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Dynamics of periodically forced semiconductor laser with optical feedback
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Recently it was proposed that semiconductor lasers with optical feedback present a regime where they
behave as noise driven excitable units. In this work we report on an experimental study in which we periodi-
cally force one of these lasers and we compare the results with the solutions of a simple model. The compari-
son is based on a topological analysis of experimental and theoretical solutions.
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I. INTRODUCTION plained in terms of a simple modétwo-dimensions and
two-codimensioh displaying pulse conformation for pertur-

The dynamics of semiconductor lasers with optical feedbations beyond a threshold2,13. Furthermore, recently
back has been studied in depth since 1pB9although sys- G|acqmell| and collaboratorsl4] have .repo_rted experimen--
tematic studies go back as far as 192J. This system pre- tal ewde_nce of coherfence resonance in this system, enforcing
sents a very rich dynamic$l,3-6]; in particular, for theT(r:]on]l‘_ldetn(ite on :TS jcenam:. e th tability behavi
moderate to strong feedback levels three qualitatively differ- e lirst attempt 1o demonstrate the excitability behavior
ent regimes have been obsenj@]. For pumping current has been d.one periodically forcing the system with pulses of
values close to the solitary laser threshold, the system i§ma|l ta;]mplltg?e[S] ' 'If'heﬂE)urpr?slz o,i th|§ procedtjre W"’;]S. E?.
stable. As the injection current is increased, the laser beco ow the existence of 4 threshold. Forcing a system which IS

unstable and displays sudden power drops followed by A le to conform pulses for perturbations beyond a threshold

slower recovery stage. The characteristic rate of such ﬂucwith a periodic sig_nal, re;ults in(at least thr.ee dimensional
tuations is much smaller compared with the typical semiconne- The global bifurcation structure of this system presents

ductor laser rategarrier and photon lifetime, relaxation os- periodic_solutions, quasiperiodicity, penod d°“b"F‘9’ .gnd
cillations), hence the name low frequency quctuationsChaos{lS'lq' A complete demonstration of the e?(c'tab'“ty.
(LFF’s). At higher injection currents, the laser optical line- behavior of the system under study has to consider all this

width broadens up to several hundreds of GHz and the Soc_omplexity. On the other hand, the semiconductor lasers

called coherence collap$€C) regime settles down with external optical feedback display a multimode behavior

The theoretical model usually used to describe the dynami—n the LFF's [11]. This multimode behavior is not being

ics of semiconductor lasers with optical feedback is the oné:o.nSIdered n the simplest excfnable mgdgls, which are con-
by Lang and KobayasH®]. It is obtained considering a laser ceived to expl_aun only the L'.:F S. In principle these mOdes
operating in a single longitudinal mode and weak feedbacl?omol play an important role in the SySte_”"_' under forc_mg.
level. According to this model, an high-dimensional chaotic In order to .explore th_e range of validity of the S|mplg
attractor is at the origin of the dro40] and therefore the pulse-conforming scenario, we have analyzed the dynamics

nature of LFF’s would be purely deterministic. On the Otherof a periodically forced semiconductor laser with optical
hand, Vaschenko and collaboratdkl] have shown that feedback, prepared in the noise-driven excitability region of

LFF’'s are a consequence of the interplay between the tim S parameter space. The for<_:|ng applied was s_|nu50|dal.
delay and the multimode operation of the laser. These e >table patterns in the time series have been obtained under
perimental results could not be explained in the frame of %h's Kind (.Jf forcmg.. We ha}ve separated per|od|g orbits frqm
single mode interpretation he experimental time series and calculated their topological

Another approach to the interpretation of the LFF's isnumbers, like the self-linking number and the self-relative

based on the recognition of the most important dynamicafom.ltlon tra}tes[th—lq.tthlgally, \(/jvel hTa;]ve compareofl ttr?'e ex-k
ingredients at the origin of the instability, i.e., to identify the perimental results wi € model. The purpose of this wor

role of noise and/or the bifurcation type. Following this path,Is to build qonfldence or refuse the hew scenario, at Ieast_ in
the accessible range of parameters. This paper is organized

it was recently proposed that semiconductor lasers with op- ol Section 11 d ibes th A tal set d
tical feedback in the LFF’s regime, behave as a noise-drive S Tollows. Section escribes the experimental Setup an
the measurements. Section Ill gives an interpretation of the

excitable mediun{8]. In this new dynamical scenario, the its. Section IV ains th . bet h
role of noise is to induce a large deterministic excursion jn eSulls. section 1V-contains the comparison between the ex-
perimental results and the model. And finally, in Sec. V,

the phase space. Ui f th K .
In Ref.[8] excitability is meant as the possibility of con- conclusions of the work are given.

forming puls_es for pertur_batio_ns above a given threshold. Il EXPERIMENT
The distributions of the time intervals between drops and
their dependency with the experimental parametigks the The experimental setup is shown in Fig. 1. It is very simi-

feedback and the injection current of the lasssuld be ex- lar to the one used by Yacomoti al. [13]. The semicon-

1063-651X/2001/6&)/0662186)/$20.00 63 066218-1 ©2001 The American Physical Society



MENDEZ, LAJE, GIUDICI, ALIAGA, AND MINDLIN PHYSICAL REVIEW E 63066218

FIG. 1. Experimental setup: LD: laser diode;
PD: photodiode; OSC: oscilloscope; C: collima-
tor; L: lens; M: mirror; TEC: thermoelectric
ﬂ cooler; PS: power source; S: wave form genera-
U tor.
FD LD C L M

ductor laser used is a single transverse mode Sharipr g:p as the periodical pattern in which the time-series
LTO30MD/MF emitting at a nominal wavelength of 750 nm; have q dropouts everyp periods of the forcing time. For

its current threshold has been measured to be at 36.66 mA. reriods between 670 and 410 ns the time series presents
our experiment the laser has been thermally stabilized up tooexistence of two different behaviors. In some time win-
0.01°C. An high reflectivity mirror ¥90%) is placed in dows the behavior is 1:1 but, in other windows, it changes to
front of the laser edge, at a distance of 130 cm, in order t@nother periodic pattern, represented by one dropout for ev-
return into the laser cavity part of the light emitted. A colli- ery two periods of the forcing1:2). When the period is
mator and an antireflection-coated lens are placed into theetween 400 and 330 ns the system seems to be perfectly
cavity in order to reduce the beam divergence and to modicked, with rotation number of 1:2. The time series has a
match the returned beam with the emitted beam. The interperiodic pattern with one drop event every two periods of the
sity output is detected by a 1-GHz bandwidth photodiode andiorcing. At lower forcing periods, the system jumps mainly
the signal is analyzed with a HP54616B 500-MHz oscillo-between three different periodicities: 1:2, 1:3, and 1:4. Fur-
scope. The system has been prepared in the region of paratiermore, we have identified a 2:3 periodic pattern at forcing
eters where it behaves as an excitable system; the pumpinmeriods between 590 and 530 ns. The main effect of increas-
current has been set close the solitary laser threshold valuieg the forcing amplitude is to decrease the value of the
and the feedback level was moderately strong, gauged by farcing period at which the behavior with logydominates.
threshold reduction of 5-10 %. In this condition the laserFor example, when the system is forced with amplitude of
output displays noise-induced LFF's characterized by a re400 mVpp, the 1:1 regime appears already at a forcing pe-
covery stage of approximately 250 ns. From the work ofriod of 600 ns. In Fig. 3, we show a map of the dynamical
Yacomotti et al. [13], the probability distributions of time behaviors experimentally observed in the system for differ-
intervals between drops can be used to specify accurately thent forcing amplitudeA and forcing periods.

point of the parameter space at which we have been operat-

ing. We have prepared the system in such a way to obtain a Il INTERPRETATION
monomodal distribution of times between dropouts events. _ _ _ _ _ _
The distribution has a most probable time of 0.85 and an It is a typical strategy in nonlinear dynamics to find the

average value of 0.%s. According to the model presented simplest equations compatible with the dynamical scenario
in Ref.[13], this situation corresponds to have prepared theve want to describe. A simple model able to describe pulse
system in a state far from the saddle-loop global bifurcationconformation for perturbations beyond a threshold has been
This prevents the inevitable noise present in the system tBroposed by Eguiat al.[12]. Also, they have demonstrated
anticipate this bifurcation and therefore to affect noticeablythat it gives a good statistical description of the times be-
the dynamics of the system. tween dropouts events.

We have applied an electrical sinusoidal signal into the In order to compare the model with the experimental re-
semiconductor laser via the pumping current. The forcingsults, the periodically forcing is added as shown:
has been generated by a HP 33021A wave form generator

and overlapped to the dc biasing current of the laser through x'=y, (R
a biasT. We have analyzed the response of the laser as the
amplitude and frequency of the forcing current is changed. y' =x—y—x>+xy+e +ex*+Acogwt), (3.2

We have obtained an interesting behavior of the semicon-
ductor laser for periods ranging from 140 ns tous and for ~ with (x,y) e R* ande;, e, R*, A is the forcing amplitude,
amplitudes from 200 to 500 mVpp. It appears that the dy-and o the forcing frequency. The comparison between the
namics of the system is more affected by changes in thparameters dependence of the real system with the depen-
period of the modulation than by variations of the amplitude.dence one; and e, of the model allows for identifying:;
In Fig. 2 we report the behavior of the system when thewith the laser pumping current ang, with the feedback
modulation amplitude is fixed at 210 mVpp and the period isevel [13]. Accordingly, the forcing term has been written in
changed. For forcing period between s and 710 ns, the the model as a term added &. Without the forcing, the
response of the system seems to be phase-locked with rotaroposed system presents four qualitatively different behav-
tion number 1:1. In other words, the time series is periodidors. In Fig. 4, we display the mapping of the different be-
with the period of the forcing and presents one dropout fothaviors in the parameter spacse (e€,). The organizations of
every period of the forcing time. We define a generic behavihe invariant manifolds are also given: we note that, in region
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FIG. 2. Time series corresponding to every one of the experimentally observed beh@yibrs.pattern(b) Intermittencies between the
1:1 and the 1:2 patterngc) 2:3 pattern(d) 1:2 pattern(e) 1:3 pattern(f) Intermittencies between the 1:3 and the 1:4 pattern.
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FIG. 3. The experimental map of the regions in which the dif-

II, the system exhibits the dynamics we have observed ex-
perimentally without applying the forcing.

As already pointed out by Feingokt al. [15], when an
excitable system is periodically forced, the solutions are very
similar to the ones of a periodically forced oscillator. The
bifurcation diagram can be represented by mapping the re-
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ferent periodical patterns have been observed. The amplitude is in FIG. 4. Bifurcation diagram and phase portrait for E@s1) and

unit of millivolts peak to peaKmVpp).

(3.2 (without the periodical forcing Figure from Ref[13].
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gions in the parameter spac@,{) where the orbits with Figs. 2a) and(c), the 1:1 and the 1:2 orbits could be recog-
rotation numbeiy/p are stablgArnold tongues. A periodic  nized. Every one of the identified periodic orbits corresponds
orbit of rotation numben/p is meant to be a periodic orbit to different resonances of the forced deterministic system.
with g spikes evenp multiples of the forcing period. Chang- Considering this hypothesis, the q:p periodic patterns experi-
ing the parameters, ande, within region Il, the bifurcation mentally observed could be identified with the resonances
diagram presents, essentially, the same regions. In Fig. 5, weith rotation numben/p. Consequently, we have chosen the
show the bifurcation diagram for two different points in the rotation number of the dominant segments of the time series
parameter spacee{, €,), but always located in the region Il to characterize the behavior of the system. So, the determin-
of Fig. 4. As has already been saig, could be related with
the feedback level. For parameter values within region I, but
not close to the homoclinic bifurcation, the system displays 2
dynamics similar to the one observed experimentally. We 5.

TABLE I. Topological invariant numbers for the experimental
eriodic orbits.

. . Period SRRR SLN
have extracted for every one of the important phase-locking
regions, a deterministic attracting periodic orbit, to be com- 1:1 1 0 0
pared with the experiment. How could deterministic infor- 2:3 3 (23,0 —4
mation be extracted from the noisy experimental time series? 1:2 2 (—1/2),0 -1
We conjecture that the dominant segments of high recur- 1:3 3 (—1/3)2,0 )
rence in the noisy time series are the fingerprints of deter- 1:4 4 (—1/4)3,0 -3

ministic periodic orbits of the forced system. For example, in
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TABLE Il. Topological invariant numbers for the periodic or- 25 T T I
bits from the model. 20 - (a)

Orbits Period SRRR SLN 15 i
11 1 0 0 10k i
2/3 3 (—2/3)%,0 -4
1/2 2 (-1/2),0 -1 > 05| .
1/3 3 (—1/3)%,0 -2 0ok ]
1/4 4 (—1/4)%,0 -3 1

05 F
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istic skeleto.n may be constructed with the_ ap periodic pat.— 10 0 3 6 9

terns experimentally found. There are points in the experi- fime (in units of forcing period)

mental phase portrait where the system is not exactly in only 9p

one resonance behavior. Looking at the time series corre 0.2
sponding to these points, the system seems to be jumpini (b)

between different resonances. For example in Fig) the T

periodic orbit 2:3 can be clearly recognized, but also the

system jumping between the 1:2 and the 2:3 resonances ce 0O

be seen. We claim that noise is responsible for these kind o >
intermittencies. In general, for parameters values such tha

-
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FIG. 6. (a) Experimental time series with the 2:3 patte(h)

amount of noise may unlock the system. By consequence,
the time series presents only segments of phase-locked be-
havior. Within a tongue the system might also unlock, al-
though less frequently. These intuitive arguments are con-
firmed by the numerical simulations: we have observed that
the jumping among different phase-locking behaviors occurs
more frequently for parameter values located close to the
edge of an Arnold tongue. In conclusion, taking into account
the effect of noise, the bifurcation structure of the experiment
is consistent with the theoretical predictions of the model.

IV. COMPARISON BETWEEN THE EXPERIMENTAL
DATA AND THE SOLUTIONS OF THE MODEL

Experimental periodic orbits have been extracted from the
time series by the method of close retuf8,19. We have
looked for periodic orbits at multiples of the forcing period.
The practical way to find close return segments is to color

Embedding of the corresponding time series. The mathematicgtode the distanced; , between the points of the time series
symbols display the orientation of the crossing. The topologicak; andx, . If the distance is smaller than a givena black

numbers were computed in thg,f) projection.

point is plotted ati,p). In such a plot, a periodic recurrence
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originates horizontal lines. In this way the segments have V. CONCLUSIONS
been identified. Using this method, we have separated the

following penodlp orbits: 1.'1Z 12,13, 2'32 aqd 1'4.' In order odically forced semiconductor laser with optical feedback.
tq use gtopolog|cal d.esc.rlpt|on of the periodic orbits, athrequ conjectured the system as a noise driven one able to
dimensional e_mbedqmg is needed. We have used the conveantorm pulses for perturbations beyond a threshio®i13,
nient embeddingx,x’,t). The time series was filtered using ang we compared topologically the observed solutions. Ex-
an adjacent averaging. In spite of the noise present, two tqerimentally, we have analyzed the semiconductor laser with
pological invariant numbers have successfully been calcupptical feedback forced by a sinusoidal signal. Considering
lated. We have calculated the self-relative rotation rateshe periodic patterns given by the system under the forcing,
(SRRR and the self-linking numbeiSLN) for every one of  as the fingerprints of periodic orbits of the forced determin-
the orbits. In Table | the results are shown. We have conistic system, we have compared the experimental results with
trolled the stability of the result, calculating the topological the solutions of the simple model proposed by Egeiial.
numbers for five embedded orbits extracted from differen{12]. We have shown that the topological organization of the
segments. In Table Il the results of SRRR and SLN for theperiodic orbits experimentally identified is equivalent, within
most relevant periodic orbits of the model are shown. In Figthe parameter region explored, to the one of the proposed
6, we display the 2:3 pattern and the corresponding embedcenario.

ding for the experimental measurements whereas in Fig. 7

In this work, we have studied the dynamics of the peri-

the results for the simulation are shown. The topological or- ACKNOWLEDGMENTS
gamzatm;nfof thi peno(;m? .orblts_exltracted from the experi- This work was partially funded by Fundacidntorchas,
ment and from the model is equivalent. UBA, CONICET, and Fomec.
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