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Classical dynamics on graphs
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We consider the classical evolution of a particle on a graph by using a time-continuous Frobenius-Perron
operator that generalizes previous propositions. In this way, the relaxation rates as well as the chaotic proper-
ties can be defined for the time-continuous classical dynamics on graphs. These properties are given as the
zeros of some periodic-orbit zeta functions. We consider in detail the case of infinite periodic graphs where the
particle undergoes a diffusion process. The infinite spatial extension is taken into account by Fourier trans-
forms that decompose the observables and probability densities into sectors corresponding to different values
of the wave number. The hydrodynamic modes of diffusion are studied by an eigenvalue problem of a
Frobenius-Perron operator corresponding to a given sector. The diffusion coefficient is obtained from the
hydrodynamic modes of diffusion and has the Green-Kubo form. Moreover, we study finite but large open
graphs that converge to the infinite periodic graph when their size goes to infinity. The lifetime of the particle
on the open graph is shown to correspond to the lifetime of a system that undergoes a diffusion process before

it escapes.
DOI: 10.1103/PhysRevE.63.066215 PACS nuner02.50-r, 03.65.Sq, 05.60.Cd, 45.06x
[. INTRODUCTION quantum mechanics has been defined on such graphs by con-

sidering a wave function extending on all the bonds?].

The study of classical dynamics on graphs is motivated byrhis wave function has been supposed to obey the one-
the recent discovery that quantum graphs have similar speclimensional Schinger equation on each bond. The Sehro
tral statistics of energy levels as the classically chaotic quandinger equation is supplemented by boundary conditions at
tum system$1,2]. Since this pioneering work by Kottos and the vertices. The boundary conditions at a vertex determine
Smilansky, several studies have been devoted to the propaihe quantum amplitudes of the outgoing waves in terms of
ties of quantum graphf3—7] and to their applications in the amplitudes of the ingoing waves and, thus, the transmis-
mesoscopic physicE8]. However, the classical dynamics, sion and reflection amplitudes of that particular vertex.
which is of great importance for the understanding of the In the classical limit, the Schdinger equation leads to
short-wavelength quantum properties, has not yet been comtamilton’s classical equations for the one-dimensional mo-
sidered in detail. In Ref$1,2], a classical dynamics has been tion of a particle on each bond. When a vertex is reached, the
considered in which the particles are supposed to move osquare moduli of the quantum amplitudes give the probabili-
the graph with a discrete and isochrondigpologica) time,  ties that the particle be reflected back to the ingoing bond or
ignoring the different lengths of the bonds composing thebe transmitted to one of the other bonds connected with the
graph. vertex. In the classical limit of arbitrarily short wavelengths,

The purpose of the present paper is to develop the theomhe transmission and reflection probabilities do not reduce to
of the classical dynamics on graphs by considering the mathe trivial ones(i.e., to 0 and 1 for typical graphs. Accord-
tion of particles in real time. This generalization is importantingly, the limiting classical dynamics on graphs is in general
if we want to compare the classical and quantum quantitiesa combination of the uniform motion of the particle on the
especially with regard to the time-dependent properties ibonds with random transitions at the vertices. This dynami-
open or spatially extended graphs. A real-time classical dyeal randomness that naturally appears in the classical limit is
namics on graphs should allow us to define kinetic and transat the origin of a splitting of the classical trajectory into a
port properties such as the classical escape rates and the difee of trajectories. This feature is not new and has already
fusion coefficients, as well as the characteristic quantities obeen observed in several processes such as the ray splitting
chaos such as the Kolmogorov-SiriiiS) and the topologi- in billiards divided by a potential stej®] or the scattering on
cal entropies per unit time. a wedgd 10]. We should emphasize that this dynamical ran-

An important question concerns the nature of classicalomness manifests itself only on subsets with a dimension
dynamics on a graph. A graph is a network of bonds orlower than the phase space dimension and not in the bulk of
which the classical particle has a one-dimensional uniformphase space so that, the classical graphs share many proper-
motion at constant energy. The bonds are interconnected #es of the deterministic chaotic systems as we shall see be-
vertices where several bonds meet. The number of bondsw.
connected with a vertex is called the valence of the vertex. A The dynamical randomness of the classical dynamics on

graphs requires a Liouvillian approach to describe the time

evolution of the probability density to find the particle some-

*Present address: Chemical Physics Department, Weizmann Instivhere on the graph. Accordingly, one of our first goals be-
tute of Science, Rehovot 76100, Israel. low will be to derive the Frobenius-Perron operator as well
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as the associated master equation for the graphs. This opet#es of the graphs in terms of the classical zeta function and
tor is introduced by noticing that the classical dynamics on ats Pollicott-Ruelle resonances. In Sec. V, the large-deviation
graph is equivalent to a random suspended flow determinei@rmalism is introduced that allows us to characterize the
by the lengths of the bonds, the velocity of the particle, andchaotic properties of these systems. In Sec. VI, the theory is
the transition probabilities. applied to classical scattering on open graphs. The case of
A consequence of the dynamical randomness is the relatofinite periodic graphs is considered in Sec. VII, where we
ation of the probability density toward the equilibrium den- obtain the diffusion coefficient and we show that it can be
sity in typical closed graphs, or to 0 in open graphs or inWritten in the form of a Green-Kubo formula. In Sec. VI,
graphs of infinite extension. This relaxation can be characV€ consider finite open graphs of the scattering type, where
terized by the decay rates that are given by solving the eitN® particle escapes to infinity, and we show how the diffu-

genvalue problem of the Frobenius-Perron operator. Th&on coefficient can be related to the escape rate and the
characteristic determinant of the Frobenius-Perron operatd@0tic properties. The case of infinite disordered graphs is
defines a classical zeta function and its zeros—also called tfePnsidered in Sec. IX. Conclusions are drawn in Sec. X.

Pollicott-Ruelle resonances—give the decay rates. The lead-
ing decay rate is the so-called escape rate. The Pollicott-Il. THE GRAPHS AND THEIR CLASSICAL DYNAMICS
Ruelle resonances have a particularly important role to play
because they control the decay or relaxation and they also
manifest themselves in the quantum scattering properties of As in Refs.[1,2], let us introduce graphs as geometrical
open systems, as revealed by a recent experiment by Sridhabjects where a particle moves. Graphs ¥reertices con-
and co-workerq11]. The decay rates are time-dependentnected byB bonds. Each bont connects two verticessand
properties so that they require to consider the timej. We can assign an orientation to each bond and define “ori-
continuous classical dynamics to be defined. ented or directed bonds.” Here one fixes the direction of the
Besides, we define a time-continuous “topological pres-bond[i,j] and callsb=(i,j) the bond oriented fron to j.

sure” function from which the different chaotic properties of The same bond but oriented fronto i is denotedb=(j,i).
the classical dynamics on graphs can be deduced. This func-

tion allows us to define the KS and topological entropies peg\/e notice thab=b. A graph withB bonds has B directed
unit time, as well as an effective positive Lyapunov exponenOnds: The valence; of a vertex is the number of bonds that
for the graph. meet at the vertek

We shall also show how diffusion can be studied on spa. Metric information is introduced by assigning a lenggh

tially periodic graphs thanks to our Frobenius-Perron operato each bondb. In order to define the position of a particle on

tor and its decay rates. Here, we consider graphs that at8€ 9raph, we introduce a coordinatg on each bond
constructed by the repetition of a unit cell. When the cell is=Li,1]- We can assign either the coordinadg;) or x; )
repeated an infinite number of times we form a periodic! M€ first one is defined such that ;=0 ati andx; ;=1 at
graph. Such spatially extended periodic systems are interedt-Whereas¢; y=0 atj andx =, ati. Once the orienta-
ing for the study of transport properties. In fact at the clastion is given, the position of a particle on the graph is deter-
sical level it has been shown in several works that relationMined by the coordinatg, where O<x,=<l,. The indexb
ships exist between chaotic dynamics and the normdpentlfles the bond and the value xf identifies the position
transport properties such as diffusift?] and thermal con- ©n this bond. A
ductivity [13], which have been studied in the periodic Lor-  For some purposes, it is convenient to consllandb as
entz gas. In the present paper, we obtain the time-continuou$fferent bonds within the formalism. Of course, the physical
diffusion properties for the spatially periodic graphs. More-quantities defined on each of them must satisfy some consis-
over, we also study the escape rate in large but finite opetency relations. In particular, we should have that!,, and
graphs and we show that this rate is related, on the one hangl,=1,—Xy, .
to the diffusion coefficient and, on the other hand, to the A particle on a graph moves freely as long as it is on a
effective Lyapunov exponent and the KS entropy per unitoond. The vertices are singular points, and it is not possible
time. to write down the analog of Newton’s equations at the ver-
The plan of the paper is the following. Section Il containstices. Instead we have to introduce transition probabilities
a general introduction to graphs and their classical dynamicgrom bond to bond. These transition probabilities introduce a
In Sec. Il B, we introduce the evolution using the aforemen-dynamical randomness which is coming from the quantum
tioned random suspended flow and, therefore, we can followdynamics in the classical limit. In this sense, the classical
the approach developed in R¢l.2] for the study of relax- dynamics on graphs turns out to be intrinsically random.
ation and chaotic properties at the level of the Liouvillian The reflection and transmissidtransition probabilities
dynamics, which is developed in Sec. Ill. The Frobenius-are determined by the quantum dynamics on the graph. This
Perron operator is derived in Sec. Il A. In Sec. Il B, we latter introduces the probability amplitud&g, for a transi-
present an alternative derivation of the Frobenius-Perron ogion from the bondb’ to the bondb. We shall show in a
erator and its eigenvalues and eigenstates, which is based eaparate papdrl4] that the random classical dynamics de-
a master-equation approach, familiar in the context of stofined in the present paper, with the transition probabilities
chastic processes. Both approaches are shown to be equivdefined byP,,, =|T,,|? is, indeed, the classical limit of the
lent. In Sec. IV, we study the relaxation and ergodic properquantum dynamics on graphs. For example, we may consider

A. Definition of the graphs
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a quantum graph with transition amplitudes of the form

|

whereCy,, is 1 if the bondb’ is connected with the bonl
and 0 otherwise andy is the valence of the vertex that
connectd’ with b. Such probability amplitudes are obtained

2
- = 56’[)’
Vhp!

Top = Cbb'( (1)

once the continuity of the wave function and the current

conservation are imposed at each vertex. In REfs:5],

these graphs are referred to as Neumann graphs. Other typ

of graphs have also been considered in the literdi2y®,6|
and will be used in the followingsee Sec. IX

In the present paper, the aim is to develop the theory o

the classical dynamics for general graphs defined by a typic
matrix of transition probabilitie®},,, with the general prop-

i i low. For the classical i hs, .~ =~ ;
erties discussed below. For the classical dynamics on grap Iﬁs)’bsmon(m phase spadevill be referred to as the pajib,x]

the energy of the particle is conserved during the free motio

in the bonds and also in the transition to other bonds. Ac-".
cordingly, the surface of constant energy is considered in thIﬁ.hl
phase space determined by the coordinate of the particle,

hich i that ifi bond and th iti ith re-
WhICH 1S X, el Speciies a bond an © hosttion Wi rerponds --b_5b_1bgbib,- -+ (which is enough to determine

éhe evolution on the surface of sectjoThe probability of

spect to a vertex. The momentum is given by the direction i
which the particle moves on the bond and its modulus i
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eigenvector ofP with eigenvalue 1. This is the case for a
finite graph with transition probabilitieBy, = | Ty, |? given
by the amplitudegl).

B. The classical dynamics on graphs
as a random suspended flow

The description given above is analogous to the dynamics
of a so-called suspended fld@:2]. In fact, we can consider
the set of point§x,=0,Yb}, i.e., the set of all vertices, as a
%Lérface of section. We attach to each of these points a seg-
ment (here the directed bonaharacterized by a coordinate
0<x<l,. When the trajectory reaches the poitl, it
performs another passage }hrough the surface. Thus the flow
suspended over the Poincateface of section made of the
vertices in the phase space of the directed bonds.
For convenience, instead of the previous notatignthe

whereb indicates the directed bond amds the position on

s bond, i.e., &x<ly.

A realization of the random process on the grdpé., a
ajectory can be identified with the sequence of traversed

tr

fixed by the energy. It should be noticed that the position anc?;UCh a trajectory is given by

the direction are combined together if the position is defined
in a given directed bond. In this way, the phase space is
completely composed of all the positions of all the directed
bonds. The equation of motion is thus

Pop, PoibPogb_,Po b,

An initial condition[ by, x] of this trajectory is denoted by
the dotted bi-infinite sequence--b_,b_;bgb.b,--- to-
gether with the position € x<| by FOr @ given trajectory, we

divide the time axis into intervals of duratidgn/u extend-
ing from

dx_

a—v=\/2E/M for 0<x=x,<lp, 2

wherev is the velocity in absolute valug, is the energy, and

M is the mass of the particle. When the particle reaches the lp.—X Iy ly . Iy

endx, =, of the bondb’, a transition can bring it at the SR P 7

beginningx,=0 of the bondb. According to the above dis- v v v v

cussion, this transition from the borild to the bondb is

assumed to have the probabili®y,,, to occur, I, =X N o, T oy, 1o,y N I,
v v v 1% v

transition b’ —b  with probability Py, . (3

By the conservation of the total probability, the transition
probabilities must satisfy

wherev is the velocity of the particle that travels freely in
the bonds. At each vertex, the particle changes its direction
but keeps its kinetic energy constant.

For a trajectoryp that, at timet=0, is at the position
[bg,x] we define the forward evolution operat@r‘p with t
>0 by

Eb) Ppp =1, (4)

which means that the vectdd,1,...,} is always a left

eigenvector with eigenvalue 1 for the transition matHx

={Ppy}os _, (see Ref[2]). _ o _
We méy assume that the system has the property of mi:€- the evolution is the one of a free particle as long as the

croscopic reversibilityi.e., of detailed balancingccording ~ Particle stays in the bonky, and

to which the probability of the transitioh’ —b is equal to

the probability of the time-reversed transitibr-b’: Py,
=Pjp, as expected, for instance, in absence of a magnetic
field. As a consequence of detailed balancing, the matii if
a bistochastic matrix, i.e., it satisfi&g,Py, =2, Ppy =1,
whereupon the vectofl,1,...,2 is both a right and left

@by, x]=[bo,vt+x] if 0<x+vt<ly, (5)

®[bo,x]=[by. x+vt=ly —lp —---—lp] (6)

O<X+vt_|bn—1_|bn—2_ e _Ib0<|bn'
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which follows from the fact that, for the given trajectopy  of the path probabilitie$8) that are nonvanishing is always
the bond and the position where the particle stands at a giveimite if there is no sequence of lengths accumulating to zero
time is fixed by the lengths traversed at previous times andor the graph under study.

by the constant velocity. Analogously, we also introduce a  For a graph, the kernel of the evolution operator is thus
backward evolution fot<O, given by

@, by, x]=[bo,x—vlt|]] if 0<x—vlt|<ly
P([b.x],tl[bo,xO],0>=§ Po(t.[bo.Xo])
p

and
X 3([b,x]—®}[bg,Xe]), (9
@, Mbo X]=[b_p.x=vlt|+1y_+lp 4+l ] ([bx]=Pylbo Xo]).  (9)
_ where the sum is performed over a finite number of paths.
if By analogy with Eq.(7) the density is given by
0<X_U|t|+|b—n+|b—n+1+ s +Ib—l<|b—n'

Ip
P([b,X],t):bz fo deo(z Po(t,[bg,Xo0])
IIl. THE LIOUVILLIAN DESCRIPTION 0 e}

A. The Frobenius-Perron operator X 8([b,x]— CI)tp[bO ,xo])] p([bg.%o],0)

On the graph, we want to study the time evolution of the
probability densityp([b,x],t). This density determines the
probability p([ b,x],t)dx of finding the particle in the boni
with position in[x,x+dx] at timet.

For a general Markov process, the time evolution of the — —t —t
probability density is ruled by the Chapman-Kolmogorov p(b.x]H % Po(t: @y [ox])p(Pp [:x].0) (10
equation

and integrating the Dirac delta dengitye finally get

where the sum is over all the trajectories that go backward in

t :f dé, P&t £q o), 7 time from the current pointb,x].
P&y §oP(&:t]€o.to)p(£0.t0) ) In this way, we have defined the Frobenius-Perron opera-

Pt
whereP(é,t| £ ,to) is the conditional probability density that © P 25

the particle be in the stateat timet given that it was in the
state &, at the initial timeto. This conditional probablllty IStF[b X]:E P (t (I)—t[b x])F(dft[b x]) (11)
. . . . . L) p 1 p L p 1
density defines the integral kernel of the time-evolution op- ™
erator, which is linear. The conditional probability density
can be expressed as a suor integra) over all the paths where{F[b,x]} is a vector of B functions defined on the
joining the initial state to the final one within the given lapse directed bonds.
of time. o . We now turn to the determination of the spectrum of the
In the case of graphs, each state is given by a directefrobenius-Perron operator. With this aim, we take the

bond and a position on this bond=[b,x]. A path or tra-  Laplace transform of the Frobenius-Perron operator given by
jectory is a bi-infinite sequence of directed bonds as degq. (11),

scribed in the preceding section. As soon as the path or tra-

jectoryp is known, the sequence of visited bonds is fixed so o R

that the motion is determined to be the time translation at J e S'P'F[b,x]dt

velocity v given by Eqgs(5) and(6). In this case, the condi- 0

tional probability density of finding the particle in position w

[b,x] at timet given it was in[by,X,] at the initial timet, =f dte s>, Py(t, @, b, x])F(d, [b,x]).
=0 is provided by a kind of Dirac delta densi&([b,x] 0 {p}
—@;[bo,xo]). Along the pathp, the particle meets several
successive vertices where the conditional probability density?? Order to evaluate the Laplace transform, we have to de-
is expressed in terms of the conditional probability to reactPOMPOSe the sum over the pafjp$ into the different classes

the final boncb=b,, within the timet, given the initial con- ©f t€rms corresponding to paths in which=0,1,3. ..,
dition [bg,Xo], bonds are visited during the timteThis decomposition leads

to
Po(t.[bo, Xo])=(P")bby=Pbb, ,Pb, 1b, , " Pb,b,Pb by-
8

® We emphasize the analogy with deterministic proces-

We notice that the integar is fixed by the trajectory, the  ses for which P(x,t|x0,0)=6[x— ¢'(xg)] so that p(x,t)
initial condition[bg,Xg], and the elapsed tinteThe number  =|9¢ Y 9x|p[ ¢ ~'(x),0].
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>

J e S'PP,F(d, [b,x])dt
{p}

xlv
= f e
0

X eiSth—nF

- fo+30
SE[bx—vt]dtt 3, > |

n—-1
n=1 (M X/v+2i:1|b_|/v

n
b_p,Xx—vt+ > Ib_]dt
i=1 :

where P - n—Pbb Po_ Py is the probability

of a pathp™"

1b 2. +1b

PHYSICAL REVIEW BE63 066215

fb(s)=leesx"”F[b,x’]dx’. (15)

The matrixQ(s) acts on these vectof§s) through the rela-
tion

(Q-Np(8)=2 Qup(S)fp(S). (16)
b!

This matrix can be interpreted as the Frobenius-Perron op-
erator of the evolution reduced to the surface of sedti@.

ands,-n is the sum over these trajectories. A This matrix depends on the Laplace variablat will give

change of variable transforms the previous equation as folthe relaxation rate of the system. With these definitions, we

lows:

>

—st —t
> f PoF (P, '[b,x])

1 -
:_e—SX/v J esx /UF[b,X/]dX,
v 0

+2 2

n=1 {p*n}

o

|
><J b"e‘sx'/”F[bn,x’]dx’] (12)
0

where we introduced the quantity

*S'b//v

Qb (8)=Ppp€ (13

and here we identifyp, with b. Now we have to perform the

can write

* [
2_) 2 Q”)bbfnfobfneSX"”F[bfn,X’]dx’

=2, (Q"i(s)= ( 2

—qQ )b(s)

where we used the relatioB;_,Q"=Q/(1-Q). As a con-
sequence, Eql4) becomes

0 " 1 X ,
f e‘S‘PtF[b,x]dt=;e‘s>"”|f eS*/VF[b,x’]dx’
0 0

Q ) ]
—f| (9)}.
-Q '/,

We are now at a few steps from determining the eigen-

values(and eigenvectojsof P'. This is done by first study-
ing the solutions of

+ (17)

sum over all the realizations in the right-hand side of Eq.

(12). This is a sum over all the trajectories
b,lb,z- ’ 'bfn+lbfn

that leads to the formatidmf the matrixQ", i.e., Q raised to
the powemn. Accordingly, we get

f e SPE[b,x]dt
0
1 X
:_e—sx/v f @SX /vF[b’X/]dX/
v 0

o0 | )
+nzl b}‘, (Q“)bbfnfo"’”eSX "F[b_p,x"]dx’
(14)

We define the vectof(s)={f(s), ... ,f,g(s)} with the
components of this vector given by the functions

2 — n
Zp b Qo ;" Qb b = Zb (Qpgb,

Q(s)-f(s)=f(s).

These solutions exist only & belongs to thgcomplex set
{s;} of solutions of the following characteristic determinant

defl-Q(s)]=0

We denote these particular vectors jgyand their compo-
nents byy;[b] with b=1, ... ,28, whereupon

(18

Qs xj= X - (19
The left vector, which is adjoint to the right vectqr, is
given by
Qs x;=x;- (20
The relation to the eigenvalue problem of the flow is es-
tablished as follows. Suppose th#;[b,x] is an eigenstate
of P! with eigenvalueesi! [for the moments; is not deter-

mined but we call it this way because it will turn out to be
one of the solutions of Eq18)], i.e.,

PUW;[b,x]=e5"W;[b,x] (22)
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with Res;<0 because the density is not expected to increase
with the time. For the forward semigroup, the zeros of Eq.

(18) are expected in the region Re<0.
Taking the Laplace transform of ER1), we get

¥,[b.x]
S_Sj

fo dte” P, [b,x]= fo dtelS 9 [b,x]=

If we introduce the vectol (s)={Y(s), ...,Y,g(s)} de-
fined by the components

|
Yo (s)= fobdxe”’”‘lfj[b,x]

and use the same calculation that led to 8q), the eigen-
value equation becomes

_ ves" W[ b,x]
S_Sj
(22)

x , , Q
Jodx’esx oy [b,x']+ —-Y)b(s)

I-Q
for 0<x<l,. Settingx=0 in Eq.(22), we have
(s—5)Q(s)-Y(s)=v[I-Q(s)] - ¥;
with the vector®;={W¥[b,0]}z2,. Fors=s;, we get that
Q(s))- W=,

which shows thas; is a solution of Eq(18) as we antici-
pated and that the eigenstate of the flowkat0, W;[b,0],
may be identified with the vector that is solution of Ef9),

W[b,0]=x;[b]= > Quu(s)x;[b’].
b/

PHYSICAL REVIEW B3 066215

B. A master-equation approach

In this section, we develop an alternative derivation of the
results of the previous subsection using a master equation.

If at a given timet the particle is at the end of a bond, say
[b",l,/], the particle has to go instantaneously to another
directed bond with probabilityy,, , i.e.,

p([b,0],t)=2 Ppyp([b’,lp1,0). (24)
<

Now, since the evolution is deterministic along the bonds
[see Eq(5)] we have that

ol 0310+ %) =pitb010

and also

p([b" 1o ], )=p([b", Iy —vt'],t—t").

Iy —x'
1%

wherex’ is arbitrary. Hence, Eq24) becomes

Choosingt’ = (I, —x")/v, we have

p([b,,lbr],t):p([b,,X,],t_

lb’_xb’)

p([b,X],t+ ; => Pbb’P( [b" Xy ]t
b/

wherex,, may be chosen arbitrarily on each badnd With
the replacement+x/v—t, we finally obtain

To determine the eigenstates of the flow for the other values

of x we differentiate Eq(22) with respect tax and we get

se "W b,x] . ve9, W [b,x]

S—S;

SX vy . —
e[ b,x] ] =

from which we obtain
Sj
aX\Ifj[b,x]z—;\Ifj[b,x],

the integration of which gives

Vi[b,x]=e"%"W[b,0]=e 5" x;[b] for 0O<x<l,.
(23)

The eigenstate increases exponentially along each directe
bond. This exponential increase does not constitute a pro
lem because the time evolution generates the overall expo-

+| r— 4
p(bx1.0=3 Pbbfp([b’,xbr],t—%).
b/

(25

This is the master equation that rules the time evolution on
the graph. It is a Markovian equation with a time delay. The
master equatiori25) differs from Eq.(10) in the sense that
Eq. (25) relates the probability densities before and after the
transitions although Eq10) relates the density at timeto
the initial density through a varying number of transitions
depending on the path

Stationary solutions of EQq(25), satisfying p([b,x],t)
=p([b,x]) for all t, exist if the matrixP has an eigenvalue
e@ual to 1. This is the case for closed graphs. For open
Jraphs, the density decays in time in a way that we shall
determine below.
The master equatiof25) can be iterated. For instance, the

nential decay of Eq(21). Therefore, we see that the vectors
X[ b] that are solutions of Eq19) determine the eigenstates
of the Frobenius-Perron operator. These eigenstates are very

important in nonequilibrium statistical mechanics since they

provide the link between the microscopic and the phenom- 3This is because
enological description of the systerh?2]. =p(® ¥’[b,x],t)=p([b,0],1).

second iteration gives

p([b,x],t+x/v)=P*"p([b,x],t)
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p([b.X],)= 2> Pbb'Pb'b"P([b",Xb'b"],t
b/b//

X+|b’+|b”_xb’b"
v

and in general

p([bX],)=" 2 PpyPpipy - - Pp-1pm)
b'b". . b

(n)
Xp [b ,Xbr...b(n)]yt

n

X+21 Io(h)—Xpr. .. pn
|:

v

PHYSICAL REVIEW BE63 066215

There exists an integer for which we find(at least ong
solution of

X+ lgnt -+ o+l pm—Xpr.. . pm) 0
v

with 0< Xpr.. ,b(n)< | p(n) (27)

for some pathb’b”- - -b(™. Accordingly, we split the sum
(26) into two terms, the first one with all the possible paths
for which there exists a value,...,,m that solves Eq(27)
(26) with the smallest integen (X’ denotes the sum over these
paths and the other term containing the rest of E2p), i.e.,

p((bx] )= X' PpyPyiy:
b'b”-.-p(M

+ E Pbb'Pb/b”' .
b'b”- . b(n)

and we proceed iteratively with the second term,

m
Py 1pmp([b Xy pm],0)

n

X+21 I ()= Xpr. .. pm
=

(n)
“Ppin-vpmp\ [b " Xy ... pm],t— 5

that is, wavith x,, .. pm=Xx—vt+={_;l,0). We see that this equation

look for the smallesh for which there exists a path for which coincides with Eq(10), which shows that both approaches
a solution of Eq(27) exists and so on. Thus we finally have are equivalent. In fact, if we write the sequer’ - - -p(M

in the form bb_,---b_, and if we remember that
@, Tb,x]=[b_n.x—vt+Z I, ] if 0<x—vt+Zl,

p([b X )=> > Puu Py - Poo-1pm <ly__, the equivalence is established.

N p'p...pM
(n)
Xp([b ", Xpr...pm],0)
with

n

Xbr...b(n)=X—vt+2 [ p(i)-
i=1

Now we turn to the determination of the spectrum of the
Frobenius-Perron operator from the master equation. Taking

(28) the Laplace transform of E¢25) or equivalently of

p([b,O],t_ ;) =2 Pbb'P( [b’,0],t— Ib':X)
b/

Accordingly, p([b,x],t) is given by a sum over the initial
conditiong] b(n),Xbr,,,b(n)] and over all the paths that connect we have
[b(n),Xb/,_,b(n)] with [b,x] in a timet. Each given path con-

tributes to this sum by its probability multiplied by

the prob-

ability densityp([b(n),xb,...b(n)],O). Using the notation in- fm e—st’p([byo],tl)dt/
troduced befor¢see Eq(8)], Eq. (28) can be written as —xlv
_ (n) - , —S|b'/Ufoo —st’ ' ’ ’
p([b,X],t)zg Pp(t;q)pt[b,X])p([b !Xb’~~~b(n)]10) % Pbb e _X/U_|b,/ve P([b ,0]yt )dt
P
(29 (30
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after some simple changes of variabl@onsidering the defi-
nition of Eq.(13) and thatp([b,0],t<0)=0, Eq.(30) reads

Fe’s"p([bm,t')dt’
0
-3 be«s)f“e*st’p<[b',01,t'>dt'. (31
b’ 0
Defining

po(S)= f:efstqum,t)dt

Eq. (31) becomes

PHYSICAL REVIEW B3 066215
2B
1 -
<A>t:bzl Efo Alb,x]p([b,x],t)dx=(A[P'po) (35)

where p, denotes the initial probability density and where
we have introduced the inner product

2B 1l
<F|G>=b§l Efo F[b,x]* G[b,x]dx (36)

between two vectors of B functions F[b,x] and G[b,x]
defined on the bonds. Here we have used the fact that the
Frobenius-Perron operator rules the time evolution of all the

statistical averages. If the observable is equal to urity,
=1, the conservation of the total probability imposes the
normalization condition{1);=1, which is satisfied by the
Frobenius-Perron operator.

If we are interested in the time evolution at long times and
especially in the relaxation, we may consider an asymptotic

Pb(S) =2, Qppr(S)pp(S)
bl

which has solutions only i§ belongs to the ses;} of solu-

tions of expansion valid fot— +< of the form
defl-Q(s)]=0

and (A)=(AIPtpo)= 2 (AN (Wilpo)+ -+ (37)
X;=Q(s)) - x; - (32

. as a sum of exponential functions, together with possible
The eigenstates of the flow extra terms such as powers of the time multiplied by expo-
, nentialst™ exp@t). In this spectral decomposition, we have
py([b.X1,)=€%'p;([b,x].0) (33 P&Y p P

introduced the right and left eigenstates of the Frobenius-

are determined as follows. We replace E2p) in the master Perron operator

equation(25) from where we directly get

P, =eSty;, (38)

{e5°p,([b,x],00} =2, Qpp(5)){€%*p;([b’,x],0)}.
b/

(34) I’:\)th’j = eSJ?k tq}l . (39)
Comparing Eqs(32) and(34) we have that the eigenstates of
the Frobenius-Perron operator of the flow are given by Since the Frobenius-Perron operator is not a unitary operator
we should expect Jordan-block structures and associated root
states different from the eigenstates. Such Jordan-block
structures are known to generate time dependences of the
and we have recovered the same results as previously oferm t™expt). We shall argue below that such time behav-
tained with the suspended-flow approach. ior is not typical in classical graphs.

With the aim of determining the spectral decomposition

(37), we take its Laplace transform,

pi([b,x],00=e 5"V y,[b] for 0<x<I,

IV. THE RELAXATION AND ERGODIC PROPERTIES

A. The spectral decomposition of the

Frobenius-Perron operator © 1 -
perator | e mnat=3 A ) = oo+
Thanks to the knowledge of the Frobenius-Perron opera- 0 ] ]
tor, we can study the time evolution of the statistical aver-
ages of the physical observablégb,x] defined on the \\nich allows us to identi

fy the relaxation ratess; with the
bonds of the graphs as

poles of the Laplace transform and the eigenstates from the
residues of these poles. For this purpose, we use the Laplace
transform of the Frobenius-Perron operator given by Eq.
(11), which we integrate with the observable quantity
Alb,x]. We get

At the left-hand sidet’ =t—x/v and at the right-hand sidg
=t—xlv—Iy lv.
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J e SYA|P'po)dt
0

1 X ,
:% vlp olbdxfodx'es(X “ AL, X]pol b,x']
Q(s)
1—Q(s)

+a(s)"-

-f(s) (40)

where we introduced the vecta(s) of components

ay(9)= — J e-59Alb x]dx (41)

Ulb 0

and where we used the definitig¢h5) with the initial prob-
ability densityF = p,.

In Eq. (40), the first term is analytic in the complex vari-
ables and only the second term can create poles at the com-

plex valuess=s; where the conditior{18) is satisfied. We

suppose here that these poles are simple. Near thespole

=s;, we find a divergence of the form

Qs 1 xx w
1=Q(s) 5= X 0,Q(s) x;
Because of the definitiofi.3), we have that
~ 1o~ o
X +9:Q(s) == 5 2 loxi[b]* xilb]l. (43

In this way, we can identify the relaxation rates of the

PHYSICAL REVIEW BE63 066215

lpx;[b]

% Iy x;[b’ Tx;[b’1*

*
eSJ' x/v,

W[b,x]=

(47)

which ends the construction of the spectral decomposition
under the assumption that all the complex singularities of the
Laplace transform of the Frobenius-Perron operator are iso-
lated simple poles.

B. The classical zeta function

The relaxation of the probability density is thus controlled
by the relaxation modes that are given by the eigenvalues
and the eigenstates of the Frobenius-Perron operator. As we
said, the eigenvalues of the Frobenius-Perron operator are
determined by the solutions;} of the characteristic deter-
minant[see Eq.(18)]

o]

1
de(|—Q(s)]:exp[—Z ~rQY(s)[=0. (49

n=1

These solutions are complex numbers that are known as the
Pollicott-Ruelle resonances if they are isolated roots.

We will rewrite Eq.(18) in a way that is reminiscent of
the Selberg-Smale zeta function. With this purpose we have
to evaluate the trace @®" in Eq. (48). Using Eq.(13) we
find

Pbbnfl P Pbelpblb

trQ“=§ (Q“>bb=bbb2

1¥Y2---Pn-1

)@ (s/0)(p, + oty )

asymptotic time evolution of the physical averages with thenote that this is a sum over closed trajectories composed of

roots of the characteristic determina(i8). We can also
identify the right eigenstates as

1 (1
(AW )=3 xbl [ "e oAb xidx, @4
b bJO

which is expected from the previous expressiag) for the
right eigenstates, and the left eigenstates as

1

> Ly [b"1* xj[b"]

b”

(;lpo)= 2 xilb'

Ip! '
xf e o[’ X ]dX (45)
0

From the definition(36) of the inner product, we infer that

the right eigenstate associated with the resonapeegiven
by the following vector of B functions
W;[b,x]=x;[ble 5" (46)

while the corresponding left eigenstate is given by

n lengths in the graph. The factor A,ZJ
=Ppp, -+ Pbb,Pob plays the role of the stability factor

of the closed trajectorypb;b, ...b,_; and following this
analogy, we define the Lyapunov exponagtper unit time
as

As=exp(—NpTS)=Pyy ...Pop Py (49
WhereTg‘) is the temporal period of this closed trajectory.
We shall consider primitivéor prime periodic orbits and
their repetitions. A periodic orbit composed mfengths can
be the repetition of a primitive periodic orbit composedgf
bonds if n=rn, andr is an integer called the repetition
number. With this definition the total period of the orbit is
given by TSV =(lp + 1y + -+l +1p)/v=rl,/v, where
I, is the length of the primitive periodic orbit. Accordingly,
we have the following relation for the Lyapunov exponent of
the prime periodic orbitp=b;b,- - ~bnp composed ofn,
bonds,

—Nplplv—
e e'p anpbnp—l . szblelbnp. (50)

We can thus write
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characteristic determinant and therefore the zeta function
rQ"= > npe telelve s (51) is thus given by a finite sum of terms with exponential
P Pn functions ofs. As a consequence, the Selberg-Smale zeta
function is an entire function of exponential type in the com-

h h licitl idered the d f
wnere we have explcitly consiaered e degenergiort ) ex variables,

the orbit due to the number of pointgertices from where
the orbit can start. Now, with some standard manipulations

(see Ref[2]), we can write 12(s)| <K ex;{LTtm|s|)

defl-Q(s)]=II [1-e M Ib/v]=Z(s), (51
whereK is a positive constant anidy,=22 1, is the total
which is the Selberg-Smale zeta function for the time-length of the directed grapfwhich is finite by assumption
continuous classical dynamics on graphs. Note that it reducddence, the zeta function is analytic and has neither poles nor

to the zeta function of Ref2] if 1,=1, Vb. other singularities. In general, such a zeta function only has
infinitely many zeros distributed in the complex plase
C. The Pollicott-Ruelle resonances The finite graphs form closed systems in which the par-

. ticle always remains at a finite distance without escaping to
The zeros of the zeta functio(bl) are the so-called nfinity. For closed systems, we should expect that there exist
Pollicott-Ruelle resonances. The results above show that theyilibrium states defined by some invariant measures. Such

spectrum of the Pollicott-Ruelle resonances controls theqyiliprium states are reached after all the transient behaviors

asymptotic time evolution and the relaxation properties of, 5, disappeared in the lintits + .

the dynamics on the graphs. In general, the zejaare lo- According to the spectral decompositit87), the equilib-

cated in the half plane Rg=<0 because the density does not rjym states should thus correspond to vanishing relaxation

grow exponentially in time. ratess;= 0. Whether the equilibrium state is unique or not is
The spectrum of the zeros of the Selberg-Smale zeta funcy, jmportant question. In the affirmative, the system is er-

tion allows us to understand the main features of the clas,sic@odiC otherwise it is nonergodic. Because of the definition
Liouvillian time evolution of a system. Let us compare the (13), we have thaQ,, (0)=Py, so that the valus=0 is a
classical zeta functiof61) for graphs with similar classical root of the characteristic determinai) if the matrix P of
zeta functions previously derived for deterministic dynami-iha transition probabilities admits the unit value as eigen-
cal systemg15,16. For Hamiltonian systems with two de- y5;e. Because of the conditid#), we know that the unit
grees of freedom, the classical zeta function is given by twQ e is always an eigenvalue Bf The question is whether
products:(1) the product over the periodic orbits as in the yis eigenvalue is simple or not. If it is simple, the equilib-
case(S1) of graphs and2) an extra product over an integer j,m state is unique and the system ergodic otherwise it is
m=1,2,3 ..., associated with the unstable direction tra”s'multiple and the system nonergodic.

verse to the direction of the orbit. This integer appears as an |, order to answer the question of ergodicity, let us intro-
exponent of the factor associated with each periodic orbify,ce the following definition:

[16]. As a consequence of this extra product, some zeros of

the zeta function are always degenerate for a reason that is p is irreducible iff Vb,b’, 3n : (P"),,>0.

intrinsic to the Hamiltonian dynamics of a system with two

or more degrees of freedom. Accordingly, Jordan-blockrhen we have the result thite classical dynamics on a

structures are possible in typical Hamiltonian systems.  finjte graph is ergodic if the matrix of the transition prob-
In contrast, no such degeneracy of dynamical origin apxpijities is irreducible.

pears in classical graphs because no integer exponent affects|geed, if the transition matrix is irreducible all the bonds

the periodic-orbit factors in E¢S1). In general, this prop- are interconnected so that there always exisansitions that

erty does not exclude the p055|b|llty_ of degenerate zeros thg{; bring the particle from any bond’ to any other bond.

may appear for reasons of geometrical symmetry of a grapl} means that the graph is made of one piece, i.e., the dynam-

or for a particular choice of the p_arameter values defining 4cs on the graph is said to ligansitive The irreducibility of

graph. However, such degeneracies are not expected for tyRhe transition matrix implies the unicity of the equilibrium

c_al values of the parameters that are thg trans_mon probabilisiate pecause of the Frobenius-Perron thed et if a ma-

ties Ppy,r and the lengths, . Examples will be given below iy has non-negative elements and is irreducible, there is a

that illustrate this point. According to this obse_rvatlo_n, non-negative and simple eigenvalue that is greater than or

Jordan-block structures should not be expected in typicabqual to the absolute values of all the other eigenvalues. The

graphs. . _ corresponding eigenvector and its adjoint have strictly posi-
Different behaviors are expected depending on whethejj,e components.

the graph is finite or infinite. We notice that the transition matriXis non-negative and

that no eigenvalue is greater than 1 because all the matrix

elements obey € P,,, <1 and, moreover, Ed4) holds. On
Finite graphs are composed of a finite number of finitethe other hand, we know that the unit value is an eigenvalue

bonds. In this case, the matriQ(s) is finite of size B also because of E@4). Therefore, if the transition matrix is

X 2B with exponentials exp{sl,/v) in each element. The assumed to be irreducible, the eigenvalue 1 is simple. Ac-

1. Finite graphs
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cording to Eq.(23), the equilibrium state of relaxation rate where® is the matrix for the finite part of the graph without
so=0 is given by the unique positive eigenvectay  the scattering leads. Since the leads cause the particle to
=P- xo=Q(0)- xo corresponding to the simple eigenvalue 1 escape to infinity, the probability for the particle to stay in-
as side the graph is expected to decay. Therefore, the zeros of
the Selberg-Smale zeta function are located in the half plane
Wolb,x]=xo[b] for 0<x<lIy. (520 Res;<0 and there is a gap empty of resonances below the
_ axis Res=0: Res;j<s;<0. The resonancs, with the larg-
The corresponding adjoint eigenvector Bfis xo[b]=1,  est(or smallest in absolute valueeal part is real because the
Vb. The positive componeng,[ b] of the right eigenvector classical zeta function is real. This leading resonance deter-
gives the probability to find the particle in the bohbdat  mines the exponential decay after long times that we call the
equilibrium. These components obey the probability normalclassical escape ratg,= — s, (or the inverse of the classical
izationZ,xo[ b]=1. This equilibrium state defines an invari- lifetime of a particle initially trapped in the scattering region

ant probability measure in the space of trajectories, 4= 1lyy). The trajectories that remain trapped form what
we shall call a repeller because it is the analog of the repeller
pm(Pn-1---b1bg) =Py -+ Pp,p Pop xolbol- in deterministic dynamical systems with esc#fé].
(53 An invariant measure can be defined on this repeller by

applying the Frobenius-Perron operator to the non-negative

Eﬁam?les'of Inonergo_dlc graphsl are dlscor;ln(.acted. graph?natrix Q(so) evaluated at the leading resonance. This matrix
T e_fc f;ssmg dynamics orjlla_cogedhgrap is said 10 bfas 5 leading eigenvalue equal to 1 and the corresponding
mixing It there IS no pure oscillation In the asymptotic ime ot 44 right eigenvectors are positive. A matrix of transition

evolu_tion, i.e., if there is no resonance with &0 except probabilities on the repeller can be defined by
the simple resonancg=0. According to Eq(44) we have

for a mixing graph that

~ ~ 1
Mpp = xolb1Qbb =——~, (55)
, 1 Xolb']
lim (A)=>, Xo[bl—| "A[b.x]dx. (54)
e b b0 which leaves invariant the probabilities
An example of a graph that is ergodic but nonmixing is a xolb1Xolb]
single bond of lengtly between two vertices. Its zeta func- w[b]= = (56)
tion is Z(s) =1—exp(—2sgv) so that its resonances are Xo* Xo
. of finding the particle of each bonil in its motion on the
sj=iv—j with jeZ. repeller. These probabilities obey
Excepts,=0, all the other resonances are pure imaginary so % Myy=1 and X, Mpyab']=a[b] (57
b/

that the dynamics is oscillatory as expected.

- , and the invariant measure on the repeller is defined as
2. Infinite graphs of scattering type
The quantum scattering on graphs has been first studied in = u(by_1- - -b1b0)=anflbn72- . -Hbzblelbow[bo].
Ref.[5]. Here, we are interested in the classical limit of the
quantum dynamics on graphs of scattering type. Such infinite  As an example, consider the graph formed by one bond of
graphs can be constructed by attaching semi-infinite leads length g that joins two vertices and two scattering leads at-
to a finite graph. These semi-infinite leads are bonds of infitached to one of these vertices. The repeller consists here
nite length. As soon as the particle exits the finite part of theonly of one unstable periodic orbit. Thus we look for the
graph by one of these leads it escapes in free motion towarcbmplex solutions of
infinity, which is expressed by the vanishing of the following
probabilities between the semi-infinite leadsand every 1—e (pmolplv=0,
bondb of the finite part of the graph,
that is,
PbCIO Vb
2w
and )\p+s——|ij with jeZ
Pp=0 Vb. wherel ;=2g and (p\,/v) = —In(1/9), which follows from
Egs.(1) and(49). Accordingly, we get
Therefore,Qp.= Qs =0Vb, and

n9 = o
Sj:—v—+ll)§j with jeZ

det|-Q)=de(1-Q) 29
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Therefore, all the resonances have the lifetimg Iy
=2g/(v In9)=g/(vIn3). This lifetime coincides with the T(yn)57 for Yp-1p<Yn<Ypp' - (62)
guantum lifetime obtained from the resonances of the same
graph[14]. Another system having this peculiarity is the
two-disk scatteref16]. This property is due to the fact that For finite and closed graphs, the invariant measure of the
there is only one periodic orbit. In the presence of chaos andne-dimensional maf60) is equal to
thus infinitely many periodic orbits, the quantum lifetimes
are longer than the classical orjé4,18§.
PedY)=pp for b'—1<y<b’. (63
V. THE CHAOTIC PROPERTIES

A. Correspondence with deterministic chaotic maps For infinite graphs of scattering type, the functieg0)
maps the subintervals associated with the semi-infinite leads

The previous results show that the classical dynamics on g, iside the interval &y<2B, generating an escape process.
graph is_ random. It turns out 'Fhat this dynamical randomne_sgOr such open graphs, the one-dimensional map selects a set
is not higher than the dynamical randomness of a determings injtia| conditions of trajectories that are trapped forever in
istic chaotic system. _ _ the interval G<y=2B. This set of zero Lebesgue measure is

In order to demonstrate this result, we shall establish the 5 osed of unstable trajectories and is called the repeller.
correspondence between the random classical dynamics ONdnically, this repeller is a fractal set.
graph and a suspended flow on a deterministic one-\ye notice that, for closed graphs, an isomorphism can
dimensional map of a real intervel9). As aforementioned, yen pe established between the dynamics in the space of

the trajectories of the random dyr)qm_ics on a graph are 8 infinite sequences and a two-dimensional area-preserving
one—tq-one correspondence w_lth b|—||jf|r1|te sequences g|.vmg1ap according to a construction explained elsewhere
the directed bonds successively visited by the partcheE16 20,

---b_5b_4bgbsb,---, which is composed of integers
1=<b,=<2B. For simplicity, we shall only consider the future
time evolution given by the infinite sequentgbqb,---. B. Characterization of the chaotic properties
With each infinite sequence, we can associate a real number
in the interval O<y<2B thanks to the formula for the
2B-adic expansion

The chaotic properties can be characterized by quantities
such as the topological entropy, the Kolmogorov-Sinai en-
tropy, the mean Lyapunov exponent, or the fractal dimen-
sions in the case of open systems. All these quantities can be
) (58) derived from the so-called “topological pressurd?(p3)
n=0 (2B)" [21]. This pressure can be defined per unit time or equiva-
) ) ) ) ) lently per unit length since the particle moves with constant
Accordingly, the directed bonld’ is assigned to the subinter- velocity v on the graph.
yal b'—1<y<b’. E_ach of these subintervals is subdivided The topological pressure can be defined in analogy with
into 2B smaller subintervals, the definition for time-continuous systems. For this goal, we
notice that time is related to length =1/t and that the
role of the stretching factors is played by the inverses of the

Yoo =b'—1, and Y.z, =b'. (59) transition pr_obabilities in the context of_graphs. Accordingly,

' ' the topological pressure per unit time is defined by

The one-dimensional map is then defined on each of these
small subintervals by the following piecewise linear function P(B8)= lim v

Yb—l,b’<y<Yb,b’ with Yb,b’:Yb—l,b’+Pbb’!

L—»mL
é(Yn) ! (yn—Y )y+b—1
Yn+1=P(Yn)= —(Yn= Yp-1p’ -1,
1 B
Pbb, Xln bO'%nfz (anflbnfz Pblbo)
for Yp_ 15 <yn<Ypp. (60) L<lpyt - +lp <L+AL
Since the transition probabiliies are smaller than 1, (64)

0<P,, =<1, the slope of the map is greater than 1:
1<d¢/dy. As a consequence, the m&p0) is in general
expanding and sustains chaotic behavior.

The suspended flow is defined over this one-dimension
map with the following return-time function giving the suc-
cessive times, of return in the surface of section,

where the sum is restricted to all the trajectories that remain
in the graph and do not escafie., on the repellgrand that
ave a length that satisfies<l, +---+Ip <L+AL (cf.

Refs.[16,21]). The dependence akL disappears in the limit
L—co.

thye1=t,+ T(Yn) (61 Equation(64) can be expressed by the condition that the

pressure is given by requiring that the following sum is ap-

with proximately equal to one in the limit— oo:
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25

1~lm > (P, b, Pop)”

n—wbo-+-bn_2 20 F

X @~ (W)P(B)(Ip -+ +lp) (65) sl
which is equivalent to requiring that the mat@Xs; 8) com- a
posed of the elements x 1

Qbb (5:B)=(Ppp)Pe S’ /v (66) i L=10
L=70
with s=P(B) has the eigenvalue 1 as its largest eigenvalue. 0
As a consequence, the topological pressure can be obtained
as the leading zero of the following zeta function 235 0 02 05 o075 1 125
p
Z(s;B)=dell-Q(s;B)] (67)

FIG. 1. The topological pressure for a fully connected pentagon
or, equivalently, as the leading pode= P(B) of the Ruelle  with L=10 andL =70 leads attached to each vertex. The velocity is
zeta function v=1.

1 1
Z(s;B) :l_p[

_ (68) cal entropy, which is given by the leading pole of the Ruelle
1—e (BrpF9)lplv zeta function(68) with 3=0, depends only on the lengths of
the bonds.

The different characteristic quantities are then determined The second property can be inferred from K65) or,
in terms of the topological pressure function as folld@8]:  similarly, from the characteristic determina(@?) for the
the escape rate is given lpy= — P(1); themean Lyapunov  matrix (66). Indeed, since the Hausdorff dimension is the
exponent by = —P’(1); the Kolmogorov-Sinai entropy is  zero of the pressure function the lengths now disappear when
determined byhys=\—yg=P(1)—P’(1); thetopological  \ye sets=P(g8)=0 in either Eqs(65) or (66). Accordingly,

entropy byhi,,=P(0); the Hausdorff partial dimension of he Hausdorff dimension depends only on the transition
the repeller of the corresponding one-dimensional &) probabilities.

is the zero ofP(B), i.e., P(dy)=0.

The mean Lyapunov exponent, the escape rate, and the
entropies are defined per unit time. The mean Lyapunov ex-
ponerF:t characterizes Iﬁhe dynamical instabilityydll,?e to the VI SCATTERING ON OPEN GRAPHS
branching of the trajectories on the graph. On the other hand, e shall consider some examples that illustrate the pre-
the KS entropy characterizes the global dynamical randomgioys concepts. Consider the fully connected pentagon with
ness. Both would be equal if the graph was closed and thg scattering leads attached to each vertex. Quantum scatter-
escape rate vanished. We shall say thet dynamics on a jng has been studied for this case in R} Since the to-

graph is chaotic if its KS entropy is positivexd>0. We — qnical entro is independent of the Lyapunov expo-
emphasize that a dynamics with a positive Lyapunov expop g PYiop P yap b

. 4 . . nents it is independent of the number of scattering leads
nent is not necessarily chaotic. A counterexample to this SUBsttached to each vertex. This is observed in Fig. 1 where we

position is given by the open graph at the end of the previous, . . i
subsection. The repeller of this graph is composed of a singl?aegp(;zt the topological pressure for the fully connected pen

eriodic orbit and its Lyapunov exponent is equal to the
P yap P d Moreover, we observe that the escape rate= —P(1)

escape ratex =y, = (v In 3)/g. Accordingly, its KS entropy o
vanishes in agreement with the periodicity of this dynamics/Or the pentagon witi. =70 is smaller than the escape rate

We notice that the escape rate is related to the leadinfr the pentagon withih=10. This behavior has a;smple
Pollicott-Ruelle resonance byg=—s,. Indeed, wheng  interpretation. Since we usByp =|(2/vpp) = Jppr*, the
=1 the zeta functiori67) reduces to the previous one given transmission probability from bond to bond decreases and
by Eq. (51) that has the Pollicott-Ruelle resonances as itghe reflection probability increases as the valence of the ver-
Zeros. tex v,y increases. Therefore, as the number of leads in-

Moreover, we have the following propertied) The to-  creases, a particle on the pentagon has a smaller probability
pological entropy is independent of the transition probabili- to escape and a larger probability to be reflected back to the
ties P, of the graph (2) The Hausdorff dimension is inde- same bond. Accordingly, the escape rate diminishes.
pendent of the lengthg lof the graph The example of Fig. 2 shows that, indeed, the Hausdorff

The first property is deduced from E@8) when we set dimension is independent of the bond lengths.
B=0 to calculate the topological entropy. In this case, we As we see in these examples, the dynamics on typical
observe that the Lyapunov exponents disappear from the zetpaphs is characterized by a positive KS entrby>0. In
function (68), which thus depends only on the lengths of thethis sense, the classical dynamics on typical graphs is cha-
periodic orbits of the graph. As a consequence, the topologietic.

{p(s)=
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3 \ ‘ \ : generality of the method but then we will specialize to peri-
25| | odic graphs that form one-dimensional chains.
21
15l ] B. Fourier decomposition of the Frobenius-Perron operator
PP ' . o .
1t . In spatially extended systems that form a periodic lattice,
05 spatial Fourier transforms are needed in order to reduce the
dynamics to an elementary cell of the lattigE2]. In this
0 —— reduction a wave numbd is introduced for each hydrody-
08— TR Y T — 1.25 n_amip que. The wave nu_mber che}ract(_arizes a spatial qua-
B siperiodicity of the probability density with respect to the

lattice periodicity. Indeed, the wavelength of the mode does

FIG. 2. The topological pressure for a fully connected pentagomot need to be commensurate with the size of a unit cell of

with L=10. The curve with the crosses is obtained when all bondghe lattice. Each Fourier component of the density evolves
are unit of length and the curve with the circles is for a set Ofindependently with an evolution operator that depend&.on

incommensurate lengths. The velocityvis-1. Accordingly, the Pollicott-Ruelle resonances will also de-
pend onk. We shall implement this reduction starting from

VII. DIFFUSION ON INFINITE PERIODIC GRAPHS the master equatiof25) of the fully periodic graph and con-

A. The hydrodynamic modes of diffusion struct from it the evolution operator for the unit cell. A few

) o S o new definitions are needed before proceeding with this con-
If the evolution of the density in an infinite periodic graph gty ction.

corresponds to a diffusion process, then the phenomenologi- The periodic graph is obtained by successive repetitions
cal diffusion equation should be satisfied in some limit. Foros 5 unit cell. Such graphs form a Bravais lattieA lattice
instance, if the periodic graph forms a chain extending from,eciora  is centered in each cell of the Bravais lattice with
x=—c to x=o then on a large scalenuch larger than the —(m ' 'm,, ... m,) eZ. The lattice vectors are given by
period of the systejnthe density profile should evolve ac- |ihear combinations of the basic vectors of the lattice
cording to the diffusion equation

5 7 8m=M13100 . .00 M28010 .00 * * - T MyBooo ..01€ £

P_p% (69) o .

at ox (for a one-dimensional chain we hawke=1 and a,=m

e 7). We shall split the coordinafe,x], which refers to an

Let us notice thak is a one-dimensional coordinate of posi- arbitrary bond in the infinite graph, into the new coordinates
tion along the graph, which ia priori different from the ([b,x],a) where the first pair refers to the equivalent position

position along each bond. in the elementary unit cell to which the dynamics is reduced.
This equation admits solutions of the form That is, the bond b is associated wiifandx is the position
in that bond. The third term represents a vector in the Bra-
pr=exg s(k)t]expikx) vais lattice that gives the true position of the bdmadvith
respect to the position of the original unit cell, thatbigs
with the dispersion relation obtained by translating the bond b to the cell in the Bravais
lattice identified by the vectas. We may introduce the no-
s(k)=—DKk? (700  tationb=T,(b) where the translation operatorg assign to

a bond b the corresponding bond in the unit cell character-

that relates the eigenvalig to the wave numbek. These ized by the vectoa.
solutions are called the hydrodynamic modes of diffusion. Accordingly, the density in the graph is represented by a
The inverse of the wave number gives the wavelength new functiof p related to the old one by([b,x],at)
=2m/k of the spatial inhomogeneities of concentration of =p([b,x],t).
particles. We define a projection operator by

For a system such as a graph, we expect deviations with
respect to the diffusion equation that only gives the large- R R
scale behavior of the probability density and not the behavior E= 2 exp —ik-a)S?, (77)
on the scale of the bonds. Moreover, we may also expect the asL
existence of other kinetic modes of faster relaxation than the
leading diffusive hydrodynamic mode. In order to obtain ain terms of the spatial translation operators
full description of the relaxation, we have to compute the
eigenvalues of the evolution operator for an infinite periodic
graph. One of these eigenvalues will have the dependence of
Eq. (70) for small k, which allows us to obtain from it the
diffusion coefficient of the chain. We shall start by consid-
ering periodic graphs in d@-dimensional space to show the ®We keep calling this new density.

Sf([b,x],a’,t)=f([b,x],a' +at) for aa L.
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The projection operatof71) involves the so-called wave
numberk. This later is defined on the Brillouin zor®of the p([bx],)=2> > Py
b m'

reciprocal latticeZ. The volume of the Brillouin zone is

/
(O

(2m)¢ Xexp —ik-am_m)
aa

B =f dk= :
5] B |det@100...00,8010 .00+ - - - 8000 - -01)| X pl [b,x],t—

X+ —x'

The operatorg71) are projection operators since ) ) )
The time evolution of thek-component is therefore con-

Ekék’:|3| 5(k—k’)Ek, trolled by the matrix of elements
which is a consequence of the relation Pbbr(k)E% PTam(b),bfeXIi—ik. anm). (73
1 . ,
8 aEE exp(ik- a)=k2~ o(k—=k"). We observe that, for a graph, there is at most one term in the
€ "el

sum of Eq.(73). Indeed, the coefficieriPTam(b)vb, does not
The identity operator is recovered by integrating the projecvanish if and only if the bond§am(b) and B are connected

tion operator over the wave number with the same vertex of the infinite graph. Furthermore, there
1 is one and only one translatidhlnn for which Tam(b) and B
= Wf dkEk . are connected with the same vertex. Accordingly, there exists

a unique lattice vectoa(b,b’) such that

If pis trle density defined on the infinite phase space, the Pyt (K) =Py . (). €XH — ik-a(b,b)]. (74)
function Eyp is quasiperiodic on the lattice, b0
Thanks to this matrix, we have that each Fourier component
E.p([bx].at)= E exp(—ik-a')p([bx],a+a’,t) of the density evolves with an equation
"el
a ([bx10=3 Py (g [0 0]t 2%
1X L) = 4 1X W |-
=exp(ik-a)2 Pk = bb Pk

a'el (75)

xXexp(—ik-a")p([b,x],a",t) Here the sum is carried out over all the directed bonds of the
_ e E unit cell and the matri®P(k) of elements R, (k) defined by
explik-a)Byp([bx],0.1) Eq. (74) is a square matrix with dimension equal to the num-

=expik-a)py([b,x],t). ber of directed bonds in the unit cell.

We have therefore a decomposition of the density over the ¢, The eigenvalue problem and the diffusion coefficient

infinite phase space into components defined in the reduced . .

phase space and which depends continuously on the wave To study the eigenvalues of the Frobenius-Perron operator

numberk. Ri defined by Eq.(75 we proceed as in Sec. Il B. We
Consider the master equatid@5) of the full periodic  introduce the following definitions

graph. Applying the operatd, to both sides, we infer from

the quasiperiodicity of,p (see the previous equatipthat pr.sLb]= Jo e *'p([b,0],t)dt
explik-am) pi([b.X],0)= 2 Poyexplik-an) and
b/
X+|b1_X, Q r(S k):P r(k)ex _SIi (76)
X pi [b,,X],t_T , bb’ \ =5 bb v

(720 for the elements of the matriQ(s,k). Then, taking the
Laplace transform of Eq.75) we get
whereb=T, (b) andb'=T, (b") and alsol,=I,. Now,
the translational symmetry implies that

pk,s[b]=§ Qoy (8, K)p o b'],

Py, =P n="P /.
bb' = 1, ()T, ()T T, (b).b

which has a solution only if the following classical zeta func-
Thus, Eq.(72) becomes tion vanishes
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Z(s;k)=def1—-Q(s,k)]
=1;[ {1—exd —(\p+9)(I,/v)—ik-a,]}=0
(77)

where the product extends over the prime periodic ofpds
the unit cell of the graph and Wheagzﬁi"gla(biﬂ,bl) is
the displacement on the lattice along the periodic opbit
=b,b,- - .bnp of prime periodn,, .% From Eq.(77), we obtain
the functionss;(k) and the corresponding eigenstags,
which satisfy

X k= Qlsj(K),K] xj k-

PHYSICAL REVIEW B3 066215

So(k)=—2, D,gkaks+O(k?
af

so that the diffusion matrix is obtained as

_1%sp(k)

B2 ok,kg o (80)

D. Example of infinite graph with diffusion

We illustrate the results of this section with a very simple
example of a one-dimensional chain. Consider the graph
used in Sec. IV C 2. This graph of scattering type can be

Equation (77) shows that the Polligott-RueIIe resonances, ,caq as a unit cell for a periodic graph. The right lead is
Si(k). are th_e zeros of a new class_,lcql Selberg—SmaIg Ze8nnected with the left lead of an equivalent graph and so
function defined for the spatially periodic graphs. TheAe|gen—On_ This graph looks like an infinite comb. The unit cell can
values and eigenstates of the Frobenius-Perron Opd%tor be considered as Composed by two bondslmay‘d a. The
defined by Eq(75 are constructed in the same way as inpondb connects the dead vertex 2 with the vertex 1 and the
Sec. Il B. If we denote byV; ,[b,x] the eigenstates of the ponda connects the vertex 1 with the vertex 1 of the next

flow, the results are
R ([bx]=e5®  [b,x]
with
X
\Ifj’k[b,X]ZefsJ(k)E)(j'k[b] for 0<X<Ib
wheres;(K) is a solution of Eq(77).

Fork=0, Eq.(75) represents the evolution of the density
in the unit cell with periodic boundary conditions. The peri-

odic boundary conditions transform two bonds in a loop. In

this way, fork=0, we are studying the evolution of a closed

graph and we saw in Sec. Ill B that, for a closed graph, thdézed byan,

values=0 is a solution of Eq(77) and the associated eigen-

cell. Thus the valence of the vertices arg=1 andv,=3,
respectively. The transition probabiliti€y,,, are given by

Pob = Topr |2

with Pyp=1,Pap=75,Psp=75,Paa=35,Psa=5,Paa=3, and 0
otherwise. We first construct the matik). We note from
its definition in Eq.(74) that R, (k)= Py for bonds that
belong to the unit cell. Th&dependent factors come from
bonds that connect consecutive cells. These bonds are as
follows.

(1) The bonda of the cell at the left-hand side character-
—1 is connected with the bondsandb. This
gives the contributions k)= 2e*'® and R (k)=2e"'k.

state corresponds to the invariant measure or equilibrium (2) The bondsa andb of the cell at the right-hand side

probability, which is given by the B-vector B being the
number of bonds in the unit cgll

1
onﬁ(lvlv EECE a])- (78)

We may thus expect that, fé&r small enough, there exists a
zerosy(k) of Eq. (77) and a corresponding eigenstate

Xox=QlSo(K),K]- xox

such thatsy(k)—_ 0. This particular resonance can be
identified with the dispersion relation of the hydrodynamic
mode of diffusion since this latter is known to vanishkat
=0 as

(79

Here, a(h, . ;,b) denotes the jumps over the lattice during the
transition between the bond &and the bond b ;. We have to con-
sider thata(b; , ,,b) =0 for transitions between bonds in the same
unit cell.

characterized by,=+1 are connected with the boral
This gives the contributions ;fk)=2e ' and Ry(k)
4 A—ik

Therefore,P(K) is the 4x4 matrix with entries

0 1 0 0
1o, 4k 4
9 9° 9
P(k)=| 4 0 feik 1
9 9 9
4 1 4
_ Ak 0 - _ A ik
9° 9 9° |

where the columns and rows are arranged in the following

order (b,ba,3. The matrixQ(s,k) is obtained by multipli-
cation with the diagonal matris,, e (¢*)'v'. The determi-
nant in Eq.(77) can be computed and gives
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0 : ' period at which the unit cell is repeated. In these units, we
would have obtaine® =va?/(a+g). But, in general, for a
025 ¢ ] more complicated graph, there is no bond length that we can
associate with the periodicity of the chain as in this example,
05 which is the reason why we consider the dimensionless pa-
s(k) rameterk. In this sense we are considering the space in units
075 of the unit cell of the periodic chain.
1k
| E. A Green-Kubo formula for the diffusion coefficient
1.25 ; ; : In the previous example, we have seen that the diffusion
0 0.25 0.5 0.75

k. ‘ coefficient is inversely proportional to the total length of the
unit cell. This is a general property that follows from a gen-
FIG. 3. The first two branches(k) of Pollicott-Ruelle reso- eral expression for the diffusion coefficient that we shall now
nances of the infinite comb graph, as obtained from (Bd). The  obtain. From now on we shall consider one-dimensional
branch containing the origis=0 andk=0 is the dispersion rela- chains’ Accordingly, k is a scalar wavenumber and no
tion of the diffusive mode. The other branch is associated with donger a vector.

kinetic mode of faster relaxation. Consider the vectoyo defined by Eq(79) and the ei-
5 1 genvector}oyk of the adjoint matrixQ[sy(k),k]" defined by
def1-Q(s,k)]=1+ e 2Eva_ —g=2(s)g ~ _~
t=Qlskl=1+5 5 Qlso(k) K1 Xox=Xox (83
i %e72(5/v)(a+g) or equivalently
g o 2(50)g Xou=Xbx Qlso(k) K] (84)
——e (a1 4 cosk o o
9 3 This eigenvector satisfies
(81) -
Xoxlb] — 1. (85)
wherea is the length of the bond a armgis the length of the k=0

bond b. As we said the solutions of flet Q(s,k)]=0 gives
the desired functions;(k). For this example, we plot the
first branches in Fig. 3 where we observe that, indeed, only
one branch includes the poist=0 at k=0. This unique 3 =73 * -
branch can be identified V\Fl)ith the dispersion relationqof the (Xok:Xox) 2b Xoul PI" xou P]=1- (86)
hydrodynamic mode of diffusion.

The diffusion coefficient is obtained from the second de-On the other hand, due to Eq39) and(83), we have
rivative of the first branch at=0. This can be analytically

Such vectors are normalized as

computed for this particular example as follows. We con- (;(ojk,Q(so,k)-XO,k)zl. (87)
siders<Min{v/a,v/g} andk<1 and expand Eq81). After
some simple algebra, we get with sy=sp(k). Differentiating Egs.(86) and (87) with re-
spect tok we get, respectively,
def| k—168 +9)+k?|+0(s?)+0(sk? ~
ell—Q(sk)]=|-(a+g) (s%)+0O(sk’) dXox - dxox|
dk 1X0,k + X0k dk =0
+0(k*)

from which we obtain that the diffusion coefficient defined and

by Eq.(80) is ~

Y L TR U O DO S BN SO O

v dk 1 Xok X0k dk = >0 Xok Xok dk

= . (82

arg where we have used Eq§.9) and(83). These last two equa-
In general, the diffusion coefficient has the units oftions imply

[L2]/[T]. This is because the wave number has the units of

1/L]. Since we have considerddas a dimensionless num-

ber, the diffusion coefficient has the units of T] here. In "The theory developed here is trivially extended for graphs that

this example the standard units can be recovered by considisplay periodicity in higher dimensions by considering the appro-

ering k= ka with a standard wave numberwherea is the  priate dimensionality for the vecta:
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~ d dxox[b] dQpy dxoxlb’]
(Xo,k,[dT(Q(Soak)}Xo,k) ak :g ak XOk[b]+E Quy —(,.— dk
< * d / and
=2 Xox[bI* | g Quwr (So.K) | xox[b']=0.
b,b’ ~
dXo k[b ] dQppy dXo,k[b]*
(88) =2 Xoxlb]* +2 Qutr
D dk dk
Now we compute the derivative @. From Egs.(76) and
(74), we have whose solutions are
d d Iy dXo,k[ b] . de b .,
i Qi (S0.k)= { Pow (K) exp( —so;) k2 1~ Qw g xodD']
—Quy (s k)lb' dso dxoul bI* x Q -1
b (50,55, o= Yol (1= Q)
dk b!bH
In:e()rkt)i?;nthis result into E¢(88) and taking the limit—0, In the limit k— 0, these solutions can be written as
w i
dxoxl bl dPy
1 o dPyy - E 2 (P)b,p —r
dso Ebb dk dk k=0 br H/ n=0 dk k=0
' k=0
dk],_ [y’ and similarly
ZBbEb’ Popr k=0~ I
dxoxlb] -y 2 [dpb’ b
where we have used the fact that the lirkit-0 implies dk k=0 b’y n=0 R k=0
so(k)—0, and thath,k[b’]—>1/28,;(0,k[b]—>1 because of
Egs.(78) and(85). SinceX Py |k—o= 1V b’, this reduces to Thus, the second term of E(R0) becomes
dso| v APy s debr< dxodb'] d}o,k[b]*)
dk k:o_L_UC & dk k—o_o (89 bt dk dk dk k=0
whereL ==l is the total length of the unit cell. The last =2 > 2 [dpbb' Yot b APy _
equality (=0) follows from the fact that the unit cell is con- bbb b N=0 ' dk k=0

nected with the neighboring cells in a symmetric way. For
|nstance in a one- d|mens|ona| Cha|n the “ﬂuxes” from theTO evaluate and Interpret this result we have to transform
left-hand side equal those from the right-hand side and thehese expressions. First, we have to consider the derivatives
derivative with respect t& drops a sign that makes the sum Of P(k). This matrix is defined in Eq(74). Since only the
vanishing. The reader can verify this property in the prev|ou§1earest neighbors are connected, the lattice vector of the
example of the comb graph. jumps can take only the valuegb,b’)=0,=1 whether the

To obtain the diffusion coefficient we need the secondparticle crosses the boundary of the unit cell to the right-
derivative ofsy(k). Therefore, we differentiate E¢88) with ~ hand cell(+1), or the left-hand ong—1), or it stays in the
respect tok and evaluate it ak=0. After some algebra and same cell0) during the transition b—b. Therefore
using Eq.(89), we get

Pobr (K) =P, (0.1 e~ kalb:b),

2 2 2

IS _ v > A"Phiy > APy (ZBdXO’k[b ! The derivatives of this matrix are thus

dk? |, o Luc|pp dk? |, _  bw K dk

T bl P _ i (b,1)R
n dxox[b] ) (90) dk bb
dk o0
and
The explicit form for the diffusion coefficient is obtained 2

from Eq. (90) if we compute the first derivatives of the d"Poy = —a(b,b')?P,,
eigenstates. We can write the equations that these quantities dk? ’ oo
satisfy. In fact taking the derivative with respectkof Egs.
(79 and (84) we have Accordingly, the diffusion coefficient is given by
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1 dZSO 0 P —
2 dk? k=0
v * FIG. 4. Open graph forming a chain composed\ef 6 identi-
=30 > a(b,b/)?Pyy +2 > > cal unit cells. The five lengths that compose the unit cell take dif-
uc p,b’ b’ p” N=0 ferent values(In this regard, no specific length can be associated

with the periodicity of the chaii.
>< 1 ! n ’ U 4 " T W . .
a(b,b")Ppy (P ra(b”,b" )Py, where(l)=L,./(2B) is the mean bond length of the unit cell
anda,=0,=1 is the jump from one cell to another under-

(92 gone by the particle in motion on the infinite graph.

Equation(94) is nothing else than the Green-Kubo for-
In Order to Interpret th|$ formula we haVe to remember Som%lﬂa for the d|ffus|0n Coeff|c|ent If we def|ne

definitions. If an observable is defined owvEr successive

x
Il
o

bonds, its mean value over the equilibrium invariant measure AX
of the random process is given by U= AT <I>a(b b))
(A)= lim 2 A(bM 1+ -bibo)u(by- - -b_y). as the velocity along the axis that contributes to the trans-
N—o bon: port, whereAt={(l)/v, we can write Eq.(94) in the more

(92 familiar Green-Kubo form

If the observableA depends only on two consecutive bonds 1 [+
as it is the case for the jump vectatb,b'), its mean value D= Ej (vx(0)vy(1))dt.
takes the form -

In the time-discrete forn{94), we obtain the result that
(Ay= > A(bybg) m(bibg)= >, A(b1bg)Py. b xolbo] the diffusion coefficient is proportional to the constant veloc-
Boby boby ne ity v and inversely proportional to the mean bond-length of a
unit cell. The diffusion coefficient is also proportional to the
E A(b1b0o) Py, b, sum of the time-discrete autocorrelation of the juenfrom
2B cell to cell.

because of Eq$53) and(78). According to the general defi-
nition (92), the time-discrete autocorrelation function of a
two-bond observable is given by

VIIl. ESCAPE AND DIFFUSION ON LARGE OPEN
GRAPHS

In this section, we shall study the Pollicott-Ruelle reso-
(AnAo) = E A(brs 101 nances of open graphs chara(?terized by a un_it cell, which is
bg- - Pmi1 repeated a finite number of times. The particular example
that we consider is depicted in Fig. 4. We shall focus on the
X A(b1bo) (b s 1B~ - - b1bo). leading resonance that determines the escape rate from the
system. We shall show that, for large enough chdires,
made of several unit ceisthe classical lifetime corresponds
to the time spent by a particle that undergoes a diffusive

Because of Eqg53) and(78) again, we get

Anfo) = 2B bob 1zm bm+1 Ams 20m) proIfgrS ?hig ;l::p%hzianki)gT o4r’e tir:eef:s\?ps?t?én probabilities from
% Pbm+1bm(Pmil)bmblA(b1b0)Pblbo- 93 bond to bondPy,,, are given by
The terms of Eq(Ql) are precisely of the form of Ec(93) 235 if the particle is reflected, i.eh=b’
with m=0 for_ the first term andn=n+_l for the followmg_
gpa?isénzrr]f V\\//\gtf;];\f;g tokg(stae,:;?)b f<: a?éil; ie< z;?fa(?)roviﬁiels Pov = 215 for bondsb # b’ which are connected

the last equality follows from the commutativity of the quan-
titiesag anda_,. Therefore, the term with the sum ovemn
Eq.(9)) is equal to BZ,” ,, . o{@ody). It is now clear that

Eq. (92) for the diffusion coefficient is

0 otherwise.

We have computed the spectrum of Pollicott-Ruelle reso-
nances for different values of the numidé¢of unit cells. The
leading resonance controls the asymptotic decay. Since the
leading resonance is isolated and at a finite distance from the
apa apa 94 . ; . . .
Luc nZ— (@oan) = 2<| 2 (@oan) 04 real axis the decay is exponential as we explained, that is,
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6 ‘ ‘ We have computed the escape rate for chains of different
sizes. If the dynamics indeed corresponds to a diffusion pro-
cess, then Eq95) should be verified. In Fig. 6, we plot the

4 N T classical lifetimesr,, as a function ofN?. Since 7= 1/y,,
TSI we observe the dependence »f on N expected from Eq.
AN (95. We may conclude from this result that the classical
P 2¢ N ] dynamics in the open chain is the one of a diffusion process.

The diffusion coefficient of the infinite graph can be ob-
tained as we explained in Sec. VII. We depict in Fig. 7 the
leading and other Pollicott-Ruelle resonances of the infinite
“ graph obtained by numerical calculation as a function of the
N dimensionless wave numbér The diffusion coefficient is

2 . .
05 0 05 1 L5 given by the second derivative of the leading resonance
B so(k) evaluated ak=0. In this way, we obtain the numeri-
cal result

FIG. 5. Topological pressure for the chain of Fig. 4 but with
N=7. From this function, we get thalys~2.9>0 and hy,

=3.2330. D=0.5318. (98

Accordingly, the diffusion coefficient of the infinite chain
p(t)~exp(— vqit) gives a reasonable estimate for the proportionality coefficient

h is the leadi . h Thbetweenyd and 1N?2 for the small chains of Fig.(@) and is
wherey, is the leading resonance, i.e., the escape rate. Thig very good estimate for the large chains of Fifh)6

is the generic behavior of the density in a classically chaotic In Fig. 8, we show how the effective diffusion coefficient

open system and we refer to this as the classical decay. D(N)= NY(N/7)2 converaes to the diffusion coefficient
In Fig. 5, we depict the topological pressure for the chain (N)=75(N) (N/ ) Verg s ict

. ; . of the infinite chainD as the chain becomes longer and
of Fig. 4 withN=7 unit cells. longer (N— ).
When the chaotic dynamics is at the origin of a diffusion
process the escape rate is inversely proportional to the square
of the size of the system, more precisely the following rela-

tion is expected to hold: In a recent work6], Schanz and Smilansky have consid-
ered the problem of Anderson localization in a one-
dimensional graph composed of successive bonds of random
lengths with random transmission and reflection coefficients
at the vertices. The classical dynamics corresponding to this
with D the diffusion coefficient.As explained in Sec. V, the quantum model defines a kind of Lorentz lattice gases as
escape rate is related to the mean Lyapunov exponent arfiudied in Refs[23,24. Indeed, these references describe

IX. DIFFUSION IN DISORDERED GRAPHS

2
Ya(N)=D I\ (95)

the KS entropy of the open chain of sikeaccording to Lorentz lattice gases consisting of a moving particle travel-
ing with allowed velocitiestv on a one-dimensional lattice
Ye(N)=N(N)—hgs(N). (96) of scatterers. If the particle arrives at a scatterer it will be

transmitted or reflected with probabilitigs and q=1—0p,
As a consequence of E(5), we find also for open graphs a respectively. If the scatterers are randomly distributed the
known relationship between the diffusion coefficient and themodel describes the classical dynamics of the model by

chaotic propertie$22], Schanz and Smilansky with identical transmission and re-
flection coefficients at all the scatterers.

N2 The classical dynamics of this model can be analyzed

D:,\t'm ;[)\(N)_th(N)]- (97 with the methods developed in the present paper, which pro-

vides the relationship with the cited works on the Lorentz
S . . lattice gases. Using the methods of Sec. IV, we can write
Here againD is in units of[1]/[T] because we did not Lo . . . :

. . : . down the infinite matriXQ(s). The eigenstates of this matrix
associate a length with the period of the chain and thus thgOrres onding to the unit eigenvalue can be obtained by it-
space is in units of the unit cell. P 9 g y

eration along the chain according §d b]=exp@l/2v)uy
and y[ b]=exp6ly/2v)u; with

8This relation is obtained by solving the diffusion equati68) in up Ug~1
a system of sizé&\ with absorbing boundary conditions at the bor- ( =M, (99
ders, i.e.p(0)=0 andp(N)=0. The mode with the slowest decay Up Up-1

is then given by sirkx) with k==/N and, from the dispersion
relation (70), we get Eq.(95). For large systems, wheN—c or

equivalentlyk—0, D(N)= y4(N)(N/r)? must approach the diffu- 172 12
sion coefficient. Mp=Bp Vp-1Bp~1 (100

whereb e Z and the matrix is defined by
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20 : : - 2350 :
(a) (b) o . .
FIG. 6. Lifetime of the chain of Fig. 4 as a
157 1 1850+ 1 function of the square of its sizN. (a) For N
=3,4,5,6,7,8, the slope of the linear regression is
T 10} T 1350+ ] 0.247 403 and Eq95) gives an approximate dif-
fusion coefficient D=0.4095. (b) for N
/ =46,56,66,76,86,106, the slope of the linear re-
>0 8307 | gression is 0.194 624 7 and E@5) gives a bet-
ter approximationD=0.5205 for the diffusion
% 20 40 60 80 Yhoo 3800 5800 7800 9800 11800 coefficient(98).
N2 NZ
with U N u:
( N“) - Mb(s)( 1). (104
1 an UN+1 =1 up
Vp_1= P P (101) If the chain closes on itself, we must impose the periodic
9 1— 9 boundary conditionsigs;=Uuj anduy. ;=ujy. If the chain is
P Pob open and extended by two semi-infinite leads, we must con-
sider the absorbing boundary conditiongs5=0 andu;
and =0.
In Ref. [23], Ernstet al. have characterized the chaotic
gtsh/v 0 properties in such open graphs thanks to the escape-rate for-
Bb:( 0 eS'b’”)' (102 malism by computing the topological pressure function of

Sec. V. In Ref.[24], Appert et al. showed that the spatial
disorder is at the origin of a dynamical phase transition as-
sociated with a singularity in the pressure function of the
infinite disordered chain.

We notice that de¥l,= 1. If the chain was periodilg,=1, we

would obtain the diffusion coefficierd =vIp/(2q) by as-
suming thatu, , ; =exp(«l)u, in Eqg. (99). In the dilute gas
limit, the mean-field diffusion coefficient for the random
graph is then given by replacing the bond lengthy the X. CONCLUSIONS

mean bond lengtkl), leading to In this paper, we have introduced and studied the random

classical dynamics of a particle moving in a graph. We shall

= o P show elsewher¢14] that the dynamics studied here is the
Dm=v(l) . (103 . - SR .
2q classical limit of the quantum dynamics introduced in Refs.
[1,2].

For a disordered chain witlN scatterers, the Pollicott- We have shown that the relaxation rates of the time-
Ruelle resonances can be obtained by finding the resonancesntinuous classical dynamics can be obtained by a simple
s for which the following equation is satisfied: secular equation that includes the lengths of the bonds and

the velocity of the particle. This secular equation has been
0 , , - directly related to the eigenvalue problem of the time-

continuous Frobenius-Perron operator. The secular equation
Ly 1 0.7

__/—_ 06 ]
s(k) 2 | : . D

/\ 05t

04t
T T D)
03} Zg
) \I\ I I ozl
0 1 2 3
k 01}
FIG. 7. The first branches(k) of Pollicott-Ruelle resonances of 0 ‘ : ' ' :
L . - 0 20 40 60 80 100 120
the infinite graph corresponding to the open graph of Fig. 4. Here N
again we observe that there is only one branch that is identified with
the hydrodynamic mode of diffusiosg(k), because it vanishes for FIG. 8. The effective diffusion coefficient D(N)
k=0. = y,(N)(N/)? as a function oN for the open graphs of Fig. 4.
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can be written as a classical zeta function defined as a prod-he case of infinite disordered graphs has also been consid-
uct over the periodic orbits of the graphs. In this way, weered.
have been able to define the relaxation rates, as well as cha- The interest of these results lies notably in the fact that the
otic properties such as the Lyapunov exponents and the eglassical quantities computed here can be compared to
tropies as quantities per unit of the continuous time. Theequivalent quantities defined for the corresponding quantum
chaotic properties are derived from a pressure function deProblem, as shown elsewhefe4]. _ '
fined for each graph. Recent_ly_h|erarch|cal grap_hs have been introduced in or-
For infinite periodic graphs, we have shown how to con-dér to mimic some properties of KAM systems such as
struct the hydrodynamic modes of diffusion and to computd®©Wer-law time behaviof25]. In the case of a hierarchy of

a diffusion coefficient. Here also, the relaxation rates of th ond lengths, the isochronous timg dynamics of Rej.
hydrodynamic modes are given by the zeros of a classic hould not be applicable and the time-continuous methods

zeta function. Moreover, a Green-Kubo formula for the dif- eveloped in the present paper would be fully relevant and of

fusion coefficient has been deduced from the eigenvalugreat importance for such applications.
problem for the Frobenius-Perron operator of the classical ACKNOWLEDGMENTS
dynamics on the graph.
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