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Characterization, dynamics and stabilization of diffractive domain walls and dark ring cavity
solitons in parametric oscillators
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Mean field models of spatially extended degenerate optical parametric oscillators possess one-dimensional
stable domain wall solutions in the presence of diffraction. We characterize these structures as spiral hetero-
clinic connections and study the spatial frequency of the local oscillations of the signal intensity which
distinguish them from diffusion kinks. Close to threshold, at resonance or with positive detunings, the dynam-
ics of two-dimensional diffractive domain walls is ruled by curvature effects wittf%agrowth law, and
coalescence of domains is observed. In this regime, we show how to stabilize regular and irregular distributions
of two-dimensional domain walls by injection of a helical wave at the pump frequency. Further above thresh-
old the shrinking of domains of one phase embedded in the other is stopped by the interaction of the oscillatory
tails of the domain walls, leading to cavity solitons surrounded by a characteristic dark ring. We investigate the
nature and stability of these localized states, provide evidence of their solitonic character, show that they
correspond to spiral homoclinic orbits and find that their threshold of appearance lowers with increasing pump
cavity finesse.
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I. INTRODUCTION local oscillations are present. Such damped oscillations do
not appear to affect the behavior of two-dimensional diffrac-
Mean field(MF) models of degenerate optical parametrictive DW close to threshold where the dynamics of domains
oscillators(DOPO have become the prototype for the study of one phase embedded in the other follows the stantiérd
of spatial structures in the presence of quadratic nonlinearigrowth law[4]. This is typical of phase separation in systems
ties and diffraction. Patterdd,2], domain walls|3-5], and  Where the order parameter is not conserved. The second prin-
localized statef4—7] are just a few of the structures recently Cipal aim of this paper is to present a neat arrangement which
observed in mean field DOPO. Studies of these structuredtilizes a helical pump field to trap and stabilize DW close to

have been complemented by numerical searches in non-MiEreshold along the azimuthal angle of the signal field. Fur-
models which have confirmed their structural stabifigj. ther above threshold the shrinking of domains in the doubly

Since MF models allow for analytical studies that are impos-reson?l_?]t Dﬂ? ZO IS St?';?ed by th_e zorrgatlonbof cavity ‘;’?r']
sible in non-MF equations, we focus here on the characteroNS: The third aim of the paper Is to describe some of the
ization of spatial structures in MF equations for the DOPO_propertles of these solitons and investigate their existence

Direct experimental evidence of many of these structures irz]ind stability as a function of the control parameters.
P y The paper is organized as follows: The behavior of one-

continuous wavecw) DOPO devices is still lacking but re- - yiensional1D) DW in DOPO is addressed in Sec. II. We
cent developments in the use of large quadratic nonlmeantlelgoint out the possibility of transitions between oscillatory

is promising[9,10], especially for the plane mirror cavities 5nq monotonic behavior in the tails of the DW and present a

which have been used in theoretical treatments and numeriyymerical evaluation of their width. Sec. Il is devoted to the

cal simulations. two-dimensional dynamics of DW in DOPO close to and
In this paper we focus on the characterization and dynamaway from threshold. The stabilization of DW in the azi-

ics of domain walls(DW) separating two homogeneous muthal direction of a DOPO pumped by a helical wave of

states of the DOPO. Such DW were first described in MRopological charge- 1 is discussed in Sec. IV while the dark

DOPO models by Trillo, Haelterman, and Sheppl@bwho  ring cavity solitons and their stability are analyzed in Sec. V.

focused mainly on the one-dimensional transverse case aiWe also demonstrate by a symmetry argument that DW and

stabilized a two-dimensional DW structure numerically bydark ring cavity solitons of the degenerate OPO may not

means of Neumann boundary conditions. Later we showedurvive in the nondegenerate case where the frequencies of

that in the two-dimensional case, at resonance and for posihe signal and idler fields are substantially different from

tive detunings, domains of one homogeneous phase embeéach other. Section VI contains conclusions and future direc-

ded in the other shrink to either zero area or to peculiations.

localized states characterized by a peak of signal intensity

surrounded by a dark ringhe remains of the DW when Il. ONE-DIMENSIONAL DOMAIN WALLS IN MEAN

close to or far from threshold, respectivél]. The first aim FIELD MODELS OF DOPO

of this paper is an examination of DW in DOPO at resonance

and for positive detunings. Close to resonance, diffractive The mean field equations for a phase matched DOPO

DW in DOPO differ from diffusive DW as observed, for where both pump and signal fields are resonddolibly

example, in real Ginzburg—Landau equations, in that spatialesonant DOPQDRDOPO, see Fig. 1a)] are[1]
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Ix A1:<5)(_A1_|A1A1+EA’I_A1|A1|2)- (4)

Below the threshold for signal generatioB< \/1+A21) the
homogeneous solutioAg=E and A;=0 is stable. Above
this threshold and for positive and zero detunings the DOPO
equations admit two additional steady state homogeneous so-
lutions given by[3]

AS=E—(A})?,

1/2
=+ el ®)
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s__ S
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FIG. 1. Schematic ofa) the doubly resonant angh) the singly | =|AS|2= g2= JEZ_ A2
; ) - s=|Aj|*=0°=JE*—AT—-1,

resonant degenerate optical parametric oscillator.
whereo>0 and§ are, respectively, the modulus and phase

ia s
Iho=T[—Ag+E—AZl+ = V2A, of A; and

2

(1) e oo cf_>. I
GA1= —Ar—iAA +AAT +iaV2A, sin(5—26) <2E sing, B=argl—iA;). (6)

where we consider the pump detunitg to be always equal In the phase spgce of Efq(gzj an(_j (4) the Eomogene?gs
to zero unless specified otherwise. For the singly resonantates correspond to two fixed points. For the cases of inter-

DOPO (SRDOPQ where there is no optical cavity for the €St nere, Trillo, Haelterman, and Sheppgsfifound numeri-
pump field[see Fig. ()] the mean field equation for the cally that a DW solution connecting the two homogeneous
resonated signal field j&.1] states(5) is stable in 1D. They also showed that in the limit

of large pump detuningéhere set to zepp Eq. (2) reduces to
modified nonlinear Schdinger equation and the DW solu-
tion to the standard hyperbolic tangent profid. Such so-

. : . , lutions correspond to heteroclinic connections between the
The slowly varying amplitudes of the pump and signal fields,

d db d velv. the (i has b two fixed points in the phase space of the fields and their
are denoted by, and A, respectively, the time has been spatial derivatives. We show examples of projections of
normalized by the photon lifetime in the signal cavily,

- i ) . these heteroclinic connections in Fig. 2 for both doubly and
=o/71 is the ratio between the pump and signal cavity iy resonant cases. Note that in the singly resonant case,
decay ratesE is the amphtuqe of the external pump field \yhere pump diffraction is neglected, the DW oscillations are
(here assumed to be rgal, is the signal detuning, and  ;ch smaller. Solutions of the steady state equatiBnand

=l y:k, is the diffraction parameter witle the speed of 4y can be found numerically with any required accuracy and

light andk, the longitudinal wave vector of the pump field. can pe tested for long term stability via the algorithms speci-
Since in the following we will change the ratio between thefieq in the Appendix. We stress here that the presence of

cavity decay rates, we write the equations without the usug}eteroclinic and homoclinic solutions in the DOPO is non-

normalizations of the diffraction coefficients withy andy;  trivial. In fact, if we compare Eqg4) for A;=0 with their
[1]. The LaplaciarV?= d,,+ d,, reduces tajy, in one trans-  yifusive counterpart
verse dimensioii1D).

A =—A—iA A +EAT —AL|A|2+iaV3A,. (2

1
N _ * 2
A. Spatial equations for DOPO steady states o (a) (A= EAT+AA[%) @)

and oscillatory tails

In 1D all steady statetable and unstabliave to satisfy studied, for example, in Ref12], we note that the real and

ordinary differential equations containing spatial derivativesimagmlry parts of; cannot be trivially decoupled, as they
For the DRDOPO the equations are can in(7). Setting the imaginary part &%, equal to zero in

the diffusive case reducdg) to an equation governed by a
i simple quartic potential which admits well-known hetero-
aXXAoz(—)(—AOJr E—Af), clinic solutions. Such a simple decoupling, however, is not
a possible in the diffractivé DOPO case and the heteroclinic
) orbits of (3) and (4) cannot be associated with the presence
of a quartic potential in any simple limit of these equations.
We note that wherk ; =0, the two stationary solutionss;
are purely real and the DW which connects them manifests
while for the SRDOPO the equation is itself primarily in the real partR, of the fieldA;. In contrast,

[ .
IxxP1= (5)(_A1_|A1A1+A0A’f)
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the imaginary partS, of A, is zero except in the sharp tran- fold of O in a point which moves toward® under the time
sition region between the two homogeneous solutidig.  evolution. This point, wheré;—0 ast—o, corresponds to
2). WhenA,#0 the phased, of A} is nonzero and the DW the center, or “core,” of the DW defect. We note, however,
is now observed in the componentAf which has the same that in the DRDOPO case the pump fidlg is different from

phase as the twA3. Thus, if we write E (its stationary value below threshgldt the center of the
DW. Such an effect is due to the presence of the pump dif-
fraction.
A;=R+iS=(U+iV)e'’ (8) A DW approaches one homogeneous solution asymptoti-

cally asx— + and the other solution as— —o. Let us

with U andV real, then the field) shows the DW while/is ~ focus on the DRDOPO and rewrite syst¢@ as
essentially zero. The fieldd andV reduce toR and S re-

spectively, whem\, and hencd, is zero. The fact that both IV =NV), 9
components of the signal field are zero at the center of these

The idea that an unstable solution lies at the core of gector-valued function o¥/. We denote the linearization of
defect{13] can also be used to explain the fact that=0 at  ha gperator\ around a homogeneous, fixed point solution
the center of the DW. To illustrate this, consider E{3.for by £: that is, £ is the Jacobian ol evaluated af\S. Then
the DRDOPO, without diffraction and witth; =0. Above =, hahavior of the tails of the DW depends on the nature of

threshold, the resulting four-dimensional dynamical system — _ | /= . : :
has three fixed-point solutions, corresponding to the three!* — \/A—J where{A,} are the eigenvalues df. Since

homogeneous solutions of Ed4): P, with Re(A;)>0, P,

with Re(A1)<0 andO with Re(A;)=0. The stablle manifold V=V homog™ 2 aj W exg (\j2)x], Xx—o
of O is the surface Re&{(;)=0. The stable manifolds d?, ReAj+ <0

and P, are the half-spaces R&()>0 and Ref;)<0, re- (10
spectively. A continuous function ofrepresenting an initial

condition of(1) is mapped onto a one-dimensional manifold where the{W;..} are eigenvectors of, {«;-} are complex
in the four-dimensional phase space. A 1D manifold lyingconstants an¥,mq4is the stationary homogeneous solution,
entirely in the half-space R&¢)>0 [Re(A;)<0] evolves complexA;. imply the possibility of oscillations in the tail
towards the solutio®; (P5). A 1D manifold which crosses of the DW; while monotonic behavior requiréalthough is
from one half-space to the other intersects the stable manirot guaranteed hyat least one pair of purely real.. .
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We remarked previously4] that at resonanceA(; =0)

; ' . 5001 .
the DW have oscillatory tails for every value of the input (a)
pumpE and in both the DRDOPO and SRDOPO cases. This - :
is due to the fact that the;.. are always complex. Here we sl Domain Walls with k

point out that for any value ok ;>0 real eigenvalues can be ) Oscillatory Tails
found and that hyperbolic tangentlike profiles for the DW, =
with no oscillatory tails, are possible. For simplicity we start
with the SRDOPO case. Tedious but straightforward algebre 300
shows that DW have nonoscillatory tails whenever the fol- E
lowing inequality holds:

2,00 -

VI+AZ<E<iy2+5A2+2\1+A2 (11 i

In fact, when(11) is satisfied, two eigenvalues; are purely L0 "
real, with opposite sign and with magnitude equal to

\/g[Alt\/ms(lHS)—Ai]“Z (12) 000t ; ; ; — L]

while the other two are purely imaginafgorresponding to Al
pure rotations in the phase spac€he real positivgnega-
tive) eigenvalue corresponds to the unstatdtable direc-
tion of the homogeneous fixed points and the heteroclinic 120} -
trajectory representing the DW does not spiral around the
fixed points. Figure @&) shows the region of nonoscillatory

DW for the SRDOPO model in theE(A ;) parameter space. 1.00 -
Above the onset of oscillatory tails for the DW, we can u
evaluate the ratid@Q between the oscillation frequency and

Below Signal Threshold

the decay(growth) rate of the stable DW tails for different 0.0 I
values ofE andA; Q - -
5 0.60 .

0 Valg(ls+1)— A7 13
A+ Al (Ig+1) osol. |
The ratioQ is plotted as a function dE for different values n _
of A; in Fig. 3(b). Clearly the maximum value for the ratf@ 0201 i

is one and is obtained at resonance for any value of the

external pumyk or for large values oE off-resonancéposi- ~

tive detunings Since the existence of the dark-ring cavity 9l

solitons discussed in Reff4] and below is associated with

large amplitude oscillations of the DW tails which in turn

can be obtained only for large values of the rafiowe can E

infer that dark-ring cavity solitons of the kind discussed here

are unlikely for the SRDOPO model. To conclude with the FIG. 3. (8 Par_ameter region of oscillatory gnd nonoscillatory

SRDOPO case, we note that very close to threshold the bdails for the DW in the SRDOPO(b) The Q ratio between the

havior of the local oscillations is similar to what is observeg@Psolute value of the imaginary and real parts of the complex ei-

for a Swift-Hohenberg equation for one real fidkke Ref. genvalues versus the_ input punip The horizontal curve corre-

[2] and Sec. IIl. Although localized structures have been SPONdS t4:=0, the rightmost curve td,; =8.0.

observed in a Swift—-Hohenberg model far from threshold

and for negative detuning®,14, this is far from the regime regions where either oscillatory or nonoscillatory DW are to

where such an equation reliably describes the behavior of thiee expected for different values of the time scale rhtidhe

SRDOPO with positive detunings. eight eigenvaluesand eigenvectojscan be separated into
The DRDOPO case does not allow for a picture aboutwo classes; the firgisecond class comprises the eigenval-

oscillatory and nonoscillatory tails of the domain walls asues that do(do noy have a counterpart in the limit of the

clear cut as the one obtained for the SRDOPO case. This SRDOPO equation, obtained by lettifiggo to infinity. It is

due to the fact that the spatial stability analysis involveseasy to show that the four eigenvalues of the second class

eight eigenvalued ; whose analytical expressions are far too (intrinsically due to the presence of a pump equation and

complicated to be reported here. However, by studying theipump diffraction are always complex for any value Bfand

behavior in the E,A,) parameter space, we can still identify positiveA,. However, close to threshold, the spatial dynam-

| I | | I I 1 I
000 200 400 6.00 800 1000 12.00 14.00
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ics given by Eqgs(3) is dominated by the first class of eigen- , ' ' ' ' ' ' '

. 400
values where changes from purely real to complex eigenval- L (a) -
ues can still take place. We expect nonoscillatory DW in 360 =
DRDOPO to appear only below the dashed line in Fig).4 120

This line has been obtained by either locating a transition
from purely real to complex eigenvaluégdetuning smaller 2.80
than 1 or a transition from a regime dominated by the first
class of eigenvalues to one dominated by the complex eigen
values of the second class. The latter transition is cIearIyE 2.00
detectable in the behavior of the eigenvalues by the presenc
of a cusp point when increasing the pump vall@etunings 1.60
larger than 1 Unlike the SRDOPO cadeee Fig. 8a)], the
separation line between nonoscillatory and oscillatory DW of
Fig. 4@ is now just an estimate and not an exact result since 0.80
for any value of the parameter&(A;) of the DRDOPO
there is at least one complex eigenvalue. Such an estimate
however, agrees very well with the numerical results and car 0.00
be used as an excellent guide to the character of the DW ir
DRDOPO.

Above the dashed line of Fig.(@, the second class of 1
complex eigenvalues governs the spatial dynamics of the
DW. Figure 4b) shows the ratidQ between imaginary and |
real parts of the significant eigenvalue belonging to the sec- 4'00: (b) ]
ond class. We stress here that such a class of eigenvalues h 3.60 - i

Domain Walls with
Oscillatory Tails

240

1.20

0.40
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=
=
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—_
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=
S
[
wn
o
w
=3
S

no counterpart in the SRDOPO case since they move pro - A = 0 A
gressively away to infinity for larger and larger values of the 320 1 ]
ratio’= yo/7y;. In contrast to the SRDOPO calddg. 3b)], 280k 4

Fig. 4(b) shows that spatial oscillations of DW can grow
substantially in DRDOPO since the maximum value(pis Q 2.40
not constrained to be equal to 1. It is such large amplitude
oscillations close to the boundary of the domain walls that
allows for the formation of the dark ring cavity solitons dis- 1.60
cussed in Sec. V. The interaction of large amplitude oscillat-

2.00

ing tails of the DW leads to the stabilization of homoclinic 1'20: i

orbits with signal intensities much greater than the homoge- 0.80 4

neous value. 2 8

0.40 - s

B. Effective width and pairwise interactions 0001 | | | ]

. . . . o 00 2.00 3.00 4.00 5.00
Strictly speaking, the “width” of a domain wall is infi- : E

nite. We can, however, try to quantify the sharpness of the
transition between the two homogeneous solutions in a fairly 5 4. (a) Approximate separation between parameter regions

simple way. _ of oscillatory and nonoscillatory tails for the DW in the DRDOPO
To compute the width of a DW, we calculate the slope oftor =1 (b) The Q ratio between the absolute value of the imagi-

U [Eq. (8)] at the center of the DWX=X.), whereU is zero.  nary and real parts of the complex eigenvalues. The leftmost curve

We then extrapolate linearly in each direction, for a distanceorresponds ta\; =0, the rightmost curve ta,;=3.0.

Ax/2, until we reach the appropriate homogeneous solution,

US. The width of the DW is then taken to be -1

d|A,|

AXmod™ 2|Al|s dx

(15

-1

X=X

C

du
Ax=2US

Ix (14

X:XC

This definition includes the contribution to the DW width of

the fieldV, which can be different from zero in the vicinity
An alternative definition of the DW width can also be given of the point where the signal intensity is zero. The difference
in terms of the signal amplitude. We calculate the slope obetween the two measures of DW width, however, is found
|A4| at the point where it is zero, which corresponds to theto be on the order of 2% at most. We will therefore use the
center of the DW, and extrapolate linearly for a distancedefinition (14).
AXmod2 until the homogeneous solutidi|® is reached. DW solutions to Eqs(1) or (2) can be obtained by inte-
Thus grating the partial differential equations directly using a
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somewhat different. Again, for sufficiently large separations,
each DW is essentially independent: the distance between
them can be increased or decreased with no apparent con-
straint. The method described in the Appendix allows for the
evaluation of the Jacobian of Eq4) at a stationary solution
consisting of a pair of widely separated DW. Such a Jacobian
has two zero eigenvalues: one corresponding to an overall
translational invariance of the solution, and the other, to a
relative motion of the two DW.

The presence of two zero eigenvalues remains true until
the DW are close enough for their oscillating tails to interact.
When this happens, a locking phenomenon occurs which
permits only a discrete set of stationary DW separations.
Some examples of the resulting structures together with the
largest of the nonzero eigenvalues of the equations linearized
about each solution are shown in Figga)6-6(f). For any
initial condition with a given separation of DW with oscilla-
tory tails, the distance between the DW relaxes to the closest
of these equilibrium values. No coarsening process is ob-
served. Similar behavior has been noted in other systems
[17] where pairs of spatial solitary waves or fronts between
homogeneous solutions are known to be stationary at posi-
tions where the maxima and minima of their oscillating tails

split-step spectral methdd.5], where the diffractive terms app.roximat_ely coincide. Demonstrations of the existence of
are handled by an FFT and the remaining terms by a fourth@" interaction pqtgntlal between fronts, hovyever, are only
order Runge-Kutta technique. Such a method is Cumbe,possmle in the _I|m|t of _small amphtu_de spatial os_cnlatlon_s

some, requires a lot of CPU time and allows for the analysi€nd long-range interactions and only in systems with a varia-
of stable DW only. Alternatively, the method described in tional structurg[17]. Nevertheless, the phenomenon appears
the Appendix which computes stable and unstable stationa’ P& general even when an explicit potential function is
solutions of Egs(1) or (2) can be used. With either method, dnobtainable. _

the computed solution is the same if the DW solution is Compare Fig. 6 with what happens when the DW have no

stable. The width of the DW can then be evaluated numerioscillating tails. Guided by the results of the preceding sub-
cally according to Eq(14). section, we have increasey} in Fig. 7 to the point where

As an example, Fig. 5 shows how the width of the DW in the spatial oscillations disappear. The result is that the DW
the DRDOPO varies with the detuninty, and the external approach each other and annihilate, without any intermediate
pumpE. Moving away from threshold, DW with or without stationary stat¢18]. (Note, however, that two DW must be

oscillatory tails progressively narrow. Far from threshold, theV€"Y close to each other in order for their weak interaction to
width of the DW tends to remain almost constant for a wideinduce_motion within any computationally tractable time
range of values of the detuning and pump parameters. Sin&Pan- This is compounded by the effect, mentioned previ-
away from resonance DW with nonoscillatory tails appear©US!y, whereby the spatial discretization may force the inter-
only close to threshold, DW with oscillatory tails are nar- aCtion t0 go to zerg.The ability to observe both kinds of

rower than DW with monotonic tails for any fixed value of PW Pbehavior by suitably varying one or more parameters is

the detuningA,. The effective width of the DW is a useful ©One Of the most interesting features of the OPO.
parameter in the understanding of the interactions of DW.
An adjac_ent p_air of dqmain walls, if stationary, represents |, pyNAMICS OF DW IN THE TWO-DIMENSIONAL
a homoclinic trajectory in the phase space of E@.and DOPO
(4): the fields start close to one homogeneous solution for
large negativex and end up back at the same homogeneous In two dimensions, the two possible states of the OPO
solution for large positivex. In diffusive systems, such DW [Eq. (5)] manifest themselves as domains of one solution
pairs are generally unstable since they exert a mutual, thougtmbedded in the other, the boundary consisting @i@sed
exponentially decaying, attractigri6,17]. Numerical real- domain wall. The curvature of the DW causes it to move and
izations of such solutions can appear stable since the discretihe enclosed domain to contrdédt5].
zation imposed by the grid can make the small attractive Figures 8 and 9 show typical examples of the evolution of
“force” jump to zero for sufficiently large separations. Nu- the DRDOPO signal real part and intensity, respectively,
merical DW pairs with nonoscillatory tails will however close to threshold and fak;=0. The simulations in Fig. 8
move towards each other and mutually annihilate if they araise periodic boundary conditions while a more realistic finite
close enough, in a way similar to what happens in purelywidth input pump of hyperbolic tangent shape is used for
diffusive cases. Fig. 9. In both of these cases there is a coarsening over time
The behavior of diffractive DW with oscillatory tails is as domains shrink and ultimately disappear: in the long term,

WIDTH

FIG. 5. Width of DW in the DRDOPO as a function of the
pump amplitudeE and the detuning\;.
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FIG. 6. Stationary DW pairs separated by various distances. All solutions shown are both stationary and stable. Other intermediate
stationary solutions exist, both stable and unstable. Parameters as in Fig. 2. The largest nonzero eigenvalues of the equations linearized
around these solutions at@ —0.000 000 3685(b) —0.000 1319,c) —0.0009383(d) —0.006 748,(e) —0.0511,(f) —0.4131.

only one of the two homogeneous phases survives. The preSuch a scaling can be demonstrated for Ising models and has
ence of a finite width pump also causes the DW to curvebeen verified numerically and experimentally in a variety of
since they try to be perpendicular to the circular boundary. systemg19].

The evolution is analogous to phase separation in systems Figure 10 shows the structure factSrcalculated for a
far from equilibrium where the order parameter is not con-single simulation of the DROPO equatioffsarameters cor-
served 19]. To test this hypothesis we can define a two-pointresponding to Fig. Bshowing the same scaling behavior.

spatial correlation functio©(r,t) as This indicates that the dynamics of domains in the DOPO is
the same as that in phase separation with a nonconserved
(Ay(FoF T DAL, 1))5 order parameter, at least close to threshold, despite the fact

C(r,t)= _ _ ° (16)  that the underlying physical processes are different. All
(Al(ro,t)Al(ro,t)>;O closed domains are therefore expected to disappear, the

asymptotic states being either one of the two homogeneous
states or exceptionally, in the case of periodic boundary con-
ditions, an even number of parallel DW. For completeness,
Fig. 11 plots correlation functionfEqg. (16)] evaluated at
intervals of 30 signal photon cavity lifetimes for the same
1 simulation as in Fig. 10. The inset shows that when these
S(k,t)= _f exp(ikr)C(r,t)dr. (17) ~ same correlation functions are plotted as functions/o¥?,
2m they lie on top of each other. This clearly indicates a growth
~tY2 of the characteristic size of domains. Both Figs. 10 and
In systems where the dynamics of random phase domains isl extend to a time of around 300 signal photon cavity life-
dominated by local curvature effects, the characteristic sizémes for simulations on a 256256 grid. For longer times
of domains exhibits &2 growth law and the structure factor the exponent of the growth law may deviate from the value
scales a$19,2Q 1/2 due to finite size effects.
Note that in the case of a radially symmetric finite size
S(k,t) =tY?f (kt'?). (18)  input pump, the DW tend to be perpendicular to the bound-

where the average is over the initial posit'fmand different
realizations, and a structure fact8fk,t) (its Fourier trans-
form) as
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FIG. 7. A pair of nonoscillatory DW approaching each other and collapsing. To avoid a prohibitively long transient, the walls are initially
placed quite close to each othém) t=0, (b) t=2400,(c) t=2800,(d) t=2880,(e) t =2960, andf) =3040.A,=1.7. All other parameters

as in Fig. 2.

ary, introducing a further local curvature for straight DW _ _ ESH

which do not cross the center of the pump beam. This effect F=Ae ', ez"”:m. (20)
0

further limits the number of asymptotic states obtainable in a

realistic DOPO. For generic initial conditions we expect all 7o gy equatioris variational and its free energy has a
DW to disappear after transients. For this reason we havetace tensionlike contribution which favors the minimiza-
devised a clever arrangement for an asymptotic stabilizatiof)y, ot Jomain boundaries. Moreover. it has been shi

of DW making use of helical pump waves as described in thgp 5t the dynamics of domains in the SH equation is governed

next section. by the same local curvature effects as is that of phase sepa-

It is not obvious why the DOPO should show the sameion[22]. ForA, positive andO(1), thenormal form equa-

scaling behavior as systems undergoing phase separation. N8n is. instead. of Ginzburg-LanddGL) type [2]:
free energy functional exists for the former, nor is there any ’ ' '

direct, explicit analog of surface tensiofin addition, after (E—ES- (1—AgA,)
our report of this phenomend#d], further evidence of such  §,F = o (1+A)*F—————F>+aA, V7,
scaling has appeared in other nonlinear optical systems with Eo (1+A4p)
no free energy functional21].) In the DOPO, close to (21)
threshold and fod; small and positive or zero, the dynam- GL_ 2 1/2 N1/
ics can be approximately described by a real Swift—WhereEg =(1+A4g)"(1+A1)" and
Hohenberg SH) equation[2] of the form EGL
F=Aie ¥, @&V ° (22)

T(1+iAg)(1+iAy
(E-EH__F°

9F = F—
! (1+A2)

- The Ginzburg—Landau equation, again, has a free energy,
EO

surface tension, and dynamics driven by local curvatliég
This is not the whole story, however. The normal form

equation, whether Swift—Hohenberg or Ginzburg-Landau, is

only valid near threshold. Even quite far from threshold

-—;(Al—aVZFF,(1®

whereEg"=(1+A3)Y? and
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5 3
E@”E?EXZ?’

FIG. 8. Phase dynamics in the DRDOPO. The figures showARein the transverse plane &) t=30, (b) t=90, (c) t=150, (d) t
=210, (e) t=270, (f) t=300, (g) t=540, and(h) t=1500. E=1.4, transverse domain width 250 and other parameters as in Fig. 2.

where the SH or GL equation no longer applies, the system Before ending this section we remark on the relevance, or
still tries to minimize the surface “area” of domain bound- otherwise, of domain dynamics, growth laws and scaling be-
aries by causing domains to shrink. Although it is impossiblehavior to the one-dimensional case. In 1D there is no analog
to attribute a variational structure to the OPO equati@®  of DW curvature and the motion of a DW is driven only by
or to identify a term which plays the role of a surface ten-its interaction with other DW. As stated in Sec. Il, these
sion, the phase-separation behavior withi' growth law interactions fall off so rapidly with distance that DW dynam-
persists and is therefore seen to occur in a larger class afs are essentially unobservable in 1D for times that are com-
systems than merely those which possess a free energy. putationally accessible. Even in the case where the domain
If the pump amplitudéE is large enough in the DRDOPO, size is made so small that DW with nonoscillatory tails are
then the collapse of shrinking domains is arrested by thdéorced to interact, we have been unable to discern any
formation of solitary-wave-type structurg&ig. 14). This  growth law or scaling behavior of the structure factor.
phenomenon is not observed in the SRDOPO, where do-
mains continue to shrink to zero area no matter how largethe g5+ 1+ 1+
amplitude of the pump. The DRDOPO *“cavity solitons” -
will be discussed further in Sec. V.

0.0

log, [S(Kt)t™]
S
n

-1.0

() (f) 45

FIG. 9. Phase dynamics in the DRDOPO pumped by a finite 0 ! 2 K:t31/2 4 5 6
size beam. The figures show the intensity of the signal field in the
transverse plane d8) t=10, (b) t=20, (c) t=80, (d) t=150, (e) FIG. 10. Plot of Iogo(S/\/f) as a function oK\t at time inter-
t=2350, (f) t=600. Transverse domain width 20and other param- vals of 30 signal photon lifetimes froir=30 tot=300. Parameters
eters as in Fig. 2. as in Fig. 8.
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1.0 = 7 T ' T ] In this paper we focus on the stabilization of DW at reso-
1 nance, i.eA;=0, since many of the features of the proce-
L _ dure can easily be generalized to the detuned case. First we
0.8 1.0 . - look for stationary solutions in the presence of input helical
r 08 1 waves. By writing the input, pump and signal fields as
c 06 06| |1 Exy)=Q(Nne™,  Ag=Cq(re™, A;=Cy(r)e™”?
s - (24)
2 0.4}
"E al ool ] 1 we obtain steady state equations for the radial functions
o 0. i ' ] Co(r) andC4(r) given by
[v]
° 0.0} 1
= L _ 2
S o2} 0Bt . iaV2Co(1)—| 24 | Co(r) +2Q(r) — 2C3(r) =0
0. 0 2 4 6 8 iaVrCo(r) + 2 o(r)+2Q(r) i(r)=0,
i r/t® il
I ] (25)
0.0F _— o jam? .
i ] iaVyCy(r)— 1+|A1+? Cy(r)+Co(r)C3i(r)=0,
| r
02l . . . L . Lo where
0 20 40 60 80
' , 1o o
FIG. 11. Plots of the correlation function evaluated at intervals Vi= Toar\"arl (26)
of 30 signal photon lifetimes for the same simulation as in Fig. 10.
The inset plots the same correlation functions agaiftst’ These conditions have to be completed with the requirement
of continuity (modulo 27) of the signal phase over rotations
IV. STABILIZATION OF DW IN A DOPO PUMPED of integer multiples of Zr. It is clear from(24) that continu-
BY HELICAL WAVES ity of the phase can only be achieved witteven and indeed

In the preceding section we have seen that in two transe'© find purely radial stationary staté‘.i,(r) andC,(r) only
; . . . In such cases. In the casermfodd, there is an accumulated
verse dimensions DW appear only during transients. When

walk-off is present, trains of DW quickly move across and phase ofr which remains trapped within the output structure

out of the optical bearf24]. In the next section we will show and no stationary states exist. This accumulated phase is
plc L . : . “discharged” by a DW in the radial direction. Such a DW is
that the dark rings surrounding cavity solitons are not circu-

lar DW since they remain very far from one of the homoge-local.IZeCI in ¢, the azimuthal coordinate, in the same way
hat its Cartesian analog is localizedxn

neous solutions. These features seem to suggest that an X Fiqure 12 shows asvmbtotic spatial sianal amolitudes for
perimental observation of stable DW in cw DOPO can be 9 ymp P g P

elusive. It is the aim of this section to illustrate simple eX_dm‘erent values of the input topological chargeand vari-

perimental configurations where DW are asymptoticallyous initial conditions. In the case af equal to an odd inte-

trapped, thus allowing one to study and characterize the%ﬁrbézentgé?é:ruvrmg f%;nlje\cvegaggﬁ)d(;rngsi\?:ﬁwuzSévrvals
intriguing spatial structures in real OPO devices. ’

We introduce into the configurations of Fig. 1 an externaIDW are observed in the signal output. The presence of

: : ] : trapped domain walls in the case wf=2 [see Fig. 1)]
pump with a single Gauss-Laguert@L) mode profile, does not contradict our previous considerations. The phase

can jump several times by 7 during a loop of the central
E(X,y)= EO(2p2)‘m"ng“(ZpZ)e‘f’z“m‘/’, (23)  spot but the total number of jumps has to be oddrfoodd
and even form even in order to satisfy24).

Whenever the asymptotic solution contains a number of
whereE is the (rea) amplitude of the GL modep and¢  trapped DW, the signal intensity rotates around the optical
are the polar coordinates spanning the transverse gla®@  axis at a constant speed. The frequency of rotation depends
m are the radial and angular indices of the GL mode, lafid  on the topological input charga but not on the number of
is the GL polynomial of the given argumef®5]. The GL  trapped DW. So, for example, the speed of rotation is the
modes withm=0 have large intensities at the center of thesame for the configurations displayed in Figs(el212(d)
beam while as soon as+ 0 the intensity at the origin of the sincem=1. The rotation of the DW is always in the direc-
transverse plane vanishes. Propagating GL modes with tion of growing pump phase as expected for spatially local-
=0 and m#0 are also commonly referred to as helical ized structure$26].
waves, the direction of the twist being related to the sign of In order to find an analytical expression for the angular
the indexm. It is exactly on the utilization of input helical frequency of the rotations, we consider an input field of the
waves at the pump frequency that our method of stabilizatiofiorm given by (24) and the following ansatz for the pump
of DW is based. and signal fields
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0.014

n n 0012_
n . 01010-_

FIG. 12. Stable output configuration of the signal intensity for a
DRDOPO pumped by a Gauss—Laguerre mode of azimuthal indey
m=1 [panels(a)—(d)] and m=2 [panels(e) and (f)]. Transverse
domain width 26r, E=2.0 for panelga)—(d), E= 3.0 for panelge) E
and (f) and other parameters as in Fig. 2.

O

(a)

oopo8 L v 0y ey
1.0 1.5 2.0 2.5 3.0

Oolar—T— T
Ag=Co(r)go(r,— wt)e™?,

(27)
A;=Cy(r)gy(r,¢— wt)e™?2,
Solutions of this form rotate with a fixed frequeney Sub- 0.012
stituting the ansat£27) into Egs.(1) and comparing with
(25), one is left with O)
m L i
w=a—. (28) 0.010

I'2

This expression suggests a motion of the trapped domair
wall in the direction of increasing phase of the input pump in
agreement with Ref(26], a zero rotation in the absence of
diffraction, and a radially dependent angular velocity. The
latter feature would, in principle, progressively shear the DW
during its temporal evolution. Such a shear mechanism is E

however counterbalanced by the curvature effect of two-

dimensional DW that favors Straight DW as described in the FIG. 13. Comparison of the frequency of rotation of trapped
preceding section. Indeed, close to threshold we observe iDw versus the input pump amplitudebetween formulag28) and
the numerical simulations almost straight, radially directed29) (solid line§ and numerical simulation&iamond$ for m=1
DW trapped in the signal beam, in good agreement with th¢panel(a)] andm=2 [panel(b)]. Parameters as in Fig. 11.
previous argument. Away from threshold, the shear effect of

(28) is visible in the local curvature of the trapped domain

wall. The curvature effect requires a straightforward modifi- . . .
cation of the expression for the frequency of rotation to in-(z,?)twlthhr reglaced b)l(r>tg(|jv$n in (29). T'helfre.:qUtlantgy of q
clude radial averages. This is easily achieved by replacing rotation has been evaiuated from numerical simu'ations an

in (28) by plotted as a function dE for m=1 andm=2. The full lines
in Fig. 13 are the analytical results ¢28) and (29). The
agreement with the angular frequency observed close to

ooo8L o oy ey
1.0 1.5 2.0 2.5 3.0

Figure 13 provides quantitative support for our prediction

f dr f|A1|2 f dr r|C1(r)|2 threshold, where we expect our analysis to be valid, is excel-
(ry= = _ (29 lent in spite of the drastic approximations made, such as the
J dr|A, 2 J’ dr|C,(r)|2 form of the solution27) in separable polar variables and the
1 1 neglect of diffraction in(29).
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FIG. 14. Phase dynamics in the DRDOPO above the threshold for the formation of cavity solitons. The figures showirRine
transverse plane d8) t=30, (b) t=90, (c) t=150, (d) t=210, (e) t=660, (f) t=900, (g) t=1140, and(h) t=1380. E=2.5, transverse
domain width 250 and other parameters as in Fig. 2.

V. CHARACTERIZATION AND STABILITY an example, whed ;=0 andl"=1, solitons are observed in
OF DARK-RING CAVITY SOLITONS IN DOPO simulations only fore=2.21.
Another indication of this requirement is the absence of
tsolitons in the SRDOPO. With diffraction of the pump field

collapsing to zero area, eventually form spatial solitar neglected, DW in the SDROPO have lower frequency,
psing ' y P Ysmaller amplitude spatial oscillations than those in the

waves. An example of this is shown. in Fig. 14, where anDRDOPO(Cf. Fig. 2.

initial random arrangement of domains evolves towards a . . ' . .

) - o : Simulations of Eqs(1) can find stable solitons given ap-

final state consisting of a distribution of solitary wav@s L i : ;
propriate initial conditions. In order to find all soliton solu-

cavity “solitons”). The images are obtained by integrating ..

O o .~ tions, stable and unstable, and thereby uncover the nature of
Eqs. @) ona 25& 256 grid W.'th periodic b'oundary cpnd|- the bifurcations from which these structures emerge, we ana-
tions using a split-step algorithm. The solitons consist of a\a}/ze Eqs.(3) directly, with a,, replaced byv2. The solutions

peak in the signal intensity at the center, surrounded by : . . . .
dark ring where the signal intensity is zdiig. 15(a)]. For Wwe seek are invariant with respect to rotations about their
9 9 y 9. ; center and s&?2 can be written as

that reason we term them dark ring cavity solitdBRCS.
This dark ring is what remains of the DW although the fields

In Sec. Il we pointed out that for sufficiently high values
of the pump, shrinking domains in the DRDOPO, instead o

in the region bounded by the ring no longer correspond to a Vi 9? +1 d 30
stationary homogeneous solution of the DRDOPEQ. _ﬁ Y oor’ (30
15(b)]. When considering a radial cut through the DRCS,
one can again view the soliton as a homoclinic orbit which e P
spirals out from one of the homogeneous fixed points in the
complex signal plane and returns to the same fixed point a} ] 06}
asymptotically. The fact that DRCS are associated with ho-
moclinic rather than heteroclinic orbits clearly shows that  38f 1 = 04}
they are not circular domain wal[8]. Since there are two < =
homoclinic orbits, each associated with a different homoge- 2} 1 7 o2
neous fixed point, there are obviously DRCS with two oppo-
site phases: peaks with positiyeegative values ofU sur- b ] oor ©
rounded by areas wheté is negative(positive). b L 02l , , ,
The oscillatory tails of the DW are a prerequisite for the 0 10 20 30 40 50 60 2 10 1 2
formation of solitons: there is no counterpart to these struc- (;) H‘(al(:;‘)

tures in diffusive systems whose domain boundaries decay
monotonically. Nevertheless, the presence of oscillations is FiG. 15. (a) Plot of the signal intensity on a one-dimensional
not a sufficient condition. It is only when the amplitudes of section through the center of a DRA8) The soliton in(a) plotted
these oscillations become large enough increasing the in the complexA; plane. The diamonds indicate the stationary,
pump or decreasing, for instance that solitons appear. As homogeneous solutionE=2.4, other parameters as in Fig. 2.
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FIG. 17. (a) Plot of the signal intensity on a one-dimensional
section through the center of a cavity soliton. The soliton belongs to
the stable branch of the pair at the top right of Fig. (. The
| ] soliton in (a) plotted in the comple)d; plane. The diamonds indi-
Ol b Bttt st s P | oa cate the stationary, homogeneous solutidbs.3.8, other param-

2 3 4 5 eters as in Fig. 2.

20

T
1

FIG. 16. Bifurcation diagram showing the existence of two DRCS is also represented by homoclinic orbits in the com-
types of cavity soliton solutions in the DRDOP@Q {=0, a=0.5,  Plex phase space of the signal fidlsee Fig. 17)]. The
I',=1). Both types of solution emerge from saddle node bifurca-central region has a different amplitude and phase with re-
tions. Solid lines denote stable solutions, and dashed lines, unstab&ect to the first family of DRCS but the homoclinic orbit
ones. The lower pair of branches corresponds to the DRCS. still ends up far from any fixed point representing a homo-

geneous solution. The existence of yet more soliton solutions
wherer is a radial coordinate relative to an origin at the surrounded by a dark ring has not been ruled out. The coex-
center of the soliton. istence of cavity solitons of different sizes is a novel result

Stationary solutions of Eq$3) which satisfy the bound- with potential applications in the design of optical memories.
ary conditions Lattices of the two cavity solitons can be superimposed to

greatly increase the information storage of the DOPO used as
3 Ao(r=0)=3,A1(r=0)=0, a memory array. Applications of DOPO cavity solitons to
information technology will be discussed elsewhere.
Ao(r—=)=Ag, (3D The DRCS do not exist only at resonance, which would
make them difficult to observe, but also fan>0, as Fig.
Ai(r—o)=A] 18(a) shows. AsA; increases, however, the value Bfat
_ ) which the solitons appear also increases progressively fol-
can be found using the method referred to in Sec. Il anqoying the signal generation threshold. The size of the
described in detail in the Appendix. Their stabiligt leastto  pRcS also increases with the detuning. We are able to locate
radially symmgtrlc perturbatiopgan also be c_:alculated SiM- in the (E, A,) plane the line of saddle-node bifurcations
ply by computing the spectrum of the Jacobian of the systeMfom which the DRCS emerge by using the method de-

around the soliton solution. This enables us to draw bifurcagcriped in the Appendix. Figure 19 shows a drastic lowering
tion diagrams such as Fig. 16 far,=0 which shows the

DRCS emerging from a saddle-node bifurcatiorEat2.21. 20— , . . a5

The quantity plotted on the vertical axis of Fig. 16 and sub- sol
sequent bifurcation diagrams is the solit@igna) energy& 5l
defined as > > %}
2 2 20f
- S {0} o
Ezf |AL(r)—A;(r—=)|?rdr. (32 s g 15}
0 - T
Also shown in Fig. 16 is another pair of solution branches 5F
corresponding to a different kind of spatial soliton. These ol . . . 0 T
solutions still have a dark ring around the central part but 2 s 5 o 1oz 3 43

display a local dip of the signal intensity close to the center b
(a gray spotunlike the previous family of DRC&Fig. 17). @ (b)

Their spontaneous formation from collapsing circular do- F|G. 18. Bifurcation diagrams showing the DRCS solution
mains has been observed in simulations of Has.for E  branches foa) A,=0.5 (other parameters as in Fig.)land (b)
>3.72, although the first family of DRCS is also stable inT"y=0.2 (other parameters as in Fig.)148olid lines denote stable
this region. It is important to stress that this second family ofsolutions, and dashed lines, unstable ones.
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FIG. 20. The local energy gaifeft-hand side of Eq(34)] on a

transverse slice through two cavity solitoria) the DRCS of Fig.
15 and(b) the cavity soliton of Fig. 17.

0 10 20 30 40 50 60

0.0 0.5 1.0 1.5 2.0 2.5 3.0 S= |A0|2+ F|A1|2. (33)

1 . N
The factor ofl" arises from the normalizations 8§, andA,

FIG. 19. Threshold for the appearance of cavity solitons in the1]. Using Eqgs.(1) it is easy to show that in steady state,
(E,A;) parameter space. The solid line is the signal threshold, thevhen 9,S=0,
dotted line is the DRCS threshold fbr=0.2, the dashed line for

I'=0.6 and dashed-dotted line fbr=1.
— 20 (JAg*+|A1|?) +TE(Ag+AF)

of the threshold of DRCS for cavities of higher finesse for
the pump field 27]. This is a very important fact with regard
to possible experimental observation of DRCS in DOPO.
The lowering of the DRCS threshold is in agreement with
the diagrams of Fig. @); large amplitude oscillations of the
DW tails are intrinsically related to the pump diffraction and The first term on the left-hand side represents losses through
are the key element for the stabilization of DRCS. the cavity mirrors. The second term is the energy put into the
Since DRCS in the DRDOPO exist fdr;=0 they are System by the external pump. The nonlinear terms merely
unrelated to any modulational instability. They cannot thereiransfer energy from one field to the other with no loss or
fore be interpreted as single peaks of a pattern, unlike thgain and so they make no contribution to E84). The two
structures in Ref[5]. One advantage of the DRCS over theterms on the right-hand side represent transverse energy
usual cavity solitons due to the simultaneous presence of #ansport caused by diffraction. The solution is formed when
pattern and a homogeneous solution is their broad range e excess of the left-hand side of Eg§4), due to the devia-
existence. In the past, and in analogy with the onedlion from the homogeneous steady state, is counterbalanced
dimensional caséSec. I), similar spatial structures have by diffraction.
been said to arise as the result of an interaction between two In Fig. 20 we plot the left-hand side of E¢84) across a
moving fronts, each of which separates a pair of homogeslice through a DRCS of each family. It can be seen that at
neous solution17]. As the fronts approach each other their the center, the net contribution of the damping and driving
oscillatory tails lock together and the fronts are pinned. Thiderms is negative and the energy deficit must be compensated
picture, however, cannot be generalized to two spatial diby a transverse transport of energy towards the center. Con-
mensions where there is no real pairwise interaction of front¥ersely, the sum of the driving and damping terms in the
but rather a single front interacting with itself and whereregion of the dark ring is positive which implies a transport
local curvature effects of the fronts play such an importanof energy out of the dark ring. The picture that emerges,
role. Nevertheless, it remains true that the spatial oscillationthen, is of energy moving from the dark ring to the bright
in the collapsing DW are a necessary feature for the formapeak(or area at the center to sustain the DRCS.
tion of the cavity solitons. Their importance seems to lie in  Finally, we mention that in the nondegenerate case when
generating, through an interference effect, a local “hotspot”the frequencies of the signah,, and idler,A,, fields are
(or “hot-circle” in the case of the second family of DRCS well separated, the symmet#d; ——A, of the degenerate
described aboveof the appropriate intensity and phase in thecase is replaced by the symmefig, A5 ]—¢e (A ,A5].
interior of the collapsing DW. This is not possible if the The pair of homogeneous stationary states of the degenerate
spatial oscillations are too small in amplitude, hence the exease is replaced by an entire family of possible homogeneous

a * 72 2 %
=_|§(AOV AO_A()V Ao)

—ial'(ATV2A,—A,V2AT). (34)

istence of a threshold for DRCS formation. stationary solutions with arbitrary phase. The main effect of
It is interesting to look at the local energy balance withinthis nondegenerate symmetry is to destabilize some of the
DRCS. Consider the total energyat any point Ising-type DW and DRCS described in this paper via a pro-
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gressive shift of the phase, since the real and imaginary parts APPENDIX
of the signal field are not constrained to be equal to zero

simultaneously. In this Appendix we describe the relaxation method

[29,3Q used to compute stationary DW and soliton solutions
of the DOPO equations as well as the technique for calculat-
ing their stability. Consider Eqg3) for stationary solutions
of the doubly resonant DOPO in one transverse dimension.
The nature, characteristics, stability, interaction, and evoT0 solve these equations on a grididpoints we define the
lution of diffractive domain walls and dark ring cavity soli- variables{A{’} and{A{"}, i=1...N, the fields at the grid
tons in degenerate OPO have been exhaustively analyzepoints. We then have the following set of simultaneous equa-
Our study builds on previous short studies that focused otions to solve
one or a few of these topid8-5,§. In particular, we have
shown that DW of the Ising type are commonplace in the 2A() o r 0 (12
signal field of degenerate OPO in both the singly and doubly VAo —2i| —|[—Ag’+E=(A1)7]=0,
resonant configurations.
The DW in DOPO often correspond to spiral heteroclinic 1
connections and present os_cnlatory §a|ls. Thresholds separat- V(Z,A(l')— i(—)[—A(l')—iAlA(1')+A8)(A(1'))*]=0,
ing oscillatory from nonoscillatory tails have been identified a
in both the singly and doubly resonant cases. This analysis
allows us to exclude dark ring spatial solitons, which requirewhere VS is a discretized version of the Laplacian in one
large amplitude oscillations in the tails of the DW, from dimension. We choose to calculate tRgA{’ and V3A{"
large regions of the parameter space. It is important to notgerms using fast Fourier transforrtBFT9 [30] rather than a
however that such soliton structures in 2D do not Corresponghore common finite difference approxima’[ion_ The former
to circular domain Wa”$8] since they are homoclinic solu- has the advantage of greater accuraq(dXN)] so that in
tions which end very far from the homogeneous fixed pointprinciple a larger space step can be used. Thus we take the
present in a DW. _ . FFT of the field made up of thA(’} or {A{"}, multiply by
DW in DOPO may appear to be elusive to experimental — k)2 where{k® is an array of spatial frequencies, and

observation since they either appear during transients or elggye the inverse transform. We then have two arrays contain-

quickly move across and out of the optical beam in the PreSing the values OWSAS) andVﬁA(li) at each point on the grid,

ence of walk-off[24]. We have discussed a simple experi—{1

VI. DISCUSSION AND CONCLUSIONS

(A1)

| based - b fd rom which the value to be used in each of the equations
mental arrangement based on an input pump beam of doug Al) can be read. The FFT imposes the constraint of periodic
nut shape and unit topological chargeorresponding to

G L q f dial ind d azimuth oundary conditions but in practice this is not too much of a
Gauss-Laguerre modes of zero radial index and azimuthgy;ohem: in one dimension it simply means that we can only
index of one for the indefinite trapping of single and mul- look at even numbers of DW

tiple DW. These structures rotate in the transverse plane due To arrive at a solution of eduatiomAl) we start from an

to qlffractlon. Such a rotation can be overcome.by_ fas.t deinitial guess for the{Ag)} and {A(li)} and apply a multidi-
tection systems which can identify sudden periodic dlsapiﬂensional Newton’s methofB0]. At each iteration of the

pearances of the signal intensity at certain distances from theethod we comoute the maanitude of the left hand side of

optical axis, thereby providing evidence for the existence o s.(A1) whichpshould be zgero for an exact solution. The

a DW. We are currently investigating the possibility of uti- as- y . S . '

lizing these rotating structures containing DW for the ma-P 0CeSS 1S continued until this quantity falls below S0Me pre-
determined tolerance, whereupon we have our solution.

nipulation of trapped cold atoms. Once a solution has been calculated its stability can also

After this paper was completed, R¢R28] appeared. In . : .
L o ; be determined. We compute the Jacobian matrix of EQs.
Ref.[28] it is shown that the stability of localized structures numerically around the known solution. Then it is just a

in DOPO is enhanced by pump difiraction. We note that thiSmatter of calculating the eigenvalues and eigenvectors of the

fact was already stated in R¢#], that their Eqs(7) and(8) Jacobian. At | 9 €19 | ith 9 | .

have already appeared and have been discussed i 4ef acobian. At least one eigenvalue with positive real part im-
. 'rPI|es instability of the solution. Otherwise it is stable.

and that in a confocal resonator every ray does not have the

same optical length in one cavity trip thus invalidating their A modification of the method to deal with radially sym-
P gt cavity trip t lidating metric solutions in two dimensions is quite straightforward.
usage of Eqgs(1) with changing diffraction coefficients.

The Laplacian is now given by Eq30). The d/dr and
#%l9r? terms are again evaluated in Fourier space using
FFTs, and the results combined to giV§. In order to sat-
isfy the periodic boundary conditions which the discrete
We are indebted to G. Harkness for useful discussiong-ourier transform requires, we embed our grid\gboints in
We acknowledge support from EPSRGrants Nos. GR/M  a larger grid of N points by reflecting our solution about the
19727 and GR/M 31880 SHEFC(Grant VIDEOS, and the pointr=0. While the smaller grid contains the fields from
European CommissiofT MR Network QSTRUCT, Contract r=0 tor =r ., the larger grid containgormally) the fields
No. FMRXCT960077. G.L.O. acknowledges support from from r= —r,, to r =r4. The derivatives are then evalu-
SGI. ated on the larger grid where periodic boundary conditions
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are certainly satisfied. Note that the grid dfl Doints is only The stability of a solution is computed in the same way as
used to evaluate the spatial derivative terms; the search foriais in one dimension: the Jacobian of the solution is calcu-

solution using the Newton method is still carried out on thelated and its eigenvalues and eigenvectors found numeri-
smaller grid ofN points, both for reasons of efficiency and to cally. Of course, this simple technique, which omits any azi-

avoid spurious, asymmetric solutions which might be genermuthal dependence, can only check for stability with respect
ated on the larger grid. to radially symmetric perturbations.
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