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Diffusion by extrinsic noise in the kicked Harper map
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A significantly improved analytic understanding of the extrinsically driven diffusion process is presented in
a nonlinear dynamical system in which the phase space is divided into periodic two-dimensional tiles of regular
motion, separated by a connected separatrix net@week) [previously studied by A. J. Lichtenberg and Blake
P. Wood, Phys. Rev. Letb2, 2213(1989]. The system is represented by the usual “kicked Harper map” with
added extrinsic noise terms. Three different diffusion regimes are found depending upon the strength of the
extrinsic perturbation relative to the web and regular motions. When the extrinsic noise is dominant over the
intrinsic stochasticity and the regular rotation motions in the tile, diffusion obeys the random phaselcaling
When the extrinsic noise is dominant over the intrinsic stochasticity, but weaker than the regular rotation
motion, the diffusion scales a& 2, whereK is the strength of the intrinsic kick. These findings agree well
with numerical simulation results. When the extrinsic noise process is weaker than the stochastic web process,
we analytically reproduce the well-known numerical result: The web diffusion is reduced by the ratio of
phase-space areas of intrinsic to extrinsic stochasticity.
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[. INTRODUCTION equal to the tile size, which is much greater than the normal
extrinsic step size across each KAM curves.

An important problem in nonlinear dynamics is under-  This problem was studied numerically in R3] using an
standing the effect of extrinsic stochasticity on the diffusioninfinitely periodic web-tile structured map in two dimen-
across a divided phase space. In two degrees of freedom the
divided phase space can consist of regions dominated by
KAM (Kol'mogorov-Arnol'd-Mose) curves and regions 6 F
connected by intrinsic stochasticifyl]. If the system is
above the stochasticity threshold and primarily connected
with intrinsic stochasticity region@vith embedded KAM is- 2k
landg, the extrinsic stochasticity can slow down the intrinsic
diffusion by moving the phase points between the intrinsic
stochastic region and the KAM islandg]. On the other ot
hand, if the intrinsic stochasticity regions are isolated from
each other by phase-spanning KAM regions, the global dif-
fusion rate is determined by the slow extrinsic steps across gL
the KAM curves[2—4]. In the actual physical systems, the
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latter situation is often preferred since the former produces ‘8_8 8
diffusion which is uncontrollably too fast.

A more interesting problem with regard to the extrinsic @
diffusion rises in the case when the phase space is divided 8
into periodic two-dimensional tiles, which appears com-
monly when a linear oscillator is resonantly perturbed. The 6 .
connected boundary region between the filEparatrix can nl )
easily be stochastic when the intrinsic perturbation is reason-
ably large, to form a stochastic connected web, which leads 2 r .
to rapid intrinsic diffusion over large scale. The KAM re- s ol |
gions in this case are locally confined, isolated from each
other by the connected stochastic web. Thus, in the absence -2 r .
of extrinsic noise, there is a fast global diffusion by the large Ak )
scale intrinsic web diffusion. The role of extrinsic noise in
this case can be quite different. When the web diffusion is -6 | .
strong, the extrinsic noise reduces the global diffusion rate as L
usual. The difference stands out in the case when the sto- '8_8 6 -4 -2 0 2 4 6 8
chastic web diffusion is weak: Within each tile, the phase (b) u

points rotate rapidly along the KAM curves of Fig. 1. Extrin-
sic noise can scatter the rotating phase points between the FIG. 1. Phase-space plots of Ed) without external noise(a)
tiles across the tile boundaries. The diffusive step size is theis for K=0.1 and(b) is for K=0.5.
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sions. They reported the findings that when the intrinsic welthe K value is increased further, distortion of the KAM sur-

stochasticity dominates over the extrinsic stochasticity, théaces occur within the tile. The extrinsic noise introduces
global web diffusion rate is reduced by “the ratio of phase-scattering across the KAM surfaces, giving connections be-
space areas in the intrinsic to extrinsic stochasticity,” andween different KAM surfaces, between the KAM region and

that, when the extrinsic stochasticity dominates over the welhe web region, and between different tiles. We first present
stochasticity the global diffusion rate shows a new trend se} minor analytic discussion in the case when the intrinsic
by the extrinsic noise. For the latter case, they have offeregyep stochasticity dominates over the extrinsic stochasticity,

an analytic explanation=(l, wherel is the extrinsic noise fg|lowed by a main discussion in the regimes where the in-
strength of the diffusion behavior without being able to eX- (rinsic web stochasticity is small.

plain theK dependence whose existence was obvious from
their numerical result.

It is the purpose of the present work to offer an analytic
explanationpofrihe extrinsic%lly driven diffusion behavioryin Il. EXTRINSIC NOISE EFFECT ON STOCHASTIC WEB
the same system as in RE5], where the phase space has an DIFFUSION
infinitely periodic homogeneous web-tile structure. After a |4 the case where the intrinsic web diffusion dominates
minor, but clear, explanation of the reduction in the globalgyer the extrinsic diffusion it is well known numerically that
web diffusion rate by the ratio of phase-space areas when thge ole of extrinsic noise is to scatter the phase points be-

diffusion is dominated by the intrinsic stochasticity, we ShOWtween the rapidly diffusing global intrinsic stochasticity re-

;gfetrfge ?nortnv\llgagﬁfeeg;??:ﬁ:g;'g;;g?g?j;C[;t;/ S]pep?;rstisggion and the local KAM region where the slower extrinsic
streng%/h of the extrinsic noige frequency to the intrinsic regu-d'ffus"an '.S in action. As a result, the global web dlffuspn
lar rotation frequency. New diffusion scalings have beenrate Duep is reduced. In order t(.) understand the redu_ctlo_n
identified analytically when the extrinsic stochasticity domi- @M0unt, we model that the trajectory of a phase point is

nates over the intrinsic stochasticity, which agrees well withSWitched back and forth between the web and KAM region,

numerical simulation results. and we neglect the slow extrinsic diffusion in the KAM re-

We follow the procedure of Ref5] and start with the 9ion. During the period\ of the phase point trapping in the
measurable radial quantity= \'u?+v?, we write a modified

] ) Langevin equation
Uni1=— (up+Ksinv,)sina+v, cosa,

Ups1=(u,+Ksinv,)cosa+uv,Sing, N(t)
dr(t)
gt ~E0][1- 2 O(t-t)O(+ A=) | =EDH(D),

whereu andv are the two-dimensional quantities oscillating 2
at the angular frequency, a=wT is the rotation angle of

the oscillator between kickqg; is the time interval between

kicks, andK is the kick amplitude. At a resonance we have

a=2mplq. Takingp=1 andq=4 (four kicks per oscilla- wheret; represents the instant at which fttie trapping event

tion), iterating four times, and keeping only the Iowest—orderoccurs,@(x) is the usual step function such thék(x)
terms in K, we obtain the so-called “kicked Harper map” —1 for x>0, @(x)=0 for x<O, N(t) is a sto-

[8] chastic number function denoting the number of trapping
events occurred up to timg and £(t) is the stochastic dis-
placement function of the white-noise type inside the web

Unt1=vp— 2K Sinu,+u;, S
neLTn e region in such a way that

D

Un+1:Un+ 2K Sinvn+1+v, y

<§(t)§(t/)>§:2Dweb5(t_t/)-

where the extrinsic noise terms andv, are added. In the
present work we use uniformly distributed random variables
between=l for u, andv,. Without the noise terms, the
mapping is area preserving. Here(- - -), denotes the ensemble average ai€This form

In Fig. 1 we display the phase-space plots for a tile with-of the Langevin equation includes the phenomenon that
out extrinsic noisel=0) for K=0.1 and 0.5 showing the when the time belongs in the KAM-confined peridgst
stochastic web region and regular KAM region. Figuf@)1l <t;+A, the radial velocity is zero.
is the case with small web diffusion and Fidgblis the case From this Langevin equation we can compute directly the
where the web diffusiorD,,.,, begins to be significant. As web diffusion rate modified by the extrinsic noise effect,
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1 t+At t+At
Diyer= lim Z—MU dt’f dt”g(t’)H(t’)g(t”)H(t”)>
At—0 t t EN(Y)
1 t+At t+At
= lim 5 f dt’f dt"H(t")H(t") 2D epd(t" —t")
At—0 N(t)
1 [t+At 5
DwebAl:mo EJ; dt’(H=(t") )y

_ 1 [t+At
:DwebllT EJ; dt’(H(t"))ney

1 t+At t
— Dyl 1— lim —<f dt'O(t')—f dt’O(t’)> ,
At—0 At 0 0 N(t)

where we have used the fact théft’) is either 1 or 0, and ity from the web to the inner tile region and vice versa, we
defined a stochastic functio®(t) as SNVO(t—t,)@(t;  havePy .1/Pr_w=vA=P/Py=As/Ay. Using this re-

+A—1). sult in Eq.(4) we have
The integration ofO(t) overt can be performed as fol-
lows: | Dweb  Aw
Dwebzm_TDWED for AT/AW<11 (5)
t
fdt’O(t’) where A denotes the total phase-space afeaAy+Ar.
0 This is the relationship found numerically in Ré¢&]. The
AN(t) if tyy FASt<tyg+a above simple analysis presents a simple analytic insight into
:[A it _ A the effect of the external stochasticity @, when the
(NO=D+t-tyy I ingSt<tnyTA. intrinsic web stochasticity is dominant over the extrinsic sto-

. L ) o ) chasticity.
Then in the asymptotic time limiN(t)>1, this integration

simply becomesAN(t), yielding IIl. DIFFUSION DOMINATED BY EXTRINSIC NOISE

Dl/veb: Dweb[ 1- lim

A (N(t+At)— N(t))] Since the separatrix thickness decays exponentialli{,on
At—0

At we haveA,,/Axexyd —c/K] wherec is a constanf9]. Thus,
the diffusion rateD,,,, based upon the web stochasticity de-
d(N(t)) cays rapidly aK is reduced, and the extrinsic stochasticity
dt } (©)) can dominate the diffusion by scattering the phase points
over the thin web layer into the neighboring tiles.
Taking the limit of small web thickness, we neglect the
rinsic stochasticity in order to simplify the analysis. The
tiles are now entirely composed of regular KAM surfaces
bounded by a sufficiently thin separatrix network in-between
the tiles. During a complete regular rotation within the tile a
phase point experiences external noise which scatters them
b off the constant Hamiltonian KAM curves. The scattered
I _ __ _“web _ phase point no longer has a closed orbit, resulting in a mis-
Dueb™Duwen 1= A} 1+vA for vA<1. @ match2 in the direction perpendicular to the KAM curves
after one complete rotation. This is the basic step size across
Using the equilibrium hypothesis that the phase space ithe KAM surfaces in a rotation, driven by extrinsic noise.
uniformly populated by the diffusing phase points, we relateWhen the extrinsic noise scatters the phase point into another
the steady-state probabilitp,, (P1) for a phase point to neighboring tile as a result of the rotation abdnotions, an
belong to the weldKAM tile) and the phase-space akg  €nhanced extrinsic diffusion occurs with the step size now
(A7) of the web region(tile region by the equation equal to the tile size. The average size&otan be estimated
Pw/Pt=Ay/Ar. Adopting the detailed balancing principle from a random walk diffusion
satisfied in the equilibrium situation, i.e.PywPw_t
=P;P1_, WhereP, .t represents the transition probabil- S=INg?, (6)

= Dweb[ 1-A

Defining v as the average number of trapping events per uni}nt
time, we can identiff N(t)) as»t. Assuming that the aver-
age trapping time\ is much shorter than the intertrapping
time 1/v in the present case where the intrinsic web diffusion
is dominant, we have
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z rotations and the two-dimensionally periodic tiles. Analytic

l—‘ R derivation of the diffusion coefficient in this regime was at-

| I } tempted in Ref[5]: however, we find that it requires more
elaborate and proper consideration than what was reported in

|
|

& Ref.[5]. We partition a tile in Fig. 1 along the=v line into
n discrete cells. The size of a cell is taken todeThus,n
Oth Cell (n-1)th Cell =7/\23. A phase pomt _|n|t|all_y at théth cell can scatter
by the extrinsic noise either into thek{ 1)th or the k
FIG. 2. Sketch of the partitioning of a tile into cells in the ~ —1)th cell after one rotation. In Fig. 2 the zeroth cell corre-
u=v direction. sponds to the center of the unit tile, which is on contact with

a perfectly reflecting boundary. Tha{ 1)th cell represents
whereN, is an average number of mapping steps per comthe last one before detrapping into the neighboring tilth (
plete rotation within the tile in the absence of extrinsic noise cell): Thus, thenth cell itself is an absorbing boundary.

For an estimate ofl, we can use the following argumentin ~ We now evaluate the average detrapping time from a tile.
terms of the normalized action, which goes from zero on The relevant quantity here is the mean number of rotations
the separatrix to unity at the tile center. Ne&r 1, we have  Cy before the phase point hits the absorbing boundary into
a regular rotation around an elliptic fixed point. Thus, thethe nth cell starting from thekth cell. Transition probability
period isN(w— 1)=7/K. N increases monotonically asis  to the right(left) cell is denoted ap(q). Let P(T|s=k) be
reduced. According to Ref[5], this rotation period ap- the probability for the phase point initially at ttkth cell to
proachedN,=2(2— Inw)/K near the separatrix, where it ex- reach the absorbing boundary aferotational steps. The
hibits logarithmic divergence due to hyperbolic fixed points.recursion equation fo€, (1<k=n-—1) can, then, be ob-
For a qualitative averaging between these two behaviors dfined as follows:

N, we simply take the value dfl, far away from the sepa-

ratrix [ N,(w—1)]: *

cszzl P(T|s=Kk)T

No=4/K.

Substituting thisN into Eq. (6), we obtain = T[pP(T-1|s=k+1)

T=1
3 =2l/K2, 7)
+qP(T—-1[s=k—1)]
Since the radial size of the tile is#/\2 in theu+ov °°

direction (see Fig. 1, there can be two different diffusion =p2 TP(T—1|s=k+1)

regimes depending upon the magnitude Xfrelative to T=2

wl\2. If 3>x/./2, the extrinsic noise can detrap the phase »

point out of a tile before the completion of an internal rota- +q>, TP(T—1|s=k—1)

tion. If S<m/\/2, on the other hand, a phase point experi- T=2

ences many rotations before detrapping. For convenience, we
define a normalized parameter for the extrinsic noise
strength:l = (2+/2/7) (1/\K). In the high extrinsic noise re- =1+pCri1+9Cy_1, (9)
gime characterized bl>1, the qualitative evaluation of the

diffusion coefficient is trivial. Since the radial step skeer  wherep+q=1 and=7_,P(T|s=k=*1)=1 have been used.
rotation is greater than the tile size, the regular rotation moUnder the appropriate boundary conditio,=0 andC,
tions and tile structures are destroyed by the extrinsic noise= 1+ C;, the general solution to Eq9) is obtained as fol-
The global diffusion in this case is basically set by the largows (see the Appendijx

individual random walks per mapping step, driven by extrin-

=p[1+Cyy1]+a[1+Cy 4]

sic noise. Neglecting the intrinsic kick effect in the mapping 2 q\"t (g\k n—k
equation(1), the square of the random walk size per mapping —2[ (—) - ( —) +——, p#(q
step is @r)%=(8u)?+ (6v)?=u?+v?, yielding the diffu- c.—| (1-d/p) P P P—q
sion coefficientD, in the l-dominant regime as K 1
n?—k?, p=q=5.
+1
D|:<uf+u§>,,/2:(|2/2)f ) dyn?=123, (8 (10)

) o Since the extrinsic noise in the present work does not prefer
where is a homogeneously distributed random number berignt from left, we usep=q=0.5, thusC,=n2—K>2.

tween=*1. A For a time asymptotic behavior, we need to consider the
In the small extrinsic noise regimé<1 (equivalently, trapping time of a newly migrated phase point starting its
S <m/\2), the diffusion process is dictated by the regularactivity within the tile at the §— 1)th cell. Thusk should be
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g 100000 . . . . instead of assuming the individual mapping step to be the

E basic unit as done in Reff5]. In the present work, the rota-

o 10000 £ 3 tion time N, the step size, and the tile-to-tile crossing

A 0. probability are all functions oK; thus, the resulting-,, and

g 1000 F . Dk have to be functions k. In Ref.[5] all these physical

© quantities were independent &f. We find that the com-

It 100 b i pletely random walk behavior between every mapping step is

rz only satisfied in the regime>1 where the tile structures are

& 10 F 4 destroyed by the strong extrinsic noise, yieldbg 2. Ref-

H erence 5] did not investigate this regime, however.

o 1L i The proportionality constant foDx in Eq. (12) can be

o) further improved by considering the directional correlation

£ 0.1 ! . ! . effect for the tile to tile transition, which arises from the fact
0.001 0.01 0.1 1 10 100 that the probability for the exit direction out of a tile is cor-

1 related to the entrance direction into the tile and the rotation
direction of the phase point within the ti[@¢0,11. This ef-

FIG. 3. The average detrapping timg, in a number of map-  fect usually enhances the numerical coefficient somewhat
ping steps as a function of the noise magnitudgumerical simu-  with a correction coefficient of order unity, but does not alter
lation results are marked witk . The dashed and dotted IinesA are the diffusion scaling. Thus, for a qualitative analytic study in
from the fitting 2.43:/I /K and the arrows indicate the positibn  the present work, such an elaboration is not necessary and
=1. will not be included.

n—1 andC,_;=2n—1=2n=.27/3. The average trap-
ping time 7, in a tile is, therefore, given as

224 (2
Tay=Cn-1No= TNOZZT K

IV. COMPARISON WITH NUMERICAL SIMULATION
RESULT

/ . - .
vz In order to verify the validity of the analytic results, the

discrete mapping equatiai) is studied numerically. Since
all the phase space is interconnected by the extrinsic noise,
Before proceeding to the evaluation of the diffusion coeffi-the global diffusion coefficient is measured by breaking a
cient, a numerical calculation of,, is performed in order to  single orbit intoN pieces and giving each of thefrmapping
check the accuracy of the analytic expresgibh). The result  steps. Thus, the total length of the single orbitNg. Nu-

is shown in Fig. 3. Thet marks are numerical simulation merical diffusion coefficient inr =(u?+v?)¥? is then ob-
results forK =0.01,0.1,0.3. The abrupt change of the numeri-tained from

cal 7,, behavior around=1 (indicated by the arrowssup- N

ports the validity of thel parameter. The simple analytic 11 2 13
prediction of Eq.(11) is shown as straight lines with a con- Dr=37 N & T 13
stant multiplication factor of 0.86, showing an excellent fit to

the numerical result in the small extrinsic noise regimeHere, T must be sufficiently large to ensure that the transient
(T<1). With this confidence in the averaged theory, we nowbehavior dies out, an8ll must be large enough to provide
estimate the radial diffusion coefficiem in the regime meaningful statistics. Th& and N values are chosen after
<1 using a random walk argument. The step size in thi€omparison with a time-dependent diffusion coefficient ob-
diffusion is the distance between the centers of the neighbott@ined by distributing initial phase points, of N separate
ing tiles in thed+o direction, y27, and the random walk phase points uniformly in a t|Ie, and following each orbit for
time is 7,, . Thus, we have a sufficiently long time period’:

fw)

13

N
Dy —(77/2()|f (12 D(T")=— 2 (7 —Ti02 (14)

Notice here that the diffusion coefficient in EG2) is a  |f we can observe that the equilibrium diffusion coefficient
function of not onlyl, but alsoK, as the numerical simulation D, from Eq. (13) agrees withD(T) from Eq. (14) for the
showed. On the other hand, the crude analytic theory presiowest diffusion process involved in each plsmallestl
sented in Ref[5] had thel dependence onlyY=l) even  andK case, then we assume that the transient behavior has
though both results are obtained in the same regirié died out in the single orbit method, E(L3). As a result of
characterized by fast particle rotation within the tile com-this exercise, the values of and N are chosen to be
pared to the extrinsic noise strength. The critical differencel 000000 and 5000, respectively, for all the plots in the
(and a significantly improved understandiriggre is that the present work unless otherwise specified. Figure 4 shows an
fast rotation of the particles within the tile makes the rotationexample of the time dependel(T) from Eg. (14) for
to be the basic unit of random walk in the present work,N=5000 and =0.005. It can be seen that the transient be-
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0.01

0.008 |

0 L ! ! !
100 1000 10000 100000 1x10°
time, t

FIG. 4. Time dependence of the diffusion coefficients
(radiarf/mapping step) from Eq14) for 5000 initial phase points
distributed uniformly in the square region€u<m, O<v=<m). |
is set to 0.005.

havior lasts longer for smallé¢, but by the timeT = 10° the
diffusion coefficient is safely in steady state for both cases.
In Fig. 5 the numerical diffusion coefficient with#0 is
plotted with ¢ marks, with the fitting 1.76/K shown in
solid lines based upon the analytic expression, (Eg).. Ac-
tually the fitting result 1.76/K is somewhat greater than the
prediction given by Eq(12) (Dx=1.11K), not a surpris-
ing discrepancy when we consider the neglect of correlation
phenomena in the transitional process between neighboring
tiles as mentioned in Sec. lll. In this plot the deviation of the
numerical curves from the fitting lingst highK values are
due to the onset of the stochastic web diffusion of Exj.
The dotted line with+ marks shows the global web diffu-

1 : :
_§>
T
0.1 M
=0.05 i
0.01 | 2
’ [ =0.005
0.001 | =0 ;
;
0.0001 | 1
1x10° S
0.1 02 03 0405 07 1

K

FIG. 5. Numerical diffusion coefficients (radfmapping step)
versusk. The numerical points marke¢t are obtained by follow-
ing one orbit for a long time (%10%) in the presence of the ex-
trinsic noise. The curve witht marks is the web diffusion, ob-
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0.1} e
D,
&
Fel
0.01 : '
0.001 0.01 0.1
K

FIG. 6. Plot of the numerically obtained diffusion coefficients
(radiart/mapping step, represented Ky) versusK for two differ-
entl values(0.3 and 0.5 The horizontal lines are drawn according
to Eq. (8) for i>1. Fori<1 (the greateK region the lines are
from 1.76 VK as in Fig. 5.

-20

-10 F

> -20 |

_30 -

-40

-50

-50 -40 -30 -20 -10 0 1 20

(b)

u

tained numerically without extrinsic noise by averaging over 5000 FIG. 7. One patrticle trajectory under the influence of extrinsic

phase points uniformly distributed in the square regiors (G< 7,
O<v=). Two solid lines are from 1.7§K.
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@ 100000 direction. This phenomenon can be easily understood from
E the conditionu,=v, that the phase points are difficult to
o 10000 F ] cross the constant Hami_ltonian separatni{x,—u= const.
5 0. Thus, the tile-to-tile transitions should be highly anisotropic,
& severely restricting transitions in the directibunév <0. Fig-
® 1000 f 3 ures 8 and 9 show that,, is enhanced an® in the r
§ =u?+v? direction is reduced by the condition,=v,

i i when compared to the same cases ungerv, . This phe-
v 100 .
o nomenon can also be understood easily from the fact that the
o conditionu,=v, reduces the random walk in th#&idv <0
s 10 E direction, thus, the contribution t& is also reduced. This
o makest,, greater andD smaller. However, if we evaluate
& 1 . , . , the diffusion in the unrestricted direction only, the diffusion

0.001 0.01 0.1 1 10 100 coefficient is not reduced.

We note here that the coherent extrinsic naise v, does
not change the basic scaling of the diffusion process from the

FIG. 8. The same case as for Fig. 3 except thatv, is used in  incoherent noise case#v, : In both cases,, andD have
Eq. (1) for the numerical evaluation af,, in a number of mapping the same dependencies krandl. If we switch the phase of
steps. The dashed and dotted lines represent 2.48m/1 /K. the coherence to, = —v, , then the direction of the diffusion

is now switched to théu v <0 direction. The highly direc-

sion without the extrinsic noise, with the initial phase pointstional nature of the diffusion in the coherent noise case can
distributed uniformly over the entire tile, which verifies that be an important effect in a physical situation where the two
the deviation from thé K behavior at the highk values is  directions have different meanings.
from the web diffusion reduced by the area ratio of web to

tile. Transition into the regim&>1 cannot be seen in Fig. 5, VI]. CONCLUSION AND DISCUSSIONS
but is shown in Fig. 6. Here again the numerical results agree

well with the analytic predictions, i.eDx=1.11 K of Eq. In the present work, analytic understanding of the extrin-
(12) andD,=12/3 of Eq. (8). sic noise effect on a nonlinear dynamical system is reported

by adding random noise terms to the kicked Harper map,

where the phase space is divided into infinitely periodic two-
V. COHERENCE IN THE NOISES dimensional tiles. This problem has previously been studied
numerically in the literature. However, the analytic under-
n§tanding has been rather incomplete. It is shown in the
present work that there are clean and simple ways of explain-
ing the extrinsically driven diffusions in this physically im-
portant system.

The extrinsic noise performs three functions: First, it in-
terconnects all the regions in the phase space. The divided
spaces are no longer isolated. One significant consequence of
this function is the slowing down of the stochastic web dif-
fusion rate, when it provides the dominant global diffusion
process, by moving the phase points in and out of the fast
web diffusion region. This has been pointed out by previous
numerical studies. Second, it makes the phase points stray
off the regular constant Hamiltonian paths if the intrinsic
stochasticity is not present. When the extrinsic motion be-
comes dominant over the regular rotation motions, the exis-
tence of the phase-space tile structures is destroyed and the
diffusion becomes of the well-known random walk type
(«12). When extrinsic motion is only a perturbation to the
regular rotation motion, the diffusion closely obeys all the
rules set out by the properties of the mapping including the
rotations along the KAM curves in the tile and periodic two-

. ‘ . dimensional array of tiles. Third, it forces the phase points to
0.1 0.3 05 0.7 0.9 make transitions to the neighboring tiles, making the random
' ' R walk size as large as the tile size. This gives a tremendous
K enhancement of the global diffusion rate over the intrinsic

FIG. 9. Numerically obtainedD, (radiar?/mapping step). diffusion rate when the intrinsic perturbation is small, and

Slightly higher diffusion is obtained fau, #v, . yields diffusion of the type Dol K).

1

In some situations the random extrinsic noisesanduv,
can originate from the same physical event and be cohere
In order to model this situation, we set=v, and compare
the result with the previous cases whegeandv, are com-
pletely uncorrelated. Figuregaj and 1b) compare the tile
to tile transition processes far,#v, andu,=v,. Transi-
tions are close to isotropic far,#v, in Fig. 7(a), but are
highly directional foru,=v, in Fig. 7(b) to the dudv>0

1 . —

0.1¢

0.01

0.001
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Depending upon the relative strength of the extrinsic 1 1 d?Cy
noise to the intrinsic perturbation, we have defined three dif- ~1=5(C1=2C+ Ch-1)= 5 7
ferent diffusion regimes. The above properties combine to-
gether to give distinctive diffusion property in each of these
regimes. The analytic understanding presented in the presen
work compares excellently with the numerical results in the
literature or in the present work.

In addition we have examined the case when the twq
noises in each of the two dimensions are from the samdN® boundary cond|t|on§: =0 and Co=1+C, then re-
physical source and are strongly correlated. We have showfiire B=0 andA= n® to y|e|d the solution
that the diffusion becomes highly anisotropic, but keeps the )
same basic scaling laws as the case with uncorrelated noises. C=n’-~k? for p=qg=1/2. (A2)
This problem can be important in a physical situation where
the extrinsic noise is from the same physical source and the In the casep#q we decompose the solution to E@)
two directions have different significance. into a homogeneous solutiody =pCj',; +qCi_; and the

The correlation effect over the consecutive transitionparticular solutionCf . The homogeneous solution satisfies
steps between neighboring tiles has not been included in thfde homogeneous equation
present paper, which aims at qualitative results. This corre-
lation effect can make a minor improvement on the magni- C/=pC ,+qCl ;.
tude of the diffusion coefficient when the diffusion process is
dominated by the small perturbation of the regular rotationf we Iook for a solution in the fornCH'=X¥, we have an
motions along the constant Hamiltonian curves. equation forX,

It is interesting to note that the observations made here
based upon the kicked Harper map can be connected to the PX2—X+q=0,
passive particle(e.g., dye particlestransport in a two-

Qimensional periodic Iar_ningr convective _flc(vxellular flow) which yields two independent solutions=q/p and X=1.
field such as the Rayleigh-Bard convection cell. In terms Thus
of the Peclet numbeP=vd/D,, [wherev is the flow veloc-

ity in a convective celld is the characteristic cell size, and

D, is the local (or moleculay diffusivity originated from
fluctuations or collisionpwhich measures the relative impor-
tance of the convective motions compared to diffusion, thel "€ Particular solution is obtained from

global effective diffusion coefficient in the large space-time b b b

scale has been knowji2—14 to be ~D,PY2 Since our Cr=1+pCyi1+taC g,

noise coefficient and perturbation parametrcan be inter- _ _ _ _ _

respectively, it can be seen readily that our formulay/K,

tgeneral solution is

Cy=A+Bk—Kk>2.

Cll=(q/p)* or 1.

which can be translated to be valid in the large Peclet num- dZCP +( )dCP t1-0.
ber limit, is similar to the scalingD ,P¥?=D\vd/D, Pz TP

%D \v.

The particular solution to this equation is
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search Institute, BK-21 Program in Korea and by the U.S. After combining the homogeneous and patrticular solu-
Department of Energy. tions into

APPENDIX: MEAN NUMBER OF ROTATIONS Cy=A(a/p)*+B—k/(p—q)
BETWEEN TILE TRANSITIONS
and applying the boundary conditiors,=0 and Cy=1

The mean number of regular rotations of a phase pomt L. C,, we obtain

between two consecutive tile transitions is given as the solu-

tion to Eq.(9),
+n;k for p#q
p—q '

(A3)

2 q n+1 q k+1
amrllsl 1o
Cyk=1+pCys1+qCy_1, (A1) (1-a/p)?L\P P
which is nothing but an inhomogeneous difference equation.
In the casep=q=1/2, the solution is simple: The above Equations(A2) and (A3) are the two components of Eq.
equation becomes, after a trivial rearranging, (10).
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