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Regular and anomalous quantum diffusion in the Fibonacci kicked rotator
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We study the dynamics of a quantum rotator, impulsively kicked according to the almost-periodic Fibonacci
sequence. A special numerical technique allows us to carry on this investigation for as many as 1012 kicks. It
is shown that above a critical kick strength, the excitation of the system is well described by regular diffusion,
while below this border it becomes anomalous and subdiffusive. A law for the dependence of the exponent of
anomalous subdiffusion on the kick strength is established numerically. The analogy between these results and
quantum diffusion in models of quasicrystals and in the kicked Harper system is discussed.
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I. INTRODUCTION

It can be reasonably argued that the quantum kicked
tator @1# is the oldest and most thoroughly investigated s
tem in the realm of so-called quantum chaos. Yet we pret
in this paper that recourse to this system is still justified, a
can provide new dynamical phenomena worthy of investi
tion. Consider in fact the problem oftransport in quantum
extended systems: for instance, a wave packet is initi
localized on a few states of a quantum lattice, and is then
evolve. A deep analysis carried out on model systems@2–7#
with nearest-neighbor interactions has shown that this
namics is eitherlocalized—this is typically the case of ran
dom couplings—or, as it happens in the case of almost p
odic couplings,anomalously diffusive~i.e., delocalization
occurs, but the diffusion coefficient is either zero or infini
but very rarely finite! and intermittent@8–14#.

It is well known that the kicked rotator for typical value
of the parameters is akin to the first example just presen
its quantum dynamics is~eventually! localized in the lattice
given by the free rotator eigenstates. Therefore, it seem
feature a far simpler dynamics than the second class of
tems mentioned above, or than its not-too-close relative,
quantum kicked Harpermodel@15#, in which anomalous dif-
fusion @16# has been documented. A way to overcome this
offered by an idea employed profitably in spin and fe
levels systems@17–19#: rather than acting upon the syste
with a periodic impulsive force, it is convenient to let th
sequence of time intervals between different ‘‘kicks’’ be a
most periodic. In few-level systems, this idea has led to
teresting spectral properties and dynamical behaviors. In
paper, we apply this procedure to the kicked rotator.
hope to combine the complexity of an almost-periodic int
val sequence and the richness of the infinite Hilbert spac
the unperturbed problem. At the same time, we desire
maintain a sufficient simplicity for the analysis: for this, w
elect to investigate the effect of a Fibonacci sequence
unitary evolution operators.

This paper presents the results of a numerical analysi
the system so defined. In previous studies of almost-perio
kicking of the quantum rotator, a linear increase of the
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ergy has been observed@20,21#, which amounts toregular
diffusion. In contrast, the power-law increase of energy w
a nonunit exponent definesanomalousdiffusion.

Energy is just one of the indicators of the growth of t
excitation of this quantum system. We shall use here a la
set of indicators: moments, entropy, and the inverse par
pation ratio. The asymptotic behavior of these quantities
consistent with a power-law delocalization of the motion.
a consequence, an associatedgrowth exponentcan be defined
for each of them, in such a way that the value1

2 corresponds
to regular diffusion.

This analysis will show that two dynamical regions a
present in this system. For large kicking strength, the mot
is diffusive: the growth exponents are equal to1

2 , and a
proper diffusion coefficient can be defined. To the contra
when the kick strength is less than a certain threshold,
motion typically featuresanomalous subdiffusion: growth
exponents still exist, but are smaller than1

2 . It is interesting
to note that a similar situation has been found in quasicr
tals in two dimensions@22#: in these systems, for large hop
ping amplitude, the wave-packet spreading over a tw
dimensional lattice is diffusive, while in the opposite cas
spreading is characterized by anomalous subdiffusion.

The investigation will be further carried on by varying th
kick strength: in so doing, a power-law dependence of
growth exponents on this parameter is observed. In our o
ion, these phenomena are significant and make it very in
esting to try to explain the motion of this variation of th
conventional quantum kicked rotor.

This paper is organized as follows. In the next section,
define the model. In Sec. III, we introduce the growth ind
cators and their power-law exponents to gauge anoma
diffusion in the dynamics of an initially localized wav
packet. The numerical algorithm and the numerically co
puted long-time dynamics of the system are presented in
IV. Finally, we allow a random element in the definition o
the dynamical system to verify the robustness of the obtai
results and to support the conjecture that anomalous d
sion in this model is induced by the almost periodicity
the sequence of unitary operators. In the final section
©2001 The American Physical Society17-1
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confront these results with those of other almost-perio
systems.

II. THE DYNAMICAL SYSTEM

The basis of our investigation is the quantum kicked
tator @1#: this is the unitary evolution generated in the usu
Hilbert spaceL2(S2p) by the operators

U~k,T!5e2 ik cosu e2 i (T/2)n̂2
, ~1!

which depend on the two parametersk,T and where the mo-
mentum operator isn̂52 i ]u . The corresponding classica
system is the well-known Chirikov standard map@23#. Semi-
classical dynamics is obtained lettingk grow andT go to
zero while keeping their product fixed. This product defin
the classical chaos parameter,K5kT. In the classical case
the system becomes globally diffusive forK.0.9716 . . . .

It is well known that for large values ofK and typical
irrational values ofT/2p, classical and quantum dynamics
the kicked rotator are profoundly different: this is the conte
of the quantum phenomenon of dynamical localizatio
which has been well described in the literature, and wh
predicts that the quantum evolution of an initially focus
wave function is almost periodic in time and localized on t
lattice of the free rotor eigenstates@1#.

In this paper, we study a variation on this theme: while
the usual approach the unitary evolution of Eq.~1! is per-
formed repeatedly, atequally spacedtimes tn5nT, in our
model the length of the time intervals in between kicks w
not be constant. Equivalently, we can say that the opera
U act now in a Fibonacci sequence to produce the full qu
tum evolutionU:

U~ tn!5U~k,tn!sU~k,tn21!s•••sU~k,t1!, ~2!

where tn5( j 51
n t j is time, and wheres denotes operato

composition. As is immediately observed, operators in
~2! are characterized by the same value of the quantum
amplitudek and differ solely by the value ofT. The sequence
$t1 ,t2 , . . . % is determined by allowingt j to take one of two
possible values, which for convenience we denote byA and
B. We choose forA andB the values~in arbitrary a dimen-
sional units, as it is customary to do!

A5
2p

l
, B5

2p

l2
,

wherel51.3247 . . . is analgebraic number that solves th
equationl32l2150. In a sense,A,B is themost irrational
couple of numbers. Choosing a different irrational pair w
not alter our results, as we shall see.

We line upA’s andB’s according to the well-known Fi-
bonacci sequence: this is obtained by an accretion rule on
initial finite pieces of the infinite sequence,s15A and s2
5A,B. According to this rule, the next finite piece is o
tained by joining these two sequences, the first at the en
the second:s35A,B,A. In general,
06621
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sn115snøsn21 , ~3!

where the symbolø means joining the right and left se
quencesin the specified order, so thats45A,B,A,A,B, and
so on. It is then easy to see that the length ofsn is equal to
the nth Fibonacci number,Fn . Equation ~3! expresses a
property that will be instrumental in the following to obta
the quantum evolution up to large times.

III. GROWTH EXPONENTS OF AN INITIALLY
LOCALIZED WAVE FUNCTION

We now letc(0) be the initial state of the evolution, an
we compute the time dynamicsc(tn)5U(tn)c(0). Usually,
we choose for the initial statec(0) the zero momentum basi
state ofL2(S2p), e0, the full basis beingen5einu/A2p with
nPZ.

As we have already remarked, the quantum kicked ro
tor, for typical irrational values of the kicking periodT, dis-
plays the phenomenon ofquantum localization: energy in the
system eventually ceases to grow, and quantum diffus
stops. On the other hand, for sequences withrandom time
intervals between kicks, the increase in momentum is dif
sive and never comes to an end@24#. Of particular interest
then is to study the interval sequence defined in the prec
ing section, which is neither periodic nor random; it belon
to the family of almost-periodicsequences, which, in a
sense, is intermediate between the two. We shall see
under these circumstances, dynamical localization result
a delocalization that shares many characteristics with wha
taking place in almost-periodic lattice systems.

To study the dynamics of the quantum wave function, i
convenient to introduce a number of quantities suitable
define its spreading: we shall call them collectivelygrowth
indicators. The first obvious choice are moments. Letna(t)
be the moment of indexa of the probability distribution over
the lattice $en% given by u„en ,c(t)…u2, where obviously
(•,•) denotes the scalar product inL2(S2p):

na~ t !ª(
n

u„en ,c~ t !…u2unua. ~4!

For instance, n2 is the usual second moment—th
dispersion—which, in the case of regular diffusion, gro
linearly in time. In general, we cannot expectn2 to behave as
t, but superdiffusiveandsubdiffusivegrowth will be the rule.
For this, we also define thegrowth exponentfunction b by
the asymptotic relation

na~ t !;tab(a) for t→`, ~5!

where the asymptotic behavior for large time is to be und
stood in a suitable sense. The functionb(a) is the so-called
quantum intermittency function, whose name and propertie
are described in@8–10#.

When a tends to zero, the momentna tends to the con-
stant n051. Nonetheless, one can define the limit of t
function b for a tending to zero,b(0), a number that also
appears in the scaling of the logarithmic moment,n ln :
7-2
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FIG. 1. Regular quantum diffusion. Growt
indicators are plotted versus time~in the arbitrary
units described in the text! for the casek510.
The lowest curve~dots-dashes! is the reference
line At. The other curves are~from bottom to top!
the exponential of the entropy~long dashes!, the
square root of the second moment~short dashes!,
the sixth root of the sixth moment~dots!, one
over the inverse participation ratio~dots-dashes!,
and the exponential of the logarithmic mome
~continuous line!.
n
a
t

n

ey
ave
.
lot

rse
py
nt

ves

the

. 1:
n ln~ t !ª(
nÞ0

u„en ,c~ t !…u2ln~ unu!;b~0!ln~ t !. ~6!

In the quantities~5! and ~6!, the ordering of the basis is
relevant: a function ofn appears in the summations. We ca
nonetheless define and compute quantities that do not m
reference to these characteristics. The first of these is
entropy S:

S~ t !ª2(
n

u„en ,c~ t !…u2ln„u~en ,c~ t !!u2
…;g1bsln~ t !,

~7!

whose asymptotic behavior defines the exponentbs . In the
case of localization,bs is null, and eg @g is the constant
contribution in Eq.~7!# gives a measure of the localizatio
length. Another basis-independent quantity is theinverse
participation ratio P,
06621
ke
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P~ t !ª(
n

u„en ,c~ t !…u4;t2bp, ~8!

with its exponentbp .
We notice that, in principle, the exponentsb of all the

quantities so far defined are different. Yet, when finite, th
are all consistent with the fact that the spreading of the w
packet over the basis takes place in a power-law fashion

This is indeed the case for our system: in Fig. 1, we p
the 1/a power of a set of momentsna versus time, in a
doubly logarithmic scale, together with one over the inve
participation ratio, and with the exponential of the entro
and of the logarithmic moment. It is immediately appare
that quantum diffusion in this case is regular: these cur
are parallel to the reference lineAt, so that all growth expo-
nents are equal to12 . This case has been computed fork
510.

To render even more evident the fact that we are in
presence of regular diffusion, we plot in Fig. 2 a snapshot of
the wave packet at a large time, for the same case of Fig
The fitting line is a normal distribution.
1.
FIG. 2. Wave packet for the case of Fig.
Plotted are occupation probabilitiespn

5u„en ,c(t)…u2 versus site numbern at time t
51.7973104 ~thin line!. The thick line is an in-
terpolating normal distribution.
7-3
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IV. DETECTING ANOMALOUS DIFFUSION
IN LARGE TIME DYNAMICS

Let us now investigate the effect of varying the kic
strengthk: in particular, let us decrease it from the valuek
510 at which we observed regular diffusion. Two difficu
ties arise when performing this analysis: since we observ
reduceddelocalization of the wave packet, very large tim
scale computations are required to produce reliable infor
tion about the asymptotic behavior. Secondly, largesystem-
atic oscillations in the behavior of the moments~and of the
other growth indicators! tend to overwhelm and submerg
the power-law increase. The greater the oscillations,
slower is this increase.

Let us first present a solution for the second difficulty: w
can introduce amagnetic fluxf in the evolution~1!, which
consists merely in replacing the operatorn̂ with n̂1f: f is
a real number, and forf50 we obtain the usual kicked
system. By performing the evolution with a set of values
f, and by averaging the results with respect to this sam
we can reduce the systematic fluctuations superimpose
the leading power-law behavior without altering this beha
ior. Observe also that the classical dynamics is left invari
by the introduction of this flux.

For the first difficulty, a more complex strategy is r
quired. We can push the evolution to extremely large tim
by resorting to a matrix algorithm. LetU Fn be the unitary
evolution operator acting from time zero up to the time of t
kick numberFn , the nth Fibonacci number. Then, Eq.~3!
implies that these operators are simply related by

U Fn115U Fn21sU Fn, ~9!

wheres is the usual operator of multiplication, and whe
the order of operators is essential, as it was in Eq.~3!. This
relation must be initialized by setting

U F15U~k,A!,

U F25U~k,B!sU~k,A!, ~10!

and serves to produce the full sequence$U Fn%. In fact, the
matrix elements ofU(K,t) are explicitly known, and Eq.~9!
involves then only a matrix-to-matrix multiplication. O
course, thecost of this operation scales as the cube of t
size of the matrix, and this is certainly more expensive th
the usual evolution effected via a sequence of fast Fou
transforms. Nonetheless, this technique becomes adva
geous when dealing with extremely large times, for inn steps
one reaches up toFn map iterations, and it is well known
that Fibonacci numbers are geometrically increasing inn.

We therefore effect the matrix multiplication forn
51, . . . ,N and then look at the zeroth column of the resu
ing operatorU FN: this is the evolution of the initial statee0.
In our numerical experiments, the initial state of the evo
tion will always bee0. Suitable combinations of the column
can provide the evolution of any arbitrary initial state,
desired.

A question of numerical concern must now be discuss
prior to showing the results of these calculations: when d
06621
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ing with Eqs.~9! and~10!, a finite truncation of the operator
involved is necessary. Now, for any practical purpo
U(k,t) is a banded matrix, and we must obviously choo
the size of the numerical truncation to be much larger th
the band size. Yet this is not enough: appropriate bound
conditions at the basis edges must be imposed. Two cho
are at hand: Dirichlet and Neumann. In the latter case, we
producing the unitary evolution on thetorus, while in the
first case we end up with a nonunitary evolution.

Having in mind what we want to obtain~i.e., the evolu-
tion of thee0 basis state in the full cylinder space!, we have
adopted Dirichlet conditions for two reasons. First, when
truncation size is sufficiently large, both Dirichlet and Ne
mann conditionsmustproduce an excellent approximation o
the trueU FNe0. But in addition, choosing Dirichlet, we ca
gauge numerically two quantities: the normalization of t
zeroth column ofU FN ~which is a common technique! and its
effective dimension, which is less common but more instruc
tive. In fact, this latter is defined as the number of comp
nents ofU FNe0 of larger magnitude than a certain thresho
this quantifies the dimension of the wave packet afterFN

kicks, and can be profitably used to control dynamically,
time evolves, the optimal size of the truncation. It must
added that the effective dimension in itself has physical a
mathematical relevance@11#.

In summary, we have been able to reach easily abou
iterations of the Fibonacci multiplication, Eq.~10!, which
correspond to more than 1012 usual iterations, with a basi
size of the order of thousands. Numerical stability, control
by various techniques, is the limiting factor here.

A set of typical results is shown in Fig. 3, where we pl
the second moment,n2, averaged over a sample of phases,
a function of time, in a doubly logarithmic scale, for a set
decreasing values ofk. We clearly see thatn2 decreases with
k, but, more importantly, the slope of the curves@i.e., the
growth exponentb(2)] also diminishes in accordance wit
k. As a consequence, we can safely conclude that quan
diffusion is anomalous in this model for a wide set of para
eters@25#. In Fig. 3 we have also plotted the moments f
f50: it appears that the averaging procedure has succe
in extracting the leading behavior.

At this point, a comment must be made about interm
tency: this is present when the functionb(a) @see Eq.~5!# is
not constant. In the case at hand, the variation ofb with a is
smaller than the uncertainty with whichb is determined,
both due to numerical effects and to the superimposed o
lations of the momentsna . We can therefore only conclud
that intermittency, if present, is low.

This fact is not totally negative: by averaging overa, we
can define a more reliable growth exponentbav, which is
now a function only of the kick amplitudek. This immedi-
ately prompts for the study of this dependence. Figure 4 p
the numerical results obtained by the procedure just expo
Two regions clearly emerge from the investigation of th
picture: for large values ofk, we observe the regular diffu
sive value bav5

1
2 . Anomalous diffusion is observed fo

smaller values ofk: quite interestingly, in this region we find
a power-law behavior of the growth exponent of the form
7-4
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FIG. 3. Second momentn2 as a function of
time ~in the arbitrary units described in the tex!
for k50.125,0.25,0.5,1,2,4~bottom to top dia-
mond curves!, averaged over a small sample o
phasesf. For comparison, also shown are una
eraged values atf50 for k50.25,1,4 ~filled
circles!. Solid lines are the fitting lines from
which the exponentb(2) is extracted.
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bav~k!;kh, ~11!

with h very close to the value23 . The transition from anoma
lous to regular diffusion takes place fork.kc : for the set of
values we have chosen, this critical valuekc is approxi-
mately equal to 2. Of course, the transition between the
behaviors, as judged from finite-time simulations, does
appear to be sharp.

Let us now investigate the origin of anomalous diffusi
in this model. When acting on the basis seten5einu, the free

evolution ei (T/2)]u
2

produces the phase factore2 i (T/2)n2
. The

arithmetic nature ofT/2p is at the root of the spectral prop

FIG. 4. Growth exponentbav ~crosses! obtained as the averag
of b(a), for a52,4,6, versus the kick amplitudek. The horizontal
line marks the valuebav5

1
2 ; the fitting line for small values ofk

grows proportionally tokh, with h5
2
3 . Also reported~diamonds!

are the result obtained when random rotation phases replace
irrational phasesTn2/2 ~see text!.
06621
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erties of the ‘‘conventional’’ kicked rotator. The numeric
studies presented so far have been carried on for the m
irrational pairA,B. We have found similar results for othe
irrationally related pairs, such as 2p/A5,2p/A5. To the con-
trary, the case of rational pairsA,B is subtler~for resonances
may set in! and is not considered in this paper. We are th
led to conclude that the nature of the observed unboun
diffusion lies in the almost-periodic arrangement of irration
in-kick intervalsA andB.

To substantiate this hypothesis, we have replaced
phases (T/2)n2 by two sequences of equally distribute
pseudorandom numbers, one for the operatorU(k,A) and
one for its companionU(k,B). In so doing, we have ob
tained quite similar results to those reported above. In Fig
the exponentsbav for this experiment are also reported.

V. CONCLUSION

We have studied the dynamics of a quantum rota
kicked at discrete times generated by the almost-periodic
bonacci sequence. Contrary to that of the usual kicked r
tor, this dynamics does not show quantum localization.
have introduced and computed various indicators of
spreading of an initially localized wave packet. This has p
mitted us to show that the dynamics features regular di
sion for large values of the kick amplitude (k.kc) and
anomalous subdiffusion for small values (k,kc). In this lat-
ter range, the average exponent of this diffusion display
power-law behavior with the kick amplitude,bav(k);k2/3.
This relation, although only numerically established, is qu
interesting, and deserves further investigation in our opini

Similarities and differences between the Fibonacci kick
rotator and other quasiperiodic models are to be noted.
have already observed that anomalous diffusion is typic
found in almost-periodic one-dimensional lattice systems
also appears in the kicked Harper model. To the contrary,
Fibonacci kicked rotator is qualitatively different from th
rotator acted upon by equally spaced kicks, with an am
tudek is a quasiperiodic function of time. The case in whi
this function containsm incommensurate frequencies h

the
7-5
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been studied in@26–28#. It was shown that this model is
dynamical analog of the Anderson localization in a space
effective dimensiond5m11. In this way, the usual kicked
rotator (m50) corresponds tod51, and, of course, is al
ways localized. Form51, the excitation is still always lo-
calized, but the localization length grows exponentially w
k @26#, in analogy with the Anderson localization ind52.
Finally, for m.1, i.e.,d.2, a transition from localization to
diffusive excitation takes place above some critical kick a
plitude, in analogy with the Anderson transition ford.2
@27,28#. It is evident that this behavior differs significant
from the one we find in this paper for the Fibonacci kick
rotator.

In our opinion, this difference might be due to the fa
that in @26–28#, the kick amplitudek is an analytic function
of incommensurate phases~frequencies!. For this, such a
t.

-

J

06621
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model can be mapped into an effective solid-state hopp
model, similar to the Anderson model, with hopping only
a finite number of nearby sites. On the contrary, the almo
periodic sequence of unitary operators of the Fibona
kicked rotator renders the situation much richer, and gi
rise to a transition from regular to anomalous diffusion.

As a matter of fact, the dynamics of the Fibonacci kick
rotator seems more similar to a wave spreading on a t
dimensional quasicrystal lattice. Indeed, studies of quan
diffusion over an octagonal quasiperiodic tiling have sho
a similar transition from anomalous to regular diffusion@22#.
However, in spite of this initial similarity, more detaile
studies are required to establish a quantitative relation
tween these models and to gain a better theoretical un
standing of the results presented in this paper.
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@5# A. Sütö, J. Stat. Phys.56, 525 ~1989!.
@6# H. Hiramoto and S. Abe, J. Phys. Soc. Jpn.57, 230 ~1988!;

Harper Model,ibid., 57, 1365~1988!.
@7# S. Abe and H. Hiramoto, Phys. Rev. A36, 5349~1987!.
@8# I. Guarneri and G. Mantica, Phys. Rev. Lett.73, 3379~1994!.
@9# G. Mantica, Physica D103, 576 ~1997!; 109, 113 ~1997!.

@10# G. Mantica, J. Phys. IV8, 253 ~1998!.
@11# G. Mantica, Int. Ser. Numer. Math.131, 153 ~1999!.
@12# I. Guarneri, Europhys. Lett.10, 95 ~1989!; 21, 729 ~1993!.
@13# I. Guarneri and G. Mantica, Ann. I.H.P. Phys. Theor.61, 369

~1994!.
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