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Diffusion by extrinsic noise in the kicked Harper map
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A significantly improved analytic understanding of the extrinsically driven diffusion process is presented in
a nonlinear dynamical system in which the phase space is divided into periodic two-dimensional tiles of regular
motion, separated by a connected separatrix network~web! @previously studied by A. J. Lichtenberg and Blake
P. Wood, Phys. Rev. Lett.62, 2213~1989!#. The system is represented by the usual ‘‘kicked Harper map’’ with
added extrinsic noise terms. Three different diffusion regimes are found depending upon the strength of the
extrinsic perturbationl relative to the web and regular motions. When the extrinsic noise is dominant over the
intrinsic stochasticity and the regular rotation motions in the tile, diffusion obeys the random phase scalingl 2.
When the extrinsic noise is dominant over the intrinsic stochasticity, but weaker than the regular rotation
motion, the diffusion scales aslK 1/2, whereK is the strength of the intrinsic kick. These findings agree well
with numerical simulation results. When the extrinsic noise process is weaker than the stochastic web process,
we analytically reproduce the well-known numerical result: The web diffusion is reduced by the ratio of
phase-space areas of intrinsic to extrinsic stochasticity.

DOI: 10.1103/PhysRevE.63.066213 PACS number~s!: 05.45.Ac, 05.45.Pq, 05.40.Ca, 05.60.Cd
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I. INTRODUCTION

An important problem in nonlinear dynamics is unde
standing the effect of extrinsic stochasticity on the diffusi
across a divided phase space. In two degrees of freedom
divided phase space can consist of regions dominated
KAM ~Kol’mogorov-Arnol’d-Moser! curves and regions
connected by intrinsic stochasticity@1#. If the system is
above the stochasticity threshold and primarily connec
with intrinsic stochasticity regions~with embedded KAM is-
lands!, the extrinsic stochasticity can slow down the intrins
diffusion by moving the phase points between the intrin
stochastic region and the KAM islands@2#. On the other
hand, if the intrinsic stochasticity regions are isolated fro
each other by phase-spanning KAM regions, the global
fusion rate is determined by the slow extrinsic steps acr
the KAM curves@2–4#. In the actual physical systems, th
latter situation is often preferred since the former produ
diffusion which is uncontrollably too fast.

A more interesting problem with regard to the extrins
diffusion rises in the case when the phase space is div
into periodic two-dimensional tiles, which appears co
monly when a linear oscillator is resonantly perturbed. T
connected boundary region between the tiles~separatrix! can
easily be stochastic when the intrinsic perturbation is reas
ably large, to form a stochastic connected web, which le
to rapid intrinsic diffusion over large scale. The KAM re
gions in this case are locally confined, isolated from ea
other by the connected stochastic web. Thus, in the abs
of extrinsic noise, there is a fast global diffusion by the lar
scale intrinsic web diffusion. The role of extrinsic noise
this case can be quite different. When the web diffusion
strong, the extrinsic noise reduces the global diffusion rat
usual. The difference stands out in the case when the
chastic web diffusion is weak: Within each tile, the pha
points rotate rapidly along the KAM curves of Fig. 1. Extri
sic noise can scatter the rotating phase points between
tiles across the tile boundaries. The diffusive step size is t
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equal to the tile size, which is much greater than the norm
extrinsic step size across each KAM curves.

This problem was studied numerically in Ref.@5# using an
infinitely periodic web-tile structured map in two dimen

FIG. 1. Phase-space plots of Eq.~1! without external noise.~a!
is for K50.1 and~b! is for K50.5.
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GUNYOUNG PARK AND C. S. CHANG PHYSICAL REVIEW E63 066213
sions. They reported the findings that when the intrinsic w
stochasticity dominates over the extrinsic stochasticity,
global web diffusion rate is reduced by ‘‘the ratio of phas
space areas in the intrinsic to extrinsic stochasticity,’’ a
that, when the extrinsic stochasticity dominates over the w
stochasticity the global diffusion rate shows a new trend
by the extrinsic noise. For the latter case, they have offe
an analytic explanation (} l , where l is the extrinsic noise
strength! of the diffusion behavior without being able to e
plain theK dependence whose existence was obvious fr
their numerical result.

It is the purpose of the present work to offer an analy
explanation of the extrinsically driven diffusion behavior
the same system as in Ref.@5#, where the phase space has
infinitely periodic homogeneous web-tile structure. After
minor, but clear, explanation of the reduction in the glob
web diffusion rate by the ratio of phase-space areas when
diffusion is dominated by the intrinsic stochasticity, we sho
that the dominance of the extrinsic stochasticity appears
ferently in two different regimes separated by the relat
strength of the extrinsic noise frequency to the intrinsic re
lar rotation frequency. New diffusion scalings have be
identified analytically when the extrinsic stochasticity dom
nates over the intrinsic stochasticity, which agrees well w
numerical simulation results.

We follow the procedure of Ref.@5# and start with the
mapping representation of the kicked oscillator@6,7#

vn1152~un1K sinvn!sina1vn cosa,

un115~un1K sinvn!cosa1vn sina,

whereu andv are the two-dimensional quantities oscillatin
at the angular frequencyv, a5vT is the rotation angle of
the oscillator between kicks,T is the time interval between
kicks, andK is the kick amplitude. At a resonance we ha
a52pp/q. Taking p51 andq54 ~four kicks per oscilla-
tion!, iterating four times, and keeping only the lowest-ord
terms in K, we obtain the so-called ‘‘kicked Harper map
@8#

vn115vn22K sinun1ur ,
~1!

un115un12K sinvn111v r ,

where the extrinsic noise termsur andv r are added. In the
present work we use uniformly distributed random variab
between6 l for ur and v r . Without the noise terms, th
mapping is area preserving.

In Fig. 1 we display the phase-space plots for a tile wi
out extrinsic noise (l 50) for K50.1 and 0.5 showing the
stochastic web region and regular KAM region. Figure 1~a!
is the case with small web diffusion and Fig. 1~b! is the case
where the web diffusionDweb begins to be significant. As
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the K value is increased further, distortion of the KAM su
faces occur within the tile. The extrinsic noise introduc
scattering across the KAM surfaces, giving connections
tween different KAM surfaces, between the KAM region a
the web region, and between different tiles. We first pres
a minor analytic discussion in the case when the intrin
web stochasticity dominates over the extrinsic stochastic
followed by a main discussion in the regimes where the
trinsic web stochasticity is small.

II. EXTRINSIC NOISE EFFECT ON STOCHASTIC WEB
DIFFUSION

In the case where the intrinsic web diffusion domina
over the extrinsic diffusion it is well known numerically tha
the role of extrinsic noise is to scatter the phase points
tween the rapidly diffusing global intrinsic stochasticity r
gion and the local KAM region where the slower extrins
diffusion is in action. As a result, the global web diffusio
rate Dweb is reduced. In order to understand the reduct
amount, we model that the trajectory of a phase poin
switched back and forth between the web and KAM regio
and we neglect the slow extrinsic diffusion in the KAM re
gion. During the periodD of the phase point trapping in th
KAM region, the diffusion process is turned off. Defining

measurable radial quantityr 5Au21v2, we write a modified
Langevin equation

dr~ t !

dt
5j~ t !F12(

i 51

N(t)

Q~ t2t i !Q~ t i1D2t !G5j~ t !H~ t !,

~2!

wheret i represents the instant at which thei th trapping event
occurs, Q(x) is the usual step function such thatQ(x)
51 for x>0, Q(x)50 for x,0, N(t) is a sto-
chastic number function denoting the number of trapp
events occurred up to timet, andj(t) is the stochastic dis-
placement function of the white-noise type inside the w
region in such a way that

^j~ t !j~ t8!&j52Dwebd~ t2t8!.

Here^•••&j denotes the ensemble average overj. This form
of the Langevin equation includes the phenomenon t
when the time belongs in the KAM-confined period,t i<t
,t i1D, the radial velocity is zero.

From this Langevin equation we can compute directly
web diffusion rate modified by the extrinsic noise effect,
3-2
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Dweb
l 5 lim

Dt→0

1

2Dt K Et

t1Dt

dt8E
t

t1Dt

dt9j~ t8!H~ t8!j~ t9!H~ t9!L
j,N(t)

5 lim
Dt→0

1

2Dt K Et

t1Dt

dt8E
t

t1Dt

dt9H~ t8!H~ t9!2Dwebd~ t82t9!L
N(t)

5Dweb lim
Dt→0

1

DtEt

t1Dt

dt8^H2~ t8!&N(t)

5Dweb lim
Dt→0

1

DtEt

t1Dt

dt8^H~ t8!&N(t)

5DwebH 12 lim
Dt→0

1

Dt K E0

t1Dt

dt8O~ t8!2E
0

t

dt8O~ t8!L
N(t)
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where we have used the fact thatH(t8) is either 1 or 0, and
defined a stochastic functionO(t) as ( i 51

N(t)Q(t2t i)Q(t i

1D2t).
The integration ofO(t) over t can be performed as fol

lows:

E
0

t

dt8O~ t8!

5H DN~ t ! if tN(t)1D<t,tN(t)11

D~N~ t !21!1t2tN(t) if tN(t)<t,tN(t)1D.

Then in the asymptotic time limitN(t)@1, this integration
simply becomesDN(t), yielding

Dweb
l 5DwebH 12 lim

Dt→0
D

^N~ t1Dt !2N~ t !&
Dt J

5DwebH 12D
d^N~ t !&

dt J . ~3!

Definingn as the average number of trapping events per
time, we can identifŷ N(t)& asnt. Assuming that the aver
age trapping timeD is much shorter than the intertrappin
time 1/n in the present case where the intrinsic web diffus
is dominant, we have

Dweb
l 5Dweb$12nD%.

Dweb

11nD
for nD!1. ~4!

Using the equilibrium hypothesis that the phase spac
uniformly populated by the diffusing phase points, we rel
the steady-state probabilityPW (PT) for a phase point to
belong to the web~KAM tile ! and the phase-space areaAW
(AT) of the web region ~tile region! by the equation
PW /PT5AW /AT . Adopting the detailed balancing principl
satisfied in the equilibrium situation, i.e.,PWPW→T
5PTPT→W , wherePW→T represents the transition probab
06621
it

is
e

ity from the web to the inner tile region and vice versa, w
have PW→T /PT→W5nD5PT /PW5AT /AW . Using this re-
sult in Eq.~4! we have

Dweb
l .

Dweb

11AT /AW
5

AW

A
Dweb for AT /AW!1, ~5!

where A denotes the total phase-space areaA5AW1AT .
This is the relationship found numerically in Ref.@5#. The
above simple analysis presents a simple analytic insight
the effect of the external stochasticity onDweb when the
intrinsic web stochasticity is dominant over the extrinsic s
chasticity.

III. DIFFUSION DOMINATED BY EXTRINSIC NOISE

Since the separatrix thickness decays exponentially onK,
we haveAW /A}exp@2c/K# wherec is a constant@9#. Thus,
the diffusion rateDweb

l based upon the web stochasticity d
cays rapidly asK is reduced, and the extrinsic stochastic
can dominate the diffusion by scattering the phase po
over the thin web layer into the neighboring tiles.

Taking the limit of small web thickness, we neglect th
intrinsic stochasticity in order to simplify the analysis. Th
tiles are now entirely composed of regular KAM surfac
bounded by a sufficiently thin separatrix network in-betwe
the tiles. During a complete regular rotation within the tile
phase point experiences external noise which scatters t
off the constant Hamiltonian KAM curves. The scatter
phase point no longer has a closed orbit, resulting in a m
matchS in the direction perpendicular to the KAM curve
after one complete rotation. This is the basic step size ac
the KAM surfaces in a rotation, driven by extrinsic nois
When the extrinsic noise scatters the phase point into ano
neighboring tile as a result of the rotation andS motions, an
enhanced extrinsic diffusion occurs with the step size n
equal to the tile size. The average size ofS can be estimated
from a random walk diffusion

S. lN0
1/2, ~6!
3-3
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whereN0 is an average number of mapping steps per co
plete rotation within the tile in the absence of extrinsic noi
For an estimate ofN0 we can use the following argument i
terms of the normalized actionw, which goes from zero on
the separatrix to unity at the tile center. Nearw51, we have
a regular rotation around an elliptic fixed point. Thus, t
period isN(w→1)5p/K. N increases monotonically asw is
reduced. According to Ref.@5#, this rotation period ap-
proachesNx.2(22 ln w)/K near the separatrix, where it ex
hibits logarithmic divergence due to hyperbolic fixed poin
For a qualitative averaging between these two behavior
N, we simply take the value ofNx far away from the sepa
ratrix @Nx(w→1)#:

N0.4/K.

Substituting thisN0 into Eq. ~6!, we obtain

S.2l /K1/2. ~7!

Since the radial size of the tile is.p/A2 in the uW 1vW
direction ~see Fig. 1!, there can be two different diffusion
regimes depending upon the magnitude ofS relative to
p/A2. If S.p/A2, the extrinsic noise can detrap the pha
point out of a tile before the completion of an internal ro
tion. If S,p/A2, on the other hand, a phase point expe
ences many rotations before detrapping. For convenience
define a normalized parameter for the extrinsic no
strength:l̂ 5(2A2/p)( l /AK). In the high extrinsic noise re
gime characterized byl̂ .1, the qualitative evaluation of th
diffusion coefficient is trivial. Since the radial step sizeS per
rotation is greater than the tile size, the regular rotation m
tions and tile structures are destroyed by the extrinsic no
The global diffusion in this case is basically set by the la
individual random walks per mapping step, driven by extr
sic noise. Neglecting the intrinsic kick effect in the mappi
equation~1!, the square of the random walk size per mapp
step is (dr )25(du)21(dv)25ur

21v r
2 , yielding the diffu-

sion coefficientDl in the l-dominant regime as

Dl5^ur
21v r

2&h/25~ l 2/2!E
21

11

dhh25 l 2/3, ~8!

whereh is a homogeneously distributed random number
tween61.

In the small extrinsic noise regime,l̂ ,1 ~equivalently,
S,p/A2), the diffusion process is dictated by the regu

FIG. 2. Sketch of the partitioning of a tile inton cells in the
u5v direction.
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rotations and the two-dimensionally periodic tiles. Analy
derivation of the diffusion coefficient in this regime was a
tempted in Ref.@5#: however, we find that it requires mor
elaborate and proper consideration than what was reporte
Ref. @5#. We partition a tile in Fig. 1 along theu5v line into
n discrete cells. The size of a cell is taken to beS. Thus,n
5p/A2S. A phase point initially at thekth cell can scatter
by the extrinsic noise either into the (k11)th or the (k
21)th cell after one rotation. In Fig. 2 the zeroth cell corr
sponds to the center of the unit tile, which is on contact w
a perfectly reflecting boundary. The (n21)th cell represents
the last one before detrapping into the neighboring tile (nth
cell!: Thus, thenth cell itself is an absorbing boundary.

We now evaluate the average detrapping time from a t
The relevant quantity here is the mean number of rotati
Ck before the phase point hits the absorbing boundary
the nth cell starting from thekth cell. Transition probability
to the right~left! cell is denoted asp(q). Let P(Tus5k) be
the probability for the phase point initially at thekth cell to
reach the absorbing boundary afterT rotational steps. The
recursion equation forCk (1<k<n21) can, then, be ob-
tained as follows:

Ck5 (
T51

`

P~Tus5k!T

5 (
T51

`

T@pP~T21us5k11!

1qP~T21us5k21!#

5p(
T52

`

TP~T21us5k11!

1q(
T52

`

TP~T21us5k21!

5p@11Ck11#1q@11Ck21#

511pCk111qCk21 , ~9!

wherep1q51 and(T51
` P(Tus5k61)51 have been used

Under the appropriate boundary conditions,Cn50 andC0
511C1, the general solution to Eq.~9! is obtained as fol-
lows ~see the Appendix!:

Ck55
2

~12q/p!2 F S q

pD n11

2S q

pD k11G1
n2k

p2q
, pÞq

n22k2, p5q5
1

2
.

~10!

Since the extrinsic noise in the present work does not pr
right from left, we usep5q50.5, thusCk5n22k2.

For a time asymptotic behavior, we need to consider
trapping time of a newly migrated phase point starting
activity within the tile at the (n21)th cell. Thus,k should be
3-4
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DIFFUSION BY EXTRINSIC NOISE IN THE KICKED . . . PHYSICAL REVIEW E63 066213
n21 and Cn2152n21.2n.A2p/S. The average trap
ping timetav in a tile is, therefore, given as

tav5Cn21N0.
21/2p

S
N0.2

p

l S 2

K D 1/2

. ~11!

Before proceeding to the evaluation of the diffusion coe
cient, a numerical calculation oftav is performed in order to
check the accuracy of the analytic expression~11!. The result
is shown in Fig. 3. The1 marks are numerical simulatio
results forK50.01,0.1,0.3. The abrupt change of the nume
cal tav behavior aroundl̂ 51 ~indicated by the arrows! sup-
ports the validity of thel̂ parameter. The simple analyti
prediction of Eq.~11! is shown as straight lines with a con
stant multiplication factor of 0.86, showing an excellent fit
the numerical result in the small extrinsic noise regim
( l̂ ,1). With this confidence in the averaged theory, we n
estimate the radial diffusion coefficientDK in the regime
l̂ ,1 using a random walk argument. The step size in t
diffusion is the distance between the centers of the neigh
ing tiles in theuW 1vW direction,A2p, and the random walk
time is tav . Thus, we have

DK5
~A2p!2

2tav
5~p/2A2!lAK. ~12!

Notice here that the diffusion coefficient in Eq.~12! is a
function of not onlyl, but alsoK, as the numerical simulation
showed. On the other hand, the crude analytic theory
sented in Ref.@5# had thel dependence only (D} l ) even
though both results are obtained in the same regimel̂ ,1
characterized by fast particle rotation within the tile co
pared to the extrinsic noise strength. The critical differen
~and a significantly improved understanding! here is that the
fast rotation of the particles within the tile makes the rotat
to be the basic unit of random walk in the present wo

FIG. 3. The average detrapping timetav in a number of map-
ping steps as a function of the noise magnitudel. Numerical simu-
lation results are marked with1. The dashed and dotted lines a

from the fitting 2.43p/ lAK and the arrows indicate the positionl̂
51.
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instead of assuming the individual mapping step to be
basic unit as done in Ref.@5#. In the present work, the rota
tion time N, the step sizeS, and the tile-to-tile crossing
probability are all functions ofK; thus, the resultingtav and
DK have to be functions ofK. In Ref. @5# all these physical
quantities were independent ofK. We find that the com-
pletely random walk behavior between every mapping ste
only satisfied in the regimel̂ .1 where the tile structures ar
destroyed by the strong extrinsic noise, yieldingD} l 2. Ref-
erence@5# did not investigate this regime, however.

The proportionality constant forDK in Eq. ~12! can be
further improved by considering the directional correlati
effect for the tile to tile transition, which arises from the fa
that the probability for the exit direction out of a tile is co
related to the entrance direction into the tile and the rotat
direction of the phase point within the tile@10,11#. This ef-
fect usually enhances the numerical coefficient somew
with a correction coefficient of order unity, but does not al
the diffusion scaling. Thus, for a qualitative analytic study
the present work, such an elaboration is not necessary
will not be included.

IV. COMPARISON WITH NUMERICAL SIMULATION
RESULT

In order to verify the validity of the analytic results, th
discrete mapping equation~1! is studied numerically. Since
all the phase space is interconnected by the extrinsic no
the global diffusion coefficient is measured by breaking
single orbit intoN pieces and giving each of themT mapping
steps. Thus, the total length of the single orbit isNT. Nu-
merical diffusion coefficient inr 5(u21v2)1/2 is then ob-
tained from

Dr5
1

2T

1

N (
i 51

N

~rW i2rW ( i 21)!
2. ~13!

Here,T must be sufficiently large to ensure that the transi
behavior dies out, andN must be large enough to provid
meaningful statistics. TheT and N values are chosen afte
comparison with a time-dependent diffusion coefficient o
tained by distributing initial phase pointsrW i ,0 of N separate
phase points uniformly in a tile and following each orbit f
a sufficiently long time periodT8:

D~T8!5
1

2T8

1

N (
i 51

N

~rW i ,T82rW i ,0!
2. ~14!

If we can observe that the equilibrium diffusion coefficie
Dr from Eq. ~13! agrees withD(T) from Eq. ~14! for the
slowest diffusion process involved in each plot~smallestl
andK case!, then we assume that the transient behavior
died out in the single orbit method, Eq.~13!. As a result of
this exercise, the values ofT and N are chosen to be
1 000 000 and 5000, respectively, for all the plots in t
present work unless otherwise specified. Figure 4 shows
example of the time dependentD(T) from Eq. ~14! for
N55000 andl 50.005. It can be seen that the transient b
3-5
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GUNYOUNG PARK AND C. S. CHANG PHYSICAL REVIEW E63 066213
havior lasts longer for smallerK, but by the timeT5106 the
diffusion coefficient is safely in steady state for both cas

In Fig. 5 the numerical diffusion coefficient withlÞ0 is
plotted with L marks, with the fitting 1.76lAK shown in
solid lines based upon the analytic expression, Eq.~12!. Ac-
tually the fitting result 1.76lAK is somewhat greater than th
prediction given by Eq.~12! (DK.1.11lAK), not a surpris-
ing discrepancy when we consider the neglect of correla
phenomena in the transitional process between neighbo
tiles as mentioned in Sec. III. In this plot the deviation of t
numerical curves from the fitting lines~at highK values! are
due to the onset of the stochastic web diffusion of Eq.~5!.
The dotted line with1 marks shows the global web diffu

FIG. 4. Time dependence of the diffusion coefficien
(radian2/mapping step) from Eq.~14! for 5000 initial phase points
distributed uniformly in the square region (0<u<p, 0<v<p). l
is set to 0.005.

FIG. 5. Numerical diffusion coefficients (radian2/mapping step)
versusK. The numerical points markedL are obtained by follow-
ing one orbit for a long time (53109) in the presence of the ex
trinsic noise. The curve with1 marks is the web diffusion, ob
tained numerically without extrinsic noise by averaging over 50
phase points uniformly distributed in the square region (0<u<p,
0<v<p). Two solid lines are from 1.76lAK.
06621
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FIG. 6. Plot of the numerically obtained diffusion coefficien
(radian2/mapping step, represented byL) versusK for two differ-
ent l values~0.3 and 0.5!. The horizontal lines are drawn accordin

to Eq. ~8! for l̂ .1. For l̂ ,1 ~the greaterK region! the lines are
from 1.76lAK as in Fig. 5.

FIG. 7. One particle trajectory under the influence of extrin
noise starting from (u,v)5(3.0,0.0).K50.1, l 50.05 and the num-
ber of iterations is 25 000.~a! urÞv r , ~b! ur5v r .
3-6
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DIFFUSION BY EXTRINSIC NOISE IN THE KICKED . . . PHYSICAL REVIEW E63 066213
sion without the extrinsic noise, with the initial phase poin
distributed uniformly over the entire tile, which verifies th
the deviation from thelAK behavior at the highK values is
from the web diffusion reduced by the area ratio of web
tile. Transition into the regimel̂ .1 cannot be seen in Fig. 5
but is shown in Fig. 6. Here again the numerical results ag
well with the analytic predictions, i.e.,DK.1.11lAK of Eq.
~12! andDl5 l 2/3 of Eq. ~8!.

V. COHERENCE IN THE NOISES

In some situations the random extrinsic noisesur andv r
can originate from the same physical event and be cohe
In order to model this situation, we setur5v r and compare
the result with the previous cases whereur andv r are com-
pletely uncorrelated. Figures 7~a! and 7~b! compare the tile
to tile transition processes forurÞv r and ur5v r . Transi-
tions are close to isotropic forurÞv r in Fig. 7~a!, but are
highly directional forur5v r in Fig. 7~b! to the dudv.0

FIG. 8. The same case as for Fig. 3 except thatur5v r is used in
Eq. ~1! for the numerical evaluation oftav in a number of mapping
steps. The dashed and dotted lines represent 1.432.43p/ lAK.

FIG. 9. Numerically obtainedDr (radian2/mapping step).
Slightly higher diffusion is obtained forurÞv r .
06621
e

nt.

direction. This phenomenon can be easily understood fr
the conditionur5v r that the phase points are difficult t
cross the constant Hamiltonian separatrix,v2u5 const.
Thus, the tile-to-tile transitions should be highly anisotrop
severely restricting transitions in the directiondudv,0. Fig-
ures 8 and 9 show thattav is enhanced andD in the r
5Au21v2 direction is reduced by the conditionur5v r
when compared to the same cases underurÞv r . This phe-
nomenon can also be understood easily from the fact tha
condition ur5v r reduces the random walk in thedudv,0
direction, thus, the contribution toS is also reduced. This
makestav greater andD smaller. However, if we evaluate
the diffusion in the unrestricted direction only, the diffusio
coefficient is not reduced.

We note here that the coherent extrinsic noiseur5v r does
not change the basic scaling of the diffusion process from
incoherent noise caseurÞv r : In both casestav andD have
the same dependencies onK and l. If we switch the phase of
the coherence tour52v r , then the direction of the diffusion
is now switched to thedudv,0 direction. The highly direc-
tional nature of the diffusion in the coherent noise case
be an important effect in a physical situation where the t
directions have different meanings.

VI. CONCLUSION AND DISCUSSIONS

In the present work, analytic understanding of the extr
sic noise effect on a nonlinear dynamical system is repo
by adding random noise terms to the kicked Harper m
where the phase space is divided into infinitely periodic tw
dimensional tiles. This problem has previously been stud
numerically in the literature. However, the analytic unde
standing has been rather incomplete. It is shown in
present work that there are clean and simple ways of expl
ing the extrinsically driven diffusions in this physically im
portant system.

The extrinsic noise performs three functions: First, it i
terconnects all the regions in the phase space. The div
spaces are no longer isolated. One significant consequen
this function is the slowing down of the stochastic web d
fusion rate, when it provides the dominant global diffusi
process, by moving the phase points in and out of the
web diffusion region. This has been pointed out by previo
numerical studies. Second, it makes the phase points s
off the regular constant Hamiltonian paths if the intrins
stochasticity is not present. When the extrinsic motion
comes dominant over the regular rotation motions, the e
tence of the phase-space tile structures is destroyed and
diffusion becomes of the well-known random walk typ
(} l 2). When extrinsic motion is only a perturbation to th
regular rotation motion, the diffusion closely obeys all t
rules set out by the properties of the mapping including
rotations along the KAM curves in the tile and periodic tw
dimensional array of tiles. Third, it forces the phase points
make transitions to the neighboring tiles, making the rand
walk size as large as the tile size. This gives a tremend
enhancement of the global diffusion rate over the intrin
diffusion rate when the intrinsic perturbation is small, a
yields diffusion of the type (D} lAK).
3-7



si
di
to
se
s

th

tw
m
ow
th
is
er
th

ion
t

rr
n
i

io

e
t

d

r-
th
e

m

Re
.S

oin
ol

io
e

es

lu-

.

GUNYOUNG PARK AND C. S. CHANG PHYSICAL REVIEW E63 066213
Depending upon the relative strength of the extrin
noise to the intrinsic perturbation, we have defined three
ferent diffusion regimes. The above properties combine
gether to give distinctive diffusion property in each of the
regimes. The analytic understanding presented in the pre
work compares excellently with the numerical results in
literature or in the present work.

In addition we have examined the case when the
noises in each of the two dimensions are from the sa
physical source and are strongly correlated. We have sh
that the diffusion becomes highly anisotropic, but keeps
same basic scaling laws as the case with uncorrelated no
This problem can be important in a physical situation wh
the extrinsic noise is from the same physical source and
two directions have different significance.

The correlation effect over the consecutive transit
steps between neighboring tiles has not been included in
present paper, which aims at qualitative results. This co
lation effect can make a minor improvement on the mag
tude of the diffusion coefficient when the diffusion process
dominated by the small perturbation of the regular rotat
motions along the constant Hamiltonian curves.

It is interesting to note that the observations made h
based upon the kicked Harper map can be connected to
passive particle~e.g., dye particles! transport in a two-
dimensional periodic laminar convective flow~cellular flow!
field such as the Rayleigh-Be´nard convection cell. In terms
of the Peclet numberP5vd/Dm @wherev is the flow veloc-
ity in a convective cell,d is the characteristic cell size, an
Dm is the local ~or molecular! diffusivity originated from
fluctuations or collisions# which measures the relative impo
tance of the convective motions compared to diffusion,
global effective diffusion coefficient in the large space-tim
scale has been known@12–14# to be ;DmP1/2. Since our
noise coefficientl and perturbation parameterK can be inter-
preted to have similar physical functions asADm and v,
respectively, it can be seen readily that our formula; lAK,
which can be translated to be valid in the large Peclet nu
ber limit, is similar to the scalingDmP1/25DmAvd/Dm

}ADmAv.
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APPENDIX: MEAN NUMBER OF ROTATIONS
BETWEEN TILE TRANSITIONS

The mean number of regular rotations of a phase p
between two consecutive tile transitions is given as the s
tion to Eq.~9!,

Ck511pCk111qCk21 , ~A1!

which is nothing but an inhomogeneous difference equat
In the casep5q51/2, the solution is simple: The abov
equation becomes, after a trivial rearranging,
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1

2
~Ck1122Ck1Ck21!⇒ 1

2

d2Ck

dk2 .

A general solution is

Ck5A1Bk2k2.

The boundary conditionsCn50 and C0511C1 then re-
quire B50 andA5n2 to yield the solution

Ck5n22k2 for p5q51/2. ~A2!

In the casepÞq we decompose the solution to Eq.~9!
into a homogeneous solutionCk

H5pCk11
H 1qCk21

H and the
particular solutionCk

P . The homogeneous solution satisfi
the homogeneous equation

Ck
H5pCk11

H 1qCk21
H .

If we look for a solution in the formCk
H5Xk, we have an

equation forX,

pX22X1q50,

which yields two independent solutionsX5q/p and X51.
Thus,

Ck
H5~q/p!k or 1.

The particular solution is obtained from

Ck
P511pCk11

P 1qCk21
P ,

which can be easily converted into the differential form

p
d2Ck

P

dk2 1~p2q!
dCk

P

dk
1150.

The particular solution to this equation is

Ck
P52k/~p2q!.

After combining the homogeneous and particular so
tions into

Ck5A~q/p!k1B2k/~p2q!

and applying the boundary conditionsCn50 and C051
1C1, we obtain

Ck5
2

~12q/p!2 F S q

pD n11

2S q

pD k11G1
n2k

p2q
for pÞq.

~A3!

Equations~A2! and ~A3! are the two components of Eq
~10!.
3-8
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