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Regular and anomalous quantum diffusion in the Fibonacci kicked rotator
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We study the dynamics of a quantum rotator, impulsively kicked according to the almost-periodic Fibonacci
sequence. A special numerical technique allows us to carry on this investigation for as man$ kisks0 It
is shown that above a critical kick strength, the excitation of the system is well described by regular diffusion,
while below this border it becomes anomalous and subdiffusive. A law for the dependence of the exponent of
anomalous subdiffusion on the kick strength is established numerically. The analogy between these results and
qguantum diffusion in models of quasicrystals and in the kicked Harper system is discussed.
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I. INTRODUCTION ergy has been observgd0,21], which amounts taegular
diffusion. In contrast, the power-law increase of energy with
It can be reasonably argued that the quantum kicked roa nonunit exponent definesmiomalousdiffusion.
tator[1] is the oldest and most thoroughly investigated sys- Energy is just one of the indicators of the growth of the
tem in the realm of so-called quantum chaos. Yet we pretendxcitation of this quantum system. We shall use here a larger
in this paper that recourse to this system is still justified, andet of indicators: moments, entropy, and the inverse partici-
can provide new dynamical phenomena worthy of investigapation ratio. The asymptotic behavior of these quantities is
tion. Consider in fact the problem dfansportin quantum  consistent with a power-law delocalization of the motion. As
extended systems: for instance, a wave packet is initially consequence, an associageowth exponentan be defined
localized on a few states of a quantum lattice, and is then leflor each of them, in such a way that the vakueorresponds
evolve. A deep analysis carried out on model systEs/]  to regular diffusion.
with nearest-neighbor interactions has shown that this dy- Thjs analysis will show that two dynamical regions are
namics is eithetocalized—this is typically the case of ran- yresent in this system. For large kicking strength, the motion
do_m couphlngs—or, as It happens n the case of aI.most Pers diffusive: the growth exponents are equal 20 and a
odic couplmgs,apomalously Fi|ffu3|ye(|._e., deIocahzgu_or) proper diffusion coefficient can be defined. To the contrary,
occurs, but the ghffusmn poefflqlent Is either zero or infinity, when the kick strength is less than a certain threshold, the
but very rarely finite¢ andintermittent[8—14]. : . e
motion typically featuresanomalous subdiffusiongrowth

It is well known that the kicked rotator for typical values ts still exist. but ller thinlt is int i
of the parameters is akin to the first example just presentetﬁa.)(pom:“n s still exist, but are smalfler thanit 1S interesting
to note that a similar situation has been found in quasicrys-

its quantum dynamics i&ventually localized in the lattice X | ) X
given by the free rotator eigenstates. Therefore, it seems /S in two dimension§22]: in these systems, for large hop-
feature a far simpler dynamics than the second class of sy®ing amplitude, the wave-packet spreading over a two-
tems mentioned above, or than its not-too-close relative, théimensional lattice is diffusive, while in the opposite case,
quantum kicked Harpemodel[15], in which anomalous dif- spreading is characterized by anomalous subdiffusion.
fusion[16] has been documented. A way to overcome this is The investigation will be further carried on by varying the
offered by an idea employed profitably in spin and few-kick strength: in so doing, a power-law dependence of the
levels system$17—19: rather than acting upon the system growth exponents on this parameter is observed. In our opin-
with a periodic impulsive force, it is convenient to let the ion, these phenomena are significant and make it very inter-
sequence of time intervals between different “kicks” be al- esting to try to explain the motion of this variation of the
most periodic. In few-level systems, this idea has led to in-conventional quantum kicked rotor.
teresting spectral properties and dynamical behaviors. In this This paper is organized as follows. In the next section, we
paper, we apply this procedure to the kicked rotator. Wedefine the model. In Sec. Ill, we introduce the growth indi-
hope to combine the complexity of an almost-periodic inter-cators and their power-law exponents to gauge anomalous
val sequence and the richness of the infinite Hilbert space diffusion in the dynamics of an initially localized wave
the unperturbed problem. At the same time, we desire tpacket. The numerical algorithm and the numerically com-
maintain a sufficient simplicity for the analysis: for this, we puted long-time dynamics of the system are presented in Sec.
elect to investigate the effect of a Fibonacci sequence ofV. Finally, we allow a random element in the definition of
unitary evolution operators. the dynamical system to verify the robustness of the obtained
This paper presents the results of a numerical analysis aksults and to support the conjecture that anomalous diffu-
the system so defined. In previous studies of almost-periodision in this model is induced by the almost periodicity of
kicking of the quantum rotator, a linear increase of the enthe sequence of unitary operators. In the final section we
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confront these results with those of other almost-periodic Oni1=0pU0n_1, 3
systems.
where the symbolJ means joining the right and left se-
Il. THE DYNAMICAL SYSTEM quencesn the specified orderso thato,=A,B,A,A,B, and
so on. It is then easy to see that the lengthrgpfis equal to
The basis of our investigation is the quantum kicked '0-the nth Fibonacci numbean . Equation (3) expresses a
tator [1]: this is the unitary evolution generated in the usualproperty that will be instrumental in the following to obtain
Hilbert spacel »(S,,) by the operators the quantum evolution up to large times.

_ A—ikcos® ~—i(T/2)n?
U(k,T)=g keost gmilT/an", () Ill. GROWTH EXPONENTS OF AN INITIALLY

) LOCALIZED WAVE FUNCTION
which depend on the two paramet&3d and where the mo-

mentum operator i®i=—id,. The corresponding classical We now |etl//(0.) be the iniFiaI state of the evolution, and
system is the well-known Chirikov standard n{@3]. Semi-  We compute the time dynamigg(t,) =i(t,) #(0). Usually,
classical dynamics is obtained lettilggrow andT go to W€ choose for the initial statz;&(O) the'zero mpryentum pa5|s
zero while keeping their product fixed. This product definesstate ofL»(S,,), €y, the full basis being,=e"’/ 27 with
the classical chaos parametr=kT. In the classical case, N€Z. .
the system becomes globally diffusive figr>0.97%5 . . . . As we have already remarked, the quantum kicked rota-
irrational values off /21, classical and quantum dynamics of Plays the phenomenon gtiantum localizationenergy in the -
the kicked rotator are profoundly different: this is the contentSystem eventually ceases to grow, and quantum diffusion
of the quantum phenomenon of dynamical localizationStops. On the other hand, for sequences wathdomtime
which has been well described in the literature, and whictntervals between kicks, the increase in momentum is diffu-
predicts that the quantum evolution of an initially focusedSive and never comes to an ef#]. Of particular interest
wave function is almost periodic in time and localized on thethen is to study the interval sequence defined in the preced-
lattice of the free rotor eigenstatgs]. ing section, which is neither periodic nor random; it belongs
In this paper, we study a variation on this theme: while into the family of almost-periodic sequences, which, in a
formed repeatedly, atqually spacedimest,=nT, in our under these circumstances, dynamical localization results in
model the length of the time intervals in between kicks will @ delocalization that shares many characteristics with what is

not be constant. Equivalently, we can say that the operator®king place in almost-periodic lattice systems. S
U act now in a Fibonacci sequence to produce the full quan- 10 Study the dynamics of the quantum wave function, it is
tum evolution/: convenient to introduce a number of quantities suitable to

define its spreading: we shall call them collectivegipwth

Ut,)=U(k,7,)OU(Kk,7,_1)O---OU(k,71), (2) indicators The first obvious choice are moments. Lef(t)
be the moment of index of the probability distribution over

wheret,=3_, 7 is time, and whereD denotes operator the lattice {e,} given by |(e, (1)), where obviously

composition. As is immediately observed, operators in Eq(+*) denotes the scalar productlin(S,):

(2) are characterized by the same value of the quantum kick

amplitudek and differ solely by the value df. The sequence v (1) =2 |(ey, (1)]?n|®. (4)
{71,72, ...} is determined by allowing; to take one of two n

possible values, which for convenience we denotéAtgnd

B. We choose foA andB the valueg(in arbitrary a dimen- For instance, v, is the usual second moment—the

sional units, as it is customary to o dispersion—which, in the case of regular diffusion, grows
linearly in time. In general, we cannot expegt to behave as
20 20 t, but superdiffusiveand subdiffusivegrowth will be the rule.
A= —, =—, For this, we also define thgrowth exponentunction 8 by
A \? the asymptotic relation
wherex=1.3247 . .. is analgebraic number that solves the v () ~t*@  for t—oo, (5

equatiom\®>—\—1=0. In a senseA,B is themost irrational

couple of numbers. Choosing a different irrational pair will where the asymptotic behavior for large time is to be under-

not alter our results, as we shall see. stood in a suitable sense. The functigfw) is the so-called
We line upA’s andB’s according to the well-known Fi- quantum intermittency functipnvhose name and properties

bonacci sequence: this is obtained by an accretion rule on there described if8—10.

initial finite pieces of the infinite sequence;=A and o, When « tends to zero, the momenmt, tends to the con-

=A,B. According to this rule, the next finite piece is ob- stant vo=1. Nonetheless, one can define the limit of the

tained by joining these two sequences, the first at the end dtinction 8 for a tending to zero8(0), anumber that also

the secondo;=A,B,A. In general, appears in the scaling of the logarithmic momeny;
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v|n<t>==n§0 |(en, ¢(1)]2In(|n))~B(O)In(t).  (6) P<t>==; |(en, (1))|*~1 P, 8)

with its exponentg,, .

In the quantitieg5) and (6), the ordering of the basis is We notice that, in principle, the exponengsof all the
relevant: a function of appears in the summations. We can quantities so far defined are different. Yet, when finite, they
nonetheless define and compute quantities that do not malee all consistent with the fact that the spreading of the wave
reference to these characteristics. The first of these is theacket over the basis takes place in a power-law fashion.
entropy S This is indeed the case for our system: in Fig. 1, we plot

the 1k power of a set of moments, versus time, in a
doubly logarithmic scale, together with one over the inverse
participation ratio, and with the exponential of the entropy

S(t):=— > [(eq, ¥ (1)2In((e,, ¥(1))]2)~ y+ Bdn(t), and of the logarithmic moment. It is immediately apparent

" that quantum diffusion in this case is regular: these curves

@) are parallel to the reference lin&, so that all growth expo-
nents are equal tg¢. This case has been computed for
whose asymptotic behavior defines the expongntin the  =10.
case of localizationB; is null, ande” [y is the constant To render even more evident the fact that we are in the

contribution in Eq.(7)] gives a measure of the localization presence of regular diffusion, we plot in Figj a snapshot of
length. Another basis-independent quantity is theerse the wave packet at a large time, for the same case of Fig. 1:
participation ratio P, The fitting line is a normal distribution.

FIG. 2. Wave packet for the case of Fig. 1.

el ‘h Plotted are occupation probabilitiesp,
10 h X =|(e,,¥(1))|? versus site numben at time t
10° m" B 1 =1.797x 10" (thin line). The thick line is an in-
107k i i ] terpolating normal distribution.
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IV. DETECTING ANOMALOUS DIFFUSION ing with Egs.(9) and(10), a finite truncation of the operators
IN LARGE TIME DYNAMICS involved is necessary. Now, for any practical purpose,
Let us now investigate the effect of varying the kick U(k”_') is a banded ”?a”‘x’ and we must obviously choose
strengthk: in particular, let us decrease it from the valkie the size of'the numerlcgl truncation to be muqh larger than
=10 at which we observed regular diffusion. Two difficul- (e band size. Yet this is not enough: appropriate boundary
ties arise when performing this analysis: since we observe §onditions at the basis edges must be imposed. Two choices
reduceddelocalization of the wave packet, very large time-aré at hand: Dirichlet and Neumann. In the latter case, we are
scale computations are required to produce reliable informalroducing the unitary evolution on thterus while in the
tion about the asymptotic behavior. Secondly, lasgstem- first case we end up with a nonunitary evolution.
atic oscillations in the behavior of the momeritd of the Having in mind what we want to obtaifi.e., the evolu-
other growth indicatojstend to overwhelm and submerge tion of thee, basis state in the full cylinder spaceve have
the power-law increase. The greater the oscillations, th@dopted Dirichlet conditions for two reasons. First, when the
slower is this increase. truncation size is sufficiently large, both Dirichlet and Neu-
Let us first present a solution for the second difficulty: wemann conditionsnustproduce an excellent approximation of
can introduce anagnetic flux¢ in the evolution(1), which  the truel/™ve,. But in addition, choosing Dirichlet, we can
consists merely in replacing the operatowith n+¢: ¢ is ~ gauge numerically two quantities: the normalization of the
a real number, and fors=0 we obtain the usual kicked zeroth column ot/FN (which is a common techniqiiand its
system. By performing the evolution with a set of values ofeffective dimensigrwhich is less common but more instruc-
¢, and by averaging the results with respect to this samplejve. In fact, this latter is defined as the number of compo-
we can reduce the systematic fluctuations superimposed ents of/Fne, of larger magnitude than a certain threshold:
the Ieading power—law behavior without altering this behaV-this quantiﬁes the dimension of the wave packet aﬁﬂr
ior. Observe also that the classical dynamiCS is left invariankickS, and can be proﬁtab]y used to control dynamica”y, as
by the introduction of this flux. time evolves, the optimal size of the truncation. It must be

For the first difficulty, a more complex strategy is re- a4ded that the effective dimension in itself has physical and
quired. We can push the evolution to extremely large times,athematical relevandd 1.

by resorting to a matrix algorithm. L&t be the unitary
evolution operator acting from time zero up to the time of the,
kick numberF,, the nth Fibonacci number. Then, EB)
implies that these operators are simply related by

In summary, we have been able to reach easily about 60
iterations of the Fibonacci multiplication, Eg10), which
correspond to more than ¥ousual iterations, with a basis
size of the order of thousands. Numerical stability, controlled

YFnei=1/Fn-101/Fn 9) by various techniques, is the limiting factor here.
' A set of typical results is shown in Fig. 3, where we plot
whereO is the usual operator of multiplication, and where the second moment,, averaged over a sample of phases, as
the order of operators is essential, as it was in @y. This @ function of time, in a doubly logarithmic scale, for a set of

relation must be initialized by setting decreasing values &f We clearly see that, decreases with
k, but, more importantly, the slope of the curvg®., the
UFi=U(k,A), growth exponeniB(2)] also diminishes in accordance with
k. As a consequence, we can safely conclude that quantum
UF2=U(k,B)OU(k,A), (10) diffusion is anomalous in this model for a wide set of param-

eters[25]. In Fig. 3 we have also plotted the moments for
and serves to produce the full sequefit€n}. In fact, the  ¢=0: it appears that the averaging procedure has succeeded
matrix elements otl (K, ) are explicitly known, and Eq9) in extracting the leading behavior.
involves then only a matrix-to-matrix multiplication. Of At this point, a comment must be made about intermit-
course, thecost of this operation scales as the cube of thetency: this is present when the functigf«) [see Eq(5)] is
size of the matrix, and this is certainly more expensive thamot constant. In the case at hand, the variatiop @fith « is
the usual evolution effected via a sequence of fast Fouriesmaller than the uncertainty with which is determined,
transforms. Nonetheless, this technique becomes advantheth due to numerical effects and to the superimposed oscil-
geous when dealing with extremely large times, fonsteps lations of the moments,,. We can therefore only conclude
one reaches up t&, map iterations, and it is well known that intermittency, if present, is low.

that Fibonacci numbers are geometrically increasing.in This fact is not totally negative: by averaging overwe
We therefore effect the matrix multiplication fon can define a more reliable growth exponght,, which is
=1, ... N and then look at the zeroth column of the result-now a function only of the kick amplitude. This immedi-

ing operato/™N: this is the evolution of the initial statey.  ately prompts for the study of this dependence. Figure 4 plots
In our numerical experiments, the initial state of the evolu-the numerical results obtained by the procedure just exposed.
tion will always beey. Suitable combinations of the columns Two regions clearly emerge from the investigation of this
can provide the evolution of any arbitrary initial state, if picture: for large values df, we observe the regular diffu-
desired. sive value B,,=3. Anomalous diffusion is observed for

A question of numerical concern must now be discussedsmaller values ok: quite interestingly, in this region we find
prior to showing the results of these calculations: when deala power-law behavior of the growth exponent of the form
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FIG. 3. Second momeng, as a function of
time (in the arbitrary units described in the text
for k=0.125,0.25,0.5,1,2,4bottom to top dia-
mond curvel averaged over a small sample of
phasesp. For comparison, also shown are unav-
eraged values ath=0 for k=0.25,1,4 (filled
circles. Solid lines are the fitting lines from
which the exponenB(2) is extracted.

Bak k) ~K7, (11

with 7 very close to the valué. The transition from anoma-
lous to regular diffusion takes place for-k.: for the set of
values we have chosen, this critical vallg is approxi-

13

erties of the “conventional” kicked rotator. The numerical
studies presented so far have been carried on for the most
irrational pairA,B. We have found similar results for other
irrationally related pairs, such as2y/5,27/ /5. To the con-
trary, the case of rational paifs B is subtler(for resonances

mately equal to 2. Of course, the transition between the twanay set in and is not considered in this paper. We are thus
behaviors, as judged from finite-time simulations, does noted to conclude that the nature of the observed unbounded

appear to be sharp.

diffusion lies in the almost-periodic arrangement of irrational

Let us now investigate the origin of anomalous diffusionin-kick intervalsA andB.

in this model. When acting on the basis sgt€e'"’, the free

: .2 .
evolution €27 produces the phase facter (72" The
arithmetic nature off /27 is at the root of the spectral prop-

10°

<X
< N

:Bav

10 2 5 10° 2 5 10"

k

FIG. 4. Growth exponenB,, (crossesobtained as the average
of B(a), for «=2,4,6, versus the kick amplitude The horizontal
line marks the values,,= %; the fitting line for small values ok
grows proportionally tdk”, with 7;=§. Also reported(diamond$

To substantiate this hypothesis, we have replaced the
phases T/2)n? by two sequences of equally distributed
pseudorandom numbers, one for the oper&i¢k,A) and
one for its companiorlJ(k,B). In so doing, we have ob-
tained quite similar results to those reported above. In Fig. 4,
the exponentg,, for this experiment are also reported.

V. CONCLUSION

We have studied the dynamics of a quantum rotator
kicked at discrete times generated by the almost-periodic Fi-
bonacci sequence. Contrary to that of the usual kicked rota-
tor, this dynamics does not show quantum localization. We
have introduced and computed various indicators of the
spreading of an initially localized wave packet. This has per-
mitted us to show that the dynamics features regular diffu-
sion for large values of the kick amplitud&k>k.) and
anomalous subdiffusion for small valuds<(k.). In this lat-
ter range, the average exponent of this diffusion displays a
power-law behavior with the kick amplitudeg, (k) ~ k%>,

This relation, although only numerically established, is quite
interesting, and deserves further investigation in our opinion.

Similarities and differences between the Fibonacci kicked
rotator and other quasiperiodic models are to be noted. We
have already observed that anomalous diffusion is typically
found in almost-periodic one-dimensional lattice systems. It
also appears in the kicked Harper model. To the contrary, the
Fibonacci kicked rotator is qualitatively different from the
rotator acted upon by equally spaced kicks, with an ampli-

are the result obtained when random rotation phases replace tigdek is a quasiperiodic function of time. The case in which

irrational phased n?/2 (see text

this function containsm incommensurate frequencies has
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been studied i126—2§. It was shown that this model is a model can be mapped into an effective solid-state hopping
dynamical analog of the Anderson localization in a space ofmodel, similar to the Anderson model, with hopping only to
effective dimensiord=m+1. In this way, the usual kicked a finite number of nearby sites. On the contrary, the almost-
rotator (m=0) corresponds tal=1, and, of course, is al- periodic sequence of unitary operators of the Fibonacci
ways localized. Fom=1, the excitation is still always lo- kicked rotator renders the situation much richer, and gives
calized, but the localization length grows exponentially withrise to a transition from regular to anomalous diffusion.

k [26], in analogy with the Anderson localization a2, As a matter of fact, the dynamics of the Fibonacci kicked
Finally, form>1, i.e.,d>2, a transition from localization to - rotator seems more similar to a wave spreading on a two-
diffusive excitation takes place above some critical kick am-gimensional quasicrystal lattice. Indeed, studies of quantum
plitude, in analogy with the Anderson transition fd>2  gitfysion over an octagonal quasiperiodic tiling have shown
[27,28. It is evident that this behavior differs significantly 5 gimjjar transition from anomalous to regular diffusj@2].
from the one we find in this paper for the Fibonacci kicked, vever, in spite of this initial similarity, more detailed

rotator. studies are required to establish a quantitative relation be-

In our opinion, this difference might be due to the fact . . i
that in[26—-28, the kick amplitudek is an analytic function tweer! these models and to gain a bgtter theoretical under
standing of the results presented in this paper.

of incommensurate phasdfrequencies For this, such a
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