing at the instability threshold
ransforming Eq(1) to a comoving frame, which results in of the planar interface fo>G.(f=0) are not hexagons

§i— & vy, we obtain from the antisymmetric part of the but stripes. We shall see that this statement will have to be

The addition of a shear flow to directional solidification
near the absolute stability limit affects the system in several
more or less profound ways.

equation: s ;
made more precise in Il, because at this moment, we cannot
1 9 say anything about the stability of stripe structures. The pla-
v<2+ K +v|V2,— f5£[§]= —20L,V?—2v(|V[?). nar front becomes unstable via a supercritical Hopf bifurca-

(25) tion. Since the transition to hexagons of the system without
flow is transcritical, i.e., hexagons can exist even below the
But this relation must be invariant under an exchange of threshold of the diffusive instability, we may expect stripes
and—x anda replacement af by —v. Hence, the flow term @nd hexagons to interact, at least at small flow strengths.
must vanish, which means it cannot play any role. This is inThis point will be discussed in some detail in II.
contradiction with the fact that drifting patterns on large  The main effect of the flow in situations where a structure
scales are not observed in the absence of flow. of hexagonal cells develogse., for G<G.(f=0) and not
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too large a flow is to promote ordering, i.e., the appearanceFor a two-dimensional interface, another decomposition is
of a hexagonal translational lattice. Hence, defects are elimimore appropriate

nated more efficiently in the laterally moving pattern than in

one at rest. Defects that stay tend to become aligned in the L 1 PR SO
flow to give grain boundaries a preferential orientatiper- LI == m(—p == W(V o*.
pendicular to the flow Finally, the flow increases instability

toward local oscillations of cells with relative phase shifts.(In one dimension, the inverse Fourier transform dpfLis
Since these oscillations also act to reduce the number gfroblematic because of the divergence at the origin, which in
defectq36], the flow reinforces this tendency, again working two dimensions is compensated by the volume element.
to improve translational order. Hence we have

(A6)
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1 (= * - .
s(x)=—| d f d e'Px

APPENDIX A: REAL SPACE REPRESENTATION OF THE 0 4m?) - Px - py\/ px+ Py

FLOW TERM

1 27 o p )
Since the nonlocal term is given by a product in Fourier == d¢f dp—exp(ip|x|cos¢). (A8)

space 47<Jo o P

LI =|p| &, (A1)  To obtain the second expression, we have oriented the polar

coordinate system such that the ray=0 is parallel tox
(where for brevity we denote the Fourier transform by an(hencep-x= p|x|cos¢). Therefore,
asterisk its position space expression can be obtained as a
convolution integral. Care must be taken, however, because 1 (2= i
the inverse Fourier transform ¢p| does not exist. There-  S(X)=— _Zf ¢<|X|CT¢+7T5(|X|COS¢)
fore, we first rewriteL[ {]* as a different product. am
For a one-dimensional interface, the most convenient ap-

0

i 27

proach seems to be to write ! J, d L

472x| Jo Cos¢

LLLT* =sign(p)p {* = —isign(p)(dxf)* (A2)

1 (2= T 3
While the (inverse Fourier transform of the sign function B EJ; d¢|x||sin é| 5( ¢ 2 +o| o 7”
does not exist as a function, it is defined in the distribution
sense and easily calculable: 1

:_W. (Ag)

1 (=
s(X)=-—| €e'Psi d
(X) 27TJ'7oo gnip)dp The principal value integral of 1/casvanishes as it extends
over an entire period. Thus we arrive at the following final

:i<fxeipxdp_ fweipxdp):i_fy (A3)  expression for the flow term
2 0 0 T X

the last expression being the distribution that is pointwise —fd,L[{]= ZL‘?XJ dx’f dy’;,V’Zg(x’).
equal toi/ 7x but requires any integral in which it appears to TS -7 x=x|
be interpreted as a principal value.

Hence we obtain for the flow term in 1D:

(A10)

Both the 1D and 2D expressions clearly exhibit the nonlo-
cality of the flow term and its odd-parity symmetry. All the
d.L(x"), (A4)  other terms in Eq(1) have even parity, so the flow term
X=X’ provides a symmetry-breaking mechanism.
o o _ Note also that the nonlocal kernels appearing in these ex-
where the bar indicates a principal value integral. More spepressions are almost the simplest possible, if one thinks in

1

f o0
~foLl 1=~ — 4 )L,x dx’

cifically, we define terms of gradient expansions. Local terms produce succes-
" e " sive powers of derivatives, corresponding to powerp a@f
7(, dx’---= lim (f dx/...+f dx’-~-). Fourier space. Nonlocal terms would be connected with
- cot\ xte powers of 1)jp|, which must be compensated f@n order to

(A5)  keep things finite at smapl) by spatial derivatives.
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APPENDIX B: ANALYTICAL CALCULATION OF DRIFT Inserting this in Eq(B3) and combining the two equations,
VELOCITIES we find, however,
In order to solve Eqs(19) and(20) analytically, we first _
cast them in a simpler form introducing w,~202, (B11)
- 2 . .. L. .
o = +209° (B1)  which is in contradiction with Eq(B10) for f>1 andq
This yields =0(1). This implies that dominant balances in E@®?2)
must contairthreeterms at least and that the wave numer
o f2q of the fastest-growing mode has to scale, too. It must in-
wf+ wf(86—q4—8q2)— T:O, (B2) crease withf and Egs.(B10) and (B11) suggest the scaling

f~q2. Hence, we set
242,70 2\ _ 97347 _ 2__ —

f°q°(w,—20°) - 2w; (4w, —209°—8)=0. (B3) T (B12)

We then consider the limiting casés1 andf>1. The first

of these is very simple. As we know that there are solutiongissuminga=0(1). Inserting this into Eqs(B2) and (B3)

without flow, we set, as a first approximatioiw0 in Eqs. and usingg>1, we arrive at

(B2) and(B3). w; will still remain f dependent via Eq18),

which takes the form o a2q®
o —w?qt- — =0, (B13)
f 2
(J)i:%. (B4)
@r a2q%(@2— 292 = 8@ — 4232, (B14)

We get immediately
1 Equation(B13) can be solved fom?:
W =2+ 50 (B5)

- g
2 2
=—(1+1+a%). B15
and the Eq(B2) for g can be reduced to quadratic. The result T2 ( ) (B19)

is
4 Using this in Eq.(B14), we end up, after some simplifica-
q2=—4+ ﬁ 442G, (B6) tions, with a relation determining:
\/5 2\3/2 2
2 _ ?(1+\/1+a )“—1+a*=0. (B16)
w,=—20%+ ﬁ\/4+ 2G, (B7)
The numerical solution of this algebraic equation yietds
\/§ =28.88.(There is only one real solutionWe then obtain
w=f| 1I-——], (B8)
V442G ;
— 1w q= \[5~o.1saﬁ , (B17)
i f\3 4+2G
v=——=-— — 3 1 (B9)
q 2V4+2G 1++1+a? f
— L . . W= —F— 2| —~0.065, (B18)
As an example, forlG=0.7, this gives a drift velocity 2 a

=0.21¥, and the dependence @ is weak. Note that for

this G value ;<0 and hence the structure will decay to a 2f
planar front(moving along as it does at the calculated veloc- w;=——=—=~0.129, (B19)
ity). V2(1+V1+a?)

The casef>1 is slightly more complicated. Considering

Eqg. (B2) and the fact thaG is of order 1 in the interesting w;
parameter range, we séfieom the signs in the equatipthat V=g 0.695,/f. (B20)
the only possible dominant balance fopair of terms is

4 f2q* (810 All of these expressions are inde_pendengofas they must,
r ' being leading-order results fdeG.
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ing frame of reference, while being advected away with its tail
at its original position decaying, one speaks of convective in-
stability (only). Linear instability implies at least convective

instability, but not necessarily absolute instability. On the other
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hand, the notion of an absolute stabiliiyit in the context of
directional solidification simply means the threshold velocity
above which a planar interface is stabilized by surface tension
even in the absence of a thermal gradient.



