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Unifying framework for synchronization of coupled dynamical systems
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A definition of synchronization of coupled dynamical systems is provided. We discuss how such a definition
allows one to identify a unifying framework for synchronization of dynamical systems, and show how to
encompass some of the different phenomena described so far in the context of synchronization of chaotic
systems.

DOI: 10.1103/PhysRevE.63.066219 PACS number~s!: 05.45.Xt, 05.45.Jn
o
’’
ia
tio

h
th
ch
n
e

-

e
ra
th
ly
m

ot
u

fa
of
s

e

e
S
ro
-
h
al
d-
s
f t

t
de

in

ies
ni-
al

n-
of
m.

two

jec-
this

a

s

-
ince
nte-
o-

e
on-

ach
s.

m’s
in

e the

a
the
ur
e

eri-
en

d
s

The word synchronization has a greek ro
‘‘ sỳg xróno§ ’’ that means ‘‘to share the common time.
This original meaning has been maintained in the colloqu
use of the word synchronization, as agreement or correla
in time of different processes@1#. While the study of syn-
chronization phenomena in periodic dynamical systems
been active since the earlier days of physics, recently
phenomenon has been actively investigated in coupled
otic systems. In this latter framework, many different sy
chronization features have been described so far, nam
complete or identical synchronization~IS! @2#, phase~PS! @3#
and lag~LS! synchronization@4#, generalized synchroniza
tion ~GS! @5#, intermittent lag synchronization~ILS! @4,6#,
and almost synchronization~AS! @7#.

IS is the simplest form of synchronization and describ
the interaction of two identical systems, leading to their t
jectories remaining exactly in step with each other in
course of the time@2#. GS goes further in using complete
different systems and associating the output of one syste
a given function of the output of the other system@5#. PS is
an intermediate regime characterized by the asympt
boundedness of the phase difference of the two outp
whereas the two chaotic amplitudes remain uncorrelated@3#.
The relevance of PS for chaotic systems relies on the
that a generic chaotic flow can be seen as composed
small number of intrinsic modes of proper rotation, who
phases may be easily computed@8#. LS is an intermediate
state between PS and IS, implying the asymptotic bound
ness of the difference between the output of one system
time t and the output of the other shifted in time of a lag tim
t lag @4#. ILS implies that the two systems are verifying L
most of the time, but intermittent bursts of local nonsynch
nous behavior may occur@4,6# in concomitance with the pas
sage of the system trajectory into attractor regions wit
local Lyapunov exponent different in sign from its glob
value @4,6#. Finally, AS results in the asymptotic bounde
ness of the difference between a subset of the variable
one system and the corresponding subset of variables o
other system@7#.

The natural continuation of these pioneering works was
investigate synchronization phenomena in spatially exten
or infinite dimensional systems@9#, to test synchronization in
experiments@10#, and to investigate the mechanisms lead
to destruction of synchronized states@11#.
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However, in spite of such a plethora of theoretical stud
and experimental verifications, there is still a lack of a u
fying framework for synchronization of coupled dynamic
systems. Recently Brown and Kocarev~BK! @12# made an
interesting attempt to provide a general definition of sy
chronization, with the idea that there are different kinds
synchronization that might be captured in a single formalis
Their approach assumes a total system divisible into
subsystems in which one can define functions~properties! on
each subsystem that are mappings from the space of tra
tories and time to some Cartesian space. Mathematically
looks as follows: The total system is given byz5@x,y#, z
PRm11m2, xPRm1, yPRm2, with each subsystem forming
trajectoryfx(z0) andfy(z0) (z0 being a generic initial con-
dition! that are mapped by propertiesgx and gy to a new
spaceRd. A function h(gx ,gy) on these trajectory propertie
is required with eitheruuhuu50 or uuhuu→0 as t→`. The
choices ofgx ,gy and h determine the type of synchroniza
tion. The use of the trajectory spaces is necessitated s
several definitions of synchronization need averages or i
grals over~infinitely! long-time segments of system traject
ries.

We will show that we can simplify and generalize th
definition of synchronization to a more condensed and c
crete form than the one above~we will not have to appeal to
infinite dimensional trajectory spaces!. Our approach will
capture all the cases that the Brown and Kocarev appro
does along with an entire class that their approach misse

Let us assume for now that our systemZ PRm is divided
into two subsystems,X PRm1 andY PRm2 (m11m25m).
Typically when one states that a system~sayy) is synchro-
nized to another~x! one means that an event iny always
occurs when a particular event inx occurs. Rulkov@13# has
stated that synchronization means prediction of one syste
values from another. One can identify events with points
the phase or state space of the subsystems and captur
notion of prediction by stating that there is a function fromX
to Y such that a particular point inX is mapped, uniquely, to
one point inY. The mathematically rigorous definition of
function is adhered to here: one and only one point in
range for each point in the domain. However, we want o
synchronization function to be realistic. Typically, when w
search for evidence of synchronization in data or in num
cal calculations we never have data that fall right on a giv
x̃ or on a givenỹ. Rather, we have that the closerx(t) is to
x̃ the closery(t) is to ỹ. The latter statement is capture
rigorously by acontinuousfunction; namely, the trajectorie
©2001 The American Physical Society19-1
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of x(t) close tox̃ are mapped near toỹ by a function that is
continuous at the point (x̃,ỹ). Note that we do not require
smoothness in our function, allowing us to encompass m
exotic relationships like generalized synchronization@5#.

Before making the above into a rigorous mathemati
statement, we use two examples to point out that one m
stage is necessary. The first example is a curved o
dimensional manifold in a two-dimensional phase sp
(m15m251), like the one shown in Fig. 1. Assume that t
dynamics are on that manifold. In general there is no w
one can have a continuous function fromx to y. However,
suppose we consider a diffeomorphismF:Z→W, w5F(z)
that ‘‘straightens out’’ the manifold. Then, if one conside
the two projections of the transformed systemu5P1(w)
PU,v5P2(w)PV, the new manifold inu and v forms a
synchronization manifold and one can define a synchron
state at any pair of points (ũ,ṽ). In fact, if the new manifold
is a line at 45° to theu axis, one can even identify th
continuous function fromu→v: the identity. We note tha
such a transformation is not possible in the BK formalis
although it can be inserted as a preliminary step. The sec
example is suggested by tests for PS between two
systemsx and y. In some cases, phase information can
acquired by the help of the Hilbert transform@14# of the
components of z, r i(t)5(1/p)*2`

1`1/(t82t)F i„t8
2t,z(t)… dt8, where F i„t8,z(t)… is the i th component of
the flow causingz(t)→z(t1t8). The phases are here gene
ated as ‘‘new coordinates’’ui(t)5arctan@ri(t)/xi(t)# and
v i(t)5arctan@ri1m1

(t)/yi(t)#, and can be compared for a give

i ~we assume for now thatm15m2). What is important to
note is that the transformation fromz→r→(u,v) requires an
integration over the trajectoryz(t), but it does not require a
function from the space of trajectories toR. Rather, the ex-
pression used is just a function fromz(t)→r (t), point to
point; it is the flow function that allows us to avoid the mo
abstract and complex trajectory space. The use of the
function must be done first on the entire trajectoryz(t) and
cannot be done separately on components since, in gen
the components are coupled and each one’s dynamics
pends on the other. Finally, we note that we could inclu
any BK types of property functionsgu andgv ~with appro-
priate modifications! using a flow and then a general tran
formationg5(gu ,gv) that splits into the two properties. A
important point to highlight is that, for some applications, w

FIG. 1. The curved one-dimensional manifold in the tw
dimensional phase space (x,y) is straightened out by the diffeomor
phismF„z5(x,y)…[(w5(u,v)) , so that the two projections of th
new systemu5P1(w)PU,v5P2(w)PV form a synchronous stat

at any pair of points (ũ,ṽ).
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may only need to compare a subset of the new coordinatu
andv from each system. Therefore, in the following we w
denote byF:Rm11m2→Rd11d2 a function that, after applica
tion of the diffeomorphism, extractsd1 (d2) components out
of the first m1 ~the secondm2) coordinates of the trans
formed space.

We now have all the main features we need to constru
more rigorous and very general definition of synchroniz
tion: ~1! a function from the original phase spacez to a new
phase space (u,v), ~2! the projectionsP1 and P2 onto the
components of the new space, and~3! the synchronization
relation, a continuous function.

Let us start by refining the definition of the continuo
function to include consistency with the dynamics.

Definition. A function f is a synchronization functionat
(ũ,ṽ) if ~a! ṽ5 f (ũ), ~b! it is continuous atũ, and ~c! it is
consistent with the dynamics„u(t),v(t)… locally, that is, ifd
and e are a valid pair for the continuity property@ uu2ũu
,d implies u f (u)2 ṽu,e], then the dynamics is such that
uu(t)2ũu,d we haveuv(t)2 ṽu,e.

In words, near (ũ,ṽ) the function describes well the pre
dictability of subsystemV dynamics from subsystemU dy-
namics. Now for the sake of rigor we pay closer attention
such details as initial conditions and time. For the time b
ing, let B be the basin of attraction for the attractorA of a
dynamical systemZ,Rm. Let P1 andP2 be projections from
Rd11d2 to Rd1 and toRd2, respectively.

Definition. For a given functionF:Rm→Rd11d2, a dy-
namical systemZ,Rm contains locally synchronous sub

systemsin z̃PA if ; z0PB there is a timeT such that for
t>T a synchronization function exists at„ũ5P1(F( z̃)…,ṽ
5P2„F( z̃)…).

We can think of the subsystems as having propertieu
andv that are synchronous only near the part of the traj
tory, assuming the trajectory comes close toũ. We cannot
say what the relationship is betweenu(t) andv(t) anywhere
else on the trajectory. The nature of the synchronizat
function f and the functionF determine the type of synchro
nization we are considering.

The above definition is alocal definition ~that is, it refers
explicitly to a given positionz̃PA). While extension of such
a definition for global synchronization will be provided i
the following, at the present stage it is important to rema
that such a feature is crucial if one wants to describe p
nomena such as ILS, which is, indeed, intimately related
the local stability properties of the flow on the chaotic attra
tor.

We now discuss how to extend the definition to the en
trajectory of the transformed systemw(t) so as to have a
single continuous function everywhere on the image of
attractor underF. This might seem to be just a matter o
having enough points of local synchronization, but there
two things to consider carefully. One is that we want to ma
sure every point on the trajectory is mapped by a synchro
zation function between the two subsystemsu and v. The
other is more subtle. We would like there to be onecontinu-
ousfunction on the whole trajectory or attractor. As our de
9-2
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nition stands, generally, we have a function associated w

each synchronization pair (ũ,ṽ), but the functions may be
different in their local continuity. The validd and e pairs
need not have any particular relationship between differ
synchronization functions.

A single function that maps theU projection of F(A)
@P1„F(A)…5U# to the V projection of F„A… @P2„F(A)…
5V# can be attained, and we will show this in the theore
below. The essential feature we need to add is a set of
chronization points on the attractor that provide a ‘‘cov
ing’’ property.

Definition. If $ui% is a set of points onU and$ f i% is a set
of continuous functions, one associated with eachui , from U
to V, then the functions provide acontinuity coveringof U if
; «.0 the set of all validd i ’s associated with« @one for
each (ui , f i) pair# covers the setU.

This gives the following theorem that provides the uniq
synchronization function.

Theorem.If the subsystemU contains a set of synchron
zation points$ui% and the associated functions$ f i% provide a
continuity covering ofU, then there exists a unique, globa
continuous synchronization functionf :U→V.

Proof. Let us proceed by absurdity, and suppose th
exist two different realizations of the dynamicsz1PA and
z2PA such that P1„F(z1)…5P1„F(z2)…5u, P2„F(z1)…
5v1, andP2„F(z2)…5v2. Let h5uv12v2u be the distance
between the two images ofz1 and z2 in Rd2, and pick «
,h/2. Let uk be the synchronization point whose neighbo
hood of radiusdk(«) containsu ~its existence is guarantee
by the continuity covering property!, and let f k be the asso-
ciated synchronization function. Because of the consiste
of f k with the dynamics, we must haveu f k(uk)2v1u,« and
u f k(uk)2v2u,«. Adding the latter two inequalities and us
ing the triangular inequality we haveuv12v2u,h, which
contradicts our hypothesis. Thence, there exists a functif
mapping all pointsuPU into the corresponding pointsv
5 f (u)PV.

Next we show thatf is continuous at all pointsuPU. For
all «/2 there is ad j associated with one of the synchroniz
tion pointsuj such thatuu2uj u,d j . Pick d.0 so that the
set Sd5$u8:uu82uu,d% is completely contained in the se
of points withind j arounduj . Because of consistency off j
with the dynamics ; u8PSd we must have u f (u8)
2 f j (uj )u,«/2. On the other hand, we also haveu f j (uj )
2 f (u)u,«/2. Using again the triangular inequality we ha
u f (u8)2 f (u)u,« wheneveruu82uu,d.

The above provides a definition of perfect synchroni
tion. In many realistic applications, however, one must
count for noise, or for a finite measurement resolution,
that it is useful to introduce a fuzziness parameter, setting
the minimal coarsening scale at which the states of one
jected set may be put in correspondence with the states o
other projected set.

Definition. For a given functionF:Rm→Rd11d2, a dy-
namical systemZ contains locally s-synchronous sub

systemsin z̃PA if ; z0PB there is a timeT such that
; «.s ' d.0 such that t>T and uP1(F„F(t,z0)…)
2P1„F( z̃)…u,d⇒uP2(F„F(t,z0)…)2P2„F( z̃)…u,«.
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This last definition recovers the previous one fors→0,
and is tantamount to saying that the consistency of the s
chronization functionf with the dynamics holds only up to
minimum scales, giving the minimal coarsening or prec
sion scale for which states in one subspace may be pu
correspondence with states in the other subspace. Altho
the value ofs is not constrained in our definition, we shou
point out that ifs is larger than the diameter ofP2„F(A)…
then the above is trivially satisfied;d.0 and ;z0PB.
Therefore, the only relevant cases are the ones in whichs is
considerably smaller than the diameter ofP2„F(A)….

Furthermore, globals synchronization may be describe
as the case for which locals-synchronization features ar
displayed independently of the particular choice ofz̃PA.

With the help of what is discussed above, let us move
show some examples of synchronization phenomena that
be encompassed within our definition.

Generalized and identical synchronization.In Refs.@2,5#,
GS and IS are characterized by the fact that the asymp
evolution of the system occurs within a manifold defined
y5K(x), K being a generic function~IS is the case for
which m15m2 and K coincides with the identity!. In our
framework, GS can be considered as a particular cas
global synchronization withs50, by settingu5x and v
5y5K(x), so as the synchronization function comes out
be f 5K.

Phase synchronization.PS consists in a collective evolu
tion of a pair of weakly coupled chaotic systems charac
ized by a phase distance that is asymptotically boun
around a constant valuec, whereas the amplitudes may re
main uncorrelated@3#. We assume the above situation is d
scribed by two proper phase functionsc„x(t)… andc„y(t)…,
whose outputs are time dependent scalar quantities ran
from 0 to 2p, that are chosen so asuc(x)2c(y)u,R, where
R is the size of the residual fluctuations of the phase dista
around c. Let F be the function having componen
c(x),c(y) (d15d251). What we have to show is tha
; «.s ' d.0 such that

uc~x!2c~ x̃!u,d⇒uc~y!2c~ ỹ!u,«,; z̃[~ x̃,ỹ!.

Now,

uc~y!2c~ ỹ!u5uc~y!2c~x!1c~x!2c~ ỹ!1c~ x̃!2c~ x̃!u

<uc~y!2c~x!u1uc~ x̃!2c~ ỹ!u

1uc~x!2c~ x̃!u

,2R1uc~x!2c~ x̃!u.

Therefore, selectings52R andd5«22R, the definition of
global s synchronization is satisfied.

Lag and almost synchronization.LS refers to a case in
which asymptoticallyux(t)2y(t2t lag)u,R, for a given lag
time t lag @4#. LS can be identified with a globa
s-synchronization phenomenon. Now withz5(x,y) define
the transformationF such that
9-3
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u5P1„F~z!…5x and v5P2„F~z!…5P2„F~2t,z!…

5y~ t2t!.

Then

uv~ t !2u~ t !u,R

and

uv1~ t !2v2~ t !u5uv1~ t !2u1~ t !1u2~ t !2v2~ t !1u1~ t !

2u2~ t !u

<uv1~ t !2u1~ t !u1uu2~ t !2v2~ t !u1uu1~ t !

2u2~ t !u

,2R1uu1~ t !2u2~ t !u.

s52R andd(«)5«22R satisfy our definition of global
s synchronization and whenR50 we get the exact case of
synchronization functionf :u→v, where, in this case,f is just
the identity.

AS corresponds to a situation where asymptotica
uPl„x(t)…2Pl„y(t)…u,R, with l ,m1 ,m2 and Pl being the
projector extracting the firstl components out of the vector
x and y @7#. The same demonstration used for LS holds
s52R, d5«22R, and Fi5zi ,i 51, . . . ,l ;Fi5zi 1m12 l ,i

5 l 11, . . . ,2l .
Intermittent phenomena.We finally discuss how ILS can

be embraced in our framework of synchronization. We fi
highlight that ILS is a local phenomenon, in the sense tha
.
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ev
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depends explicitly on the local stability property of the flo
onto the chaotic attractor@4,6#. However, since ILS has an
intermittent nature, in the following we have to extend o
definition.

Definition. For a given functionF:Rm→Rd11d2, a dy-
namical system containsintermittently s-synchronous sub-

systems$z̃i
0%,A if ; z0PB there is a timeTi and a time

interval DTi associated with eachzi such that ; e
.s ' d.0 such that; t1.Ti ' t2.t1 for which t2
<t<t21DTi and

uP1~F„F~ t,z0!…!2P1~F„F~ t2t2 ,z̃i
0!…!u

,d⇒uP2~F„F~ t,z0!…!2P2~F„F~ t2t2 ,z̃i
0!…!u

,«

In the above we have a special case of our locals synchro-
nization in that we have a continuous infinity of synchrono
points z̃i(t) emerging from eachz̃i

0 and reached in orde
using the flowF, but only over a finite interval of timeDTi .
In the limit s→0 we obtain local functionsf i that mapu
5P1(F„F(t,z0)…) to v5P2(F„F(t,z0)…) in the appropriate
time intervals.
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@8# T. Yalçinkaya and Y.-C. Lai, Phys. Rev. Lett.79, 3885~1997!.
@9# D.H. Zanette, Phys. Rev. E55, 5315 ~1997!; P. Parmananda

ibid. 56, 1595~1997!; A. Amengual, E. Herna´ndez-Garcı´a, R.
Montagne, and M. San Miguel, Phys. Rev. Lett.78, 4379
~1997!; S. Boccaletti, J. Bragard, F.T. Arecchi, and H.L. Ma
cini, ibid. 83, 536 ~1999!; H. Chaté, A. Pikovsky, and O.
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