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Characterization, dynamics and stabilization of diffractive domain walls and dark ring cavity
solitons in parametric oscillators
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Mean field models of spatially extended degenerate optical parametric oscillators possess one-dimensional
stable domain wall solutions in the presence of diffraction. We characterize these structures as spiral hetero-
clinic connections and study the spatial frequency of the local oscillations of the signal intensity which
distinguish them from diffusion kinks. Close to threshold, at resonance or with positive detunings, the dynam-
ics of two-dimensional diffractive domain walls is ruled by curvature effects with at1/2 growth law, and
coalescence of domains is observed. In this regime, we show how to stabilize regular and irregular distributions
of two-dimensional domain walls by injection of a helical wave at the pump frequency. Further above thresh-
old the shrinking of domains of one phase embedded in the other is stopped by the interaction of the oscillatory
tails of the domain walls, leading to cavity solitons surrounded by a characteristic dark ring. We investigate the
nature and stability of these localized states, provide evidence of their solitonic character, show that they
correspond to spiral homoclinic orbits and find that their threshold of appearance lowers with increasing pump
cavity finesse.

DOI: 10.1103/PhysRevE.63.066209 PACS number~s!: 42.65.Pc, 42.50.Lc, 42.82.Fv, 42.50.Gy
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I. INTRODUCTION

Mean field~MF! models of degenerate optical paramet
oscillators~DOPO! have become the prototype for the stu
of spatial structures in the presence of quadratic nonline
ties and diffraction. Patterns@1,2#, domain walls@3–5#, and
localized states@4–7# are just a few of the structures recent
observed in mean field DOPO. Studies of these structu
have been complemented by numerical searches in non
models which have confirmed their structural stability@8#.
Since MF models allow for analytical studies that are imp
sible in non-MF equations, we focus here on the charac
ization of spatial structures in MF equations for the DOP
Direct experimental evidence of many of these structure
continuous wave~cw! DOPO devices is still lacking but re
cent developments in the use of large quadratic nonlinear
is promising@9,10#, especially for the plane mirror cavitie
which have been used in theoretical treatments and num
cal simulations.

In this paper we focus on the characterization and dyn
ics of domain walls~DW! separating two homogeneou
states of the DOPO. Such DW were first described in M
DOPO models by Trillo, Haelterman, and Sheppard@3# who
focused mainly on the one-dimensional transverse case
stabilized a two-dimensional DW structure numerically
means of Neumann boundary conditions. Later we show
that in the two-dimensional case, at resonance and for p
tive detunings, domains of one homogeneous phase em
ded in the other shrink to either zero area or to pecu
localized states characterized by a peak of signal inten
surrounded by a dark ring~the remains of the DW!, when
close to or far from threshold, respectively@4#. The first aim
of this paper is an examination of DW in DOPO at resona
and for positive detunings. Close to resonance, diffrac
DW in DOPO differ from diffusive DW as observed, fo
example, in real Ginzburg–Landau equations, in that spa
1063-651X/2001/63~6!/066209~16!/$20.00 63 0662
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local oscillations are present. Such damped oscillations
not appear to affect the behavior of two-dimensional diffra
tive DW close to threshold where the dynamics of doma
of one phase embedded in the other follows the standardt1/2

growth law@4#. This is typical of phase separation in system
where the order parameter is not conserved. The second
cipal aim of this paper is to present a neat arrangement w
utilizes a helical pump field to trap and stabilize DW close
threshold along the azimuthal angle of the signal field. F
ther above threshold the shrinking of domains in the dou
resonant DOPO is stopped by the formation of cavity so
tons. The third aim of the paper is to describe some of
properties of these solitons and investigate their existe
and stability as a function of the control parameters.

The paper is organized as follows: The behavior of o
dimensional~1D! DW in DOPO is addressed in Sec. II. W
point out the possibility of transitions between oscillato
and monotonic behavior in the tails of the DW and presen
numerical evaluation of their width. Sec. III is devoted to t
two-dimensional dynamics of DW in DOPO close to a
away from threshold. The stabilization of DW in the az
muthal direction of a DOPO pumped by a helical wave
topological charge61 is discussed in Sec. IV while the dar
ring cavity solitons and their stability are analyzed in Sec.
We also demonstrate by a symmetry argument that DW
dark ring cavity solitons of the degenerate OPO may
survive in the nondegenerate case where the frequencie
the signal and idler fields are substantially different fro
each other. Section VI contains conclusions and future dir
tions.

II. ONE-DIMENSIONAL DOMAIN WALLS IN MEAN
FIELD MODELS OF DOPO

The mean field equations for a phase matched DO
where both pump and signal fields are resonated@doubly
resonant DOPO~DRDOPO!, see Fig. 1~a!# are @1#
©2001 The American Physical Society09-1
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] tA05G@2A01E2A1
2#1

ia

2
¹2A0

~1!
] tA152A12 iD1A11A0A1* 1 ia¹2A1

where we consider the pump detuningD0 to be always equa
to zero unless specified otherwise. For the singly reson
DOPO ~SRDOPO! where there is no optical cavity for th
pump field @see Fig. 1~b!# the mean field equation for th
resonated signal field is@11#

] tA152A12 iD1A11EA1* 2A1uA1u21 ia¹2A1 . ~2!

The slowly varying amplitudes of the pump and signal fie
are denoted byA0 and A1, respectively, the time has bee
normalized by the photon lifetime in the signal cavity,G
5g0 /g1 is the ratio between the pump and signal cav
decay rates,E is the amplitude of the external pump fie
~here assumed to be real!, D1 is the signal detuning, anda
5c/g1kz is the diffraction parameter withc the speed of
light andkz the longitudinal wave vector of the pump field
Since in the following we will change the ratio between t
cavity decay rates, we write the equations without the us
normalizations of the diffraction coefficients withg0 andg1
@1#. The Laplacian“25]xx1]yy reduces to]xx in one trans-
verse dimension~1D!.

A. Spatial equations for DOPO steady states
and oscillatory tails

In 1D all steady states~stable and unstable! have to satisfy
ordinary differential equations containing spatial derivativ
For the DRDOPO the equations are

]xxA05S 2iG

a D ~2A01E2A1
2!,

~3!

]xxA15S i

aD ~2A12 iD1A11A0A1* !

while for the SRDOPO the equation is

FIG. 1. Schematic of~a! the doubly resonant and~b! the singly
resonant degenerate optical parametric oscillator.
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]xxA15S i

aD ~2A12 iD1A11EA1* 2A1uA1u2!. ~4!

Below the threshold for signal generation (E,A11D1
2) the

homogeneous solutionA05E and A150 is stable. Above
this threshold and for positive and zero detunings the DO
equations admit two additional steady state homogeneous
lutions given by@3#

A0
s5E2~A1

s!2,

A1
s56S EIs

11I s1 iD1
D 1/2

[6se( iu), ~5!

I s5uA1
su25s25AE22D1

221,

wheres.0 andu are, respectively, the modulus and pha
of A1

s and

sin~b22u!5S s2

2ED sinb, b5arg~12 iD1!. ~6!

In the phase space of Eqs.~3! and ~4! the homogeneous
states correspond to two fixed points. For the cases of in
est here, Trillo, Haelterman, and Sheppard@3# found numeri-
cally that a DW solution connecting the two homogeneo
states~5! is stable in 1D. They also showed that in the lim
of large pump detunings~here set to zero!, Eq. ~2! reduces to
modified nonlinear Schro¨dinger equation and the DW solu
tion to the standard hyperbolic tangent profile@3#. Such so-
lutions correspond to heteroclinic connections between
two fixed points in the phase space of the fields and th
spatial derivatives. We show examples of projections
these heteroclinic connections in Fig. 2 for both doubly a
singly resonant cases. Note that in the singly resonant c
where pump diffraction is neglected, the DW oscillations a
much smaller. Solutions of the steady state equations~3! and
~4! can be found numerically with any required accuracy a
can be tested for long term stability via the algorithms spe
fied in the Appendix. We stress here that the presence
heteroclinic and homoclinic solutions in the DOPO is no
trivial. In fact, if we compare Eqs.~4! for D150 with their
diffusive counterpart

]xxA15S 1

aD ~A12EA1* 1A1uA1u2! ~7!

studied, for example, in Ref.@12#, we note that the real and
imaginary parts ofA1 cannot be trivially decoupled, as the
can in ~7!. Setting the imaginary part ofA1 equal to zero in
the diffusive case reduces~7! to an equation governed by
simple quartic potential which admits well-known heter
clinic solutions. Such a simple decoupling, however, is n
possible in the diffractive~DOPO! case and the heteroclini
orbits of ~3! and ~4! cannot be associated with the presen
of a quartic potential in any simple limit of these equation

We note that whenD150, the two stationary solutionsA1
s

are purely real and the DW which connects them manife
itself primarily in the real part,R, of the fieldA1. In contrast,
9-2
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FIG. 2. A heteroclinic solution consisting of
pair of domain walls forD150.0, a50.5, E
52.0, andG51.0. ~a! Real part~solid line! and
imaginary part~dotted line! of the signal field as
a function of the transverse coordinatex in the
DRDOPO.~b! The DW pair in~a! plotted in the
complexA1 plane.~c! Real part~solid line! and
imaginary part~dotted line! of the signal field as
a function of the transverse coordinatex in the
SRDOPO.~d! The DW pair in~c! plotted in the
complexA1 plane.
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the imaginary part,S, of A1 is zero except in the sharp tran
sition region between the two homogeneous solutions~Fig.
2!. WhenD1Þ0 the phase,u, of A1

s is nonzero and the DW
is now observed in the component ofA1 which has the same
phase as the twoA1

s . Thus, if we write

A15R1 iS5~U1 iV !eiu ~8!

with U andV real, then the fieldU shows the DW whileV is
essentially zero. The fieldsU and V reduce toR and S, re-
spectively, whenD1, and henceu, is zero. The fact that both
components of the signal field are zero at the center of th
DW indicates that they are Ising walls@12#.

The idea that an unstable solution lies at the core o
defect@13# can also be used to explain the fact thatA150 at
the center of the DW. To illustrate this, consider Eqs.~1! for
the DRDOPO, without diffraction and withD150. Above
threshold, the resulting four-dimensional dynamical syst
has three fixed-point solutions, corresponding to the th
homogeneous solutions of Eqs.~1!: P1 with Re(A1).0, P2
with Re(A1),0 andO with Re(A1)50. The stable manifold
of O is the surface Re(A1)50. The stable manifolds ofP1
and P2 are the half-spaces Re(A1).0 and Re(A1),0, re-
spectively. A continuous function ofx representing an initia
condition of~1! is mapped onto a one-dimensional manifo
in the four-dimensional phase space. A 1D manifold lyi
entirely in the half-space Re(A1).0 @Re(A1),0# evolves
towards the solutionP1 (P2). A 1D manifold which crosses
from one half-space to the other intersects the stable m
06620
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fold of O in a point which moves towardsO under the time
evolution. This point, whereA1→0 ast→`, corresponds to
the center, or ‘‘core,’’ of the DW defect. We note, howeve
that in the DRDOPO case the pump fieldA0 is different from
E ~its stationary value below threshold! at the center of the
DW. Such an effect is due to the presence of the pump
fraction.

A DW approaches one homogeneous solution asymp
cally asx→1` and the other solution asx→2`. Let us
focus on the DRDOPO and rewrite system~3! as

]xxV5N~V!, ~9!

where V5@A0 ,A0* ,A1 ,A1* #T and N is the appropriate
vector-valued function ofV. We denote the linearization o
the operatorN around a homogeneous, fixed point soluti
by L: that is,L is the Jacobian ofN evaluated atA1

s . Then
the behavior of the tails of the DW depends on the nature
l j 656AL j where$L j% are the eigenvalues ofL. Since

V2Vhomog; (
Rel j 6,0

a j 6Wj6exp@~l j 6!x#, x→`,

~10!

where the$Wj6% are eigenvectors ofL, $a j 6% are complex
constants andVhomogis the stationary homogeneous solutio
complexl j 6 imply the possibility of oscillations in the tai
of the DW; while monotonic behavior requires~although is
not guaranteed by! at least one pair of purely reall j 6 .
9-3
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We remarked previously@4# that at resonance (D150)
the DW have oscillatory tails for every value of the inp
pumpE and in both the DRDOPO and SRDOPO cases. T
is due to the fact that thel j 6 are always complex. Here w
point out that for any value ofD1.0 real eigenvalues can b
found and that hyperbolic tangentlike profiles for the DW
with no oscillatory tails, are possible. For simplicity we sta
with the SRDOPO case. Tedious but straightforward alge
shows that DW have nonoscillatory tails whenever the f
lowing inequality holds:

A11D1
2,E, 1

2
A215D1

212A11D1
2. ~11!

In fact, when~11! is satisfied, two eigenvaluesL j are purely
real, with opposite sign and with magnitude equal to

A1

a
@D16A4I s~11I s!2D1

2#1/2 ~12!

while the other two are purely imaginary~corresponding to
pure rotations in the phase space!. The real positive~nega-
tive! eigenvalue corresponds to the unstable~stable! direc-
tion of the homogeneous fixed points and the heterocl
trajectory representing the DW does not spiral around
fixed points. Figure 3~a! shows the region of nonoscillator
DW for the SRDOPO model in the (E,D1) parameter space
Above the onset of oscillatory tails for the DW, we ca
evaluate the ratioQ between the oscillation frequency an
the decay~growth! rate of the stable DW tails for differen
values ofE andD1

Q5
A4I s~ I s11!2D1

2

D11A4I s~ I s11!
. ~13!

The ratioQ is plotted as a function ofE for different values
of D1 in Fig. 3~b!. Clearly the maximum value for the ratioQ
is one and is obtained at resonance for any value of
external pumpE or for large values ofE off-resonance~posi-
tive detunings!. Since the existence of the dark-ring cavi
solitons discussed in Ref.@4# and below is associated wit
large amplitude oscillations of the DW tails which in tu
can be obtained only for large values of the ratioQ, we can
infer that dark-ring cavity solitons of the kind discussed h
are unlikely for the SRDOPO model. To conclude with t
SRDOPO case, we note that very close to threshold the
havior of the local oscillations is similar to what is observ
for a Swift-Hohenberg equation for one real field~see Ref.
@2# and Sec. III!. Although localized structures have bee
observed in a Swift–Hohenberg model far from thresh
and for negative detunings@2,14#, this is far from the regime
where such an equation reliably describes the behavior o
SRDOPO with positive detunings.

The DRDOPO case does not allow for a picture ab
oscillatory and nonoscillatory tails of the domain walls
clear cut as the one obtained for the SRDOPO case. Th
due to the fact that the spatial stability analysis involv
eight eigenvaluesL j whose analytical expressions are far t
complicated to be reported here. However, by studying th
behavior in the (E,D1) parameter space, we can still identi
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regions where either oscillatory or nonoscillatory DW are
be expected for different values of the time scale ratioG. The
eight eigenvalues~and eigenvectors! can be separated int
two classes; the first~second! class comprises the eigenva
ues that do~do not! have a counterpart in the limit of th
SRDOPO equation, obtained by lettingG go to infinity. It is
easy to show that the four eigenvalues of the second c
~intrinsically due to the presence of a pump equation a
pump diffraction! are always complex for any value ofE and
positiveD1. However, close to threshold, the spatial dyna

FIG. 3. ~a! Parameter region of oscillatory and nonoscillato
tails for the DW in the SRDOPO.~b! The Q ratio between the
absolute value of the imaginary and real parts of the complex
genvalues versus the input pumpE. The horizontal curve corre-
sponds toD150, the rightmost curve toD158.0.
9-4
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CHARACTERIZATION, DYNAMICS AND . . . PHYSICAL REVIEW E63 066209
ics given by Eqs.~3! is dominated by the first class of eige
values where changes from purely real to complex eigen
ues can still take place. We expect nonoscillatory DW
DRDOPO to appear only below the dashed line in Fig. 4~a!.
This line has been obtained by either locating a transit
from purely real to complex eigenvalues~detuning smaller
than 1! or a transition from a regime dominated by the fi
class of eigenvalues to one dominated by the complex eig
values of the second class. The latter transition is cle
detectable in the behavior of the eigenvalues by the pres
of a cusp point when increasing the pump valueE ~detunings
larger than 1!. Unlike the SRDOPO case@see Fig. 3~a!#, the
separation line between nonoscillatory and oscillatory DW
Fig. 4~a! is now just an estimate and not an exact result si
for any value of the parameters (E,D1) of the DRDOPO
there is at least one complex eigenvalue. Such an estim
however, agrees very well with the numerical results and
be used as an excellent guide to the character of the DW
DRDOPO.

Above the dashed line of Fig. 4~a!, the second class o
complex eigenvalues governs the spatial dynamics of
DW. Figure 4~b! shows the ratioQ between imaginary and
real parts of the significant eigenvalue belonging to the s
ond class. We stress here that such a class of eigenvalue
no counterpart in the SRDOPO case since they move
gressively away to infinity for larger and larger values of t
ratio G5g0 /g1. In contrast to the SRDOPO case@Fig. 3~b!#,
Fig. 4~b! shows that spatial oscillations of DW can gro
substantially in DRDOPO since the maximum value ofQ is
not constrained to be equal to 1. It is such large amplitu
oscillations close to the boundary of the domain walls t
allows for the formation of the dark ring cavity solitons di
cussed in Sec. V. The interaction of large amplitude oscil
ing tails of the DW leads to the stabilization of homoclin
orbits with signal intensities much greater than the homo
neous value.

B. Effective width and pairwise interactions

Strictly speaking, the ‘‘width’’ of a domain wall is infi-
nite. We can, however, try to quantify the sharpness of
transition between the two homogeneous solutions in a fa
simple way.

To compute the width of a DW, we calculate the slope
U @Eq. ~8!# at the center of the DW (x5xc), whereU is zero.
We then extrapolate linearly in each direction, for a distan
Dx/2, until we reach the appropriate homogeneous solut
Us. The width of the DW is then taken to be

Dx52UsFdU

dx U
x5xc

G21

. ~14!

An alternative definition of the DW width can also be give
in terms of the signal amplitude. We calculate the slope
uA1u at the point where it is zero, which corresponds to
center of the DW, and extrapolate linearly for a distan
Dxmod/2 until the homogeneous solutionuA1us is reached.
Thus
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Dxmod52uA1usFduA1u
dx U

x5xc

G21

. ~15!

This definition includes the contribution to the DW width o
the fieldV, which can be different from zero in the vicinit
of the point where the signal intensity is zero. The differen
between the two measures of DW width, however, is fou
to be on the order of 2% at most. We will therefore use
definition ~14!.

DW solutions to Eqs.~1! or ~2! can be obtained by inte
grating the partial differential equations directly using

FIG. 4. ~a! Approximate separation between parameter regi
of oscillatory and nonoscillatory tails for the DW in the DRDOP
for G51. ~b! The Q ratio between the absolute value of the imag
nary and real parts of the complex eigenvalues. The leftmost cu
corresponds toD150, the rightmost curve toD153.0.
9-5
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split-step spectral method@15#, where the diffractive terms
are handled by an FFT and the remaining terms by a fou
order Runge-Kutta technique. Such a method is cumb
some, requires a lot of CPU time and allows for the analy
of stable DW only. Alternatively, the method described
the Appendix which computes stable and unstable station
solutions of Eqs.~1! or ~2! can be used. With either metho
the computed solution is the same if the DW solution
stable. The width of the DW can then be evaluated num
cally according to Eq.~14!.

As an example, Fig. 5 shows how the width of the DW
the DRDOPO varies with the detuningD1 and the externa
pumpE. Moving away from threshold, DW with or withou
oscillatory tails progressively narrow. Far from threshold,
width of the DW tends to remain almost constant for a w
range of values of the detuning and pump parameters. S
away from resonance DW with nonoscillatory tails appe
only close to threshold, DW with oscillatory tails are na
rower than DW with monotonic tails for any fixed value
the detuningD1. The effective width of the DW is a usefu
parameter in the understanding of the interactions of DW

An adjacent pair of domain walls, if stationary, represe
a homoclinic trajectory in the phase space of Eqs.~3! and
~4!: the fields start close to one homogeneous solution
large negativex and end up back at the same homogene
solution for large positivex. In diffusive systems, such DW
pairs are generally unstable since they exert a mutual, tho
exponentially decaying, attraction@16,17#. Numerical real-
izations of such solutions can appear stable since the disc
zation imposed by the grid can make the small attrac
‘‘force’’ jump to zero for sufficiently large separations. Nu
merical DW pairs with nonoscillatory tails will howeve
move towards each other and mutually annihilate if they
close enough, in a way similar to what happens in pur
diffusive cases.

The behavior of diffractive DW with oscillatory tails i

FIG. 5. Width of DW in the DRDOPO as a function of th
pump amplitudeE and the detuningD1.
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somewhat different. Again, for sufficiently large separatio
each DW is essentially independent: the distance betw
them can be increased or decreased with no apparent
straint. The method described in the Appendix allows for
evaluation of the Jacobian of Eqs.~1! at a stationary solution
consisting of a pair of widely separated DW. Such a Jacob
has two zero eigenvalues: one corresponding to an ove
translational invariance of the solution, and the other, to
relative motion of the two DW.

The presence of two zero eigenvalues remains true u
the DW are close enough for their oscillating tails to intera
When this happens, a locking phenomenon occurs wh
permits only a discrete set of stationary DW separatio
Some examples of the resulting structures together with
largest of the nonzero eigenvalues of the equations linear
about each solution are shown in Figs. 6~a!–6~f!. For any
initial condition with a given separation of DW with oscilla
tory tails, the distance between the DW relaxes to the clo
of these equilibrium values. No coarsening process is
served. Similar behavior has been noted in other syst
@17# where pairs of spatial solitary waves or fronts betwe
homogeneous solutions are known to be stationary at p
tions where the maxima and minima of their oscillating ta
approximately coincide. Demonstrations of the existence
an interaction potential between fronts, however, are o
possible in the limit of small amplitude spatial oscillation
and long-range interactions and only in systems with a va
tional structure@17#. Nevertheless, the phenomenon appe
to be general even when an explicit potential function
unobtainable.

Compare Fig. 6 with what happens when the DW have
oscillating tails. Guided by the results of the preceding s
section, we have increasedD1 in Fig. 7 to the point where
the spatial oscillations disappear. The result is that the D
approach each other and annihilate, without any intermed
stationary state@18#. ~Note, however, that two DW must b
very close to each other in order for their weak interaction
induce motion within any computationally tractable tim
span. This is compounded by the effect, mentioned pre
ously, whereby the spatial discretization may force the int
action to go to zero.! The ability to observe both kinds o
DW behavior by suitably varying one or more parameters
one of the most interesting features of the OPO.

III. DYNAMICS OF DW IN THE TWO-DIMENSIONAL
DOPO

In two dimensions, the two possible states of the O
@Eq. ~5!# manifest themselves as domains of one solut
embedded in the other, the boundary consisting of a~closed!
domain wall. The curvature of the DW causes it to move a
the enclosed domain to contract@4,5#.

Figures 8 and 9 show typical examples of the evolution
the DRDOPO signal real part and intensity, respective
close to threshold and forD150. The simulations in Fig. 8
use periodic boundary conditions while a more realistic fin
width input pump of hyperbolic tangent shape is used
Fig. 9. In both of these cases there is a coarsening over
as domains shrink and ultimately disappear: in the long te
9-6
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FIG. 6. Stationary DW pairs separated by various distances. All solutions shown are both stationary and stable. Other inte
stationary solutions exist, both stable and unstable. Parameters as in Fig. 2. The largest nonzero eigenvalues of the equations
around these solutions are~a! 20.000 000 3685,~b! 20.000 1319,~c! 20.000 9383,~d! 20.006 748,~e! 20.0511,~f! 20.4131.
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only one of the two homogeneous phases survives. The p
ence of a finite width pump also causes the DW to cu
since they try to be perpendicular to the circular bounda

The evolution is analogous to phase separation in syst
far from equilibrium where the order parameter is not co
served@19#. To test this hypothesis we can define a two-po
spatial correlation functionC(r ,t) as

C~r ,t !5
^A1~rW01rW,t !A1~rW0 ,t !& rW0

^A1~rW0 ,t !A1~rW0 ,t !& rW0

, ~16!

where the average is over the initial positionrW0 and different
realizations, and a structure factorS(k,t) ~its Fourier trans-
form! as

S~k,t !5
1

2pE exp~ ikr !C~r ,t !dr. ~17!

In systems where the dynamics of random phase domain
dominated by local curvature effects, the characteristic s
of domains exhibits at1/2 growth law and the structure facto
scales as@19,20#

S~k,t !5t1/2f ~kt1/2!. ~18!
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Such a scaling can be demonstrated for Ising models and
been verified numerically and experimentally in a variety
systems@19#.

Figure 10 shows the structure factorS calculated for a
single simulation of the DROPO equations~parameters cor-
responding to Fig. 8! showing the same scaling behavio
This indicates that the dynamics of domains in the DOPO
the same as that in phase separation with a nonconse
order parameter, at least close to threshold, despite the
that the underlying physical processes are different.
closed domains are therefore expected to disappear,
asymptotic states being either one of the two homogene
states or exceptionally, in the case of periodic boundary c
ditions, an even number of parallel DW. For completene
Fig. 11 plots correlation functions@Eq. ~16!# evaluated at
intervals of 30 signal photon cavity lifetimes for the sam
simulation as in Fig. 10. The inset shows that when th
same correlation functions are plotted as functions ofr /t1/2,
they lie on top of each other. This clearly indicates a grow
;t1/2 of the characteristic size of domains. Both Figs. 10 a
11 extend to a time of around 300 signal photon cavity li
times for simulations on a 2563256 grid. For longer times
the exponent of the growth law may deviate from the va
1/2 due to finite size effects.

Note that in the case of a radially symmetric finite si
input pump, the DW tend to be perpendicular to the bou
9-7



initially

OPPO, SCROGGIE, AND FIRTH PHYSICAL REVIEW E63 066209
FIG. 7. A pair of nonoscillatory DW approaching each other and collapsing. To avoid a prohibitively long transient, the walls are
placed quite close to each other.~a! t50, ~b! t52400,~c! t52800,~d! t52880,~e! t52960, and~f! 53040.D151.7. All other parameters
as in Fig. 2.
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ary, introducing a further local curvature for straight D
which do not cross the center of the pump beam. This ef
further limits the number of asymptotic states obtainable i
realistic DOPO. For generic initial conditions we expect
DW to disappear after transients. For this reason we h
devised a clever arrangement for an asymptotic stabiliza
of DW making use of helical pump waves as described in
next section.

It is not obvious why the DOPO should show the sa
scaling behavior as systems undergoing phase separatio
free energy functional exists for the former, nor is there a
direct, explicit analog of surface tension.~In addition, after
our report of this phenomenon@4#, further evidence of such
scaling has appeared in other nonlinear optical systems
no free energy functional@21#.! In the DOPO, close to
threshold and forD1 small and positive or zero, the dynam
ics can be approximately described by a real Swi
Hohenberg~SH! equation@2# of the form

] tF5
~E2E0

SH!

E0
SH

F2
F3

~11D0
2!

2
1

2
~D12a¹2!2F, ~19!

whereE0
SH5(11D0

2)1/2 and
06620
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F5A1e2 ic, e2ic5
E0

SH

~11 iD0!
. ~20!

The SH equationis variational and its free energy has
surface tensionlike contribution which favors the minimiz
tion of domain boundaries. Moreover, it has been shown@14#
that the dynamics of domains in the SH equation is gover
by the same local curvature effects as is that of phase s
ration@22#. ForD1 positive andO(1), thenormal form equa-
tion is, instead, of Ginzburg-Landau~GL! type @2#:

] tF5
~E2E0

GL!

E0
GL ~11D1!2F2

~12D0D1!

~11D0
2!

F31aD1¹2F,

~21!

whereE0
GL5(11D0

2)1/2(11D1
2)1/2 and

F5A1e2 ic, e2ic5
E0

GL

~11 iD0!~11 iD1!
. ~22!

The Ginzburg–Landau equation, again, has a free ene
surface tension, and dynamics driven by local curvature@19#.

This is not the whole story, however. The normal for
equation, whether Swift–Hohenberg or Ginzburg-Landau
only valid near threshold. Even quite far from thresho
9-8
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FIG. 8. Phase dynamics in the DRDOPO. The figures show Re(A1) in the transverse plane at~a! t530, ~b! t590, ~c! t5150, ~d! t
5210, ~e! t5270, ~f! t5300, ~g! t5540, and~h! t51500. E51.4, transverse domain width 250 and other parameters as in Fig. 2.
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where the SH or GL equation no longer applies, the sys
still tries to minimize the surface ‘‘area’’ of domain bound
aries by causing domains to shrink. Although it is impossi
to attribute a variational structure to the OPO equations@23#
or to identify a term which plays the role of a surface te
sion, the phase-separation behavior with at1/2 growth law
persists and is therefore seen to occur in a larger clas
systems than merely those which possess a free energy

If the pump amplitudeE is large enough in the DRDOPO
then the collapse of shrinking domains is arrested by
formation of solitary-wave-type structures~Fig. 14!. This
phenomenon is not observed in the SRDOPO, where
mains continue to shrink to zero area no matter how large
amplitude of the pump. The DRDOPO ‘‘cavity solitons
will be discussed further in Sec. V.

FIG. 9. Phase dynamics in the DRDOPO pumped by a fin
size beam. The figures show the intensity of the signal field in
transverse plane at~a! t510, ~b! t520, ~c! t580, ~d! t5150, ~e!
t5350,~f! t5600. Transverse domain width 20p and other param-
eters as in Fig. 2.
06620
m

e

-

of

e

o-
e

Before ending this section we remark on the relevance
otherwise, of domain dynamics, growth laws and scaling
havior to the one-dimensional case. In 1D there is no ana
of DW curvature and the motion of a DW is driven only b
its interaction with other DW. As stated in Sec. II, the
interactions fall off so rapidly with distance that DW dynam
ics are essentially unobservable in 1D for times that are c
putationally accessible. Even in the case where the dom
size is made so small that DW with nonoscillatory tails a
forced to interact, we have been unable to discern
growth law or scaling behavior of the structure factor.

e
e

FIG. 10. Plot of log10(S/At) as a function ofKAt at time inter-
vals of 30 signal photon lifetimes fromt530 to t5300. Parameters
as in Fig. 8.
9-9



n
he
nd

cu
e
n
b
x
lly
e

a

he

h
a
o

l
tio

o-
e-
t we
cal

ons

ent
s

d
re
e is
is
ay

for

ys
f
of

ase
l

of
ical
nds

f
the

-
al-

lar
he
p

al
10

OPPO, SCROGGIE, AND FIRTH PHYSICAL REVIEW E63 066209
IV. STABILIZATION OF DW IN A DOPO PUMPED
BY HELICAL WAVES

In the preceding section we have seen that in two tra
verse dimensions DW appear only during transients. W
walk-off is present, trains of DW quickly move across a
out of the optical beam@24#. In the next section we will show
that the dark rings surrounding cavity solitons are not cir
lar DW since they remain very far from one of the homog
neous solutions. These features seem to suggest that a
perimental observation of stable DW in cw DOPO can
elusive. It is the aim of this section to illustrate simple e
perimental configurations where DW are asymptotica
trapped, thus allowing one to study and characterize th
intriguing spatial structures in real OPO devices.

We introduce into the configurations of Fig. 1 an extern
pump with a single Gauss-Laguerre~GL! mode profile,

E~x,y!5E0~2r2! umu/2Lp
m~2r2!e2r21 imf, ~23!

whereE0 is the ~real! amplitude of the GL mode,r and f
are the polar coordinates spanning the transverse plane,p and
m are the radial and angular indices of the GL mode, andLp

m

is the GL polynomial of the given argument@25#. The GL
modes withm50 have large intensities at the center of t
beam while as soon asmÞ0 the intensity at the origin of the
transverse plane vanishes. Propagating GL modes witp
50 and mÞ0 are also commonly referred to as helic
waves, the direction of the twist being related to the sign
the indexm. It is exactly on the utilization of input helica
waves at the pump frequency that our method of stabiliza
of DW is based.

FIG. 11. Plots of the correlation function evaluated at interv
of 30 signal photon lifetimes for the same simulation as in Fig.
The inset plots the same correlation functions againstr /t1/2.
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In this paper we focus on the stabilization of DW at res
nance, i.e.D150, since many of the features of the proc
dure can easily be generalized to the detuned case. Firs
look for stationary solutions in the presence of input heli
waves. By writing the input, pump and signal fields as

E~x,y!5Q~r !eimf, A05C0~r !eimf, A15C1~r !eimf/2

~24!

we obtain steady state equations for the radial functi
C0(r ) andC1(r ) given by

ia¹ r
2C0~r !2S 21

iam2

r 2 D C0~r !12Q~r !22C1
2~r !50,

~25!

ia¹ r
2C1~r !2S 11 iD11

iam2

4r 2 D C1~r !1C0~r !C1* ~r !50,

where

¹ r
2[

1

r

]

]r S r
]

]r D . ~26!

These conditions have to be completed with the requirem
of continuity ~modulo 2p) of the signal phase over rotation
of integer multiples of 2p. It is clear from~24! that continu-
ity of the phase can only be achieved withm even and indeed
we find purely radial stationary statesC0(r ) andC1(r ) only
in such cases. In the case ofm odd, there is an accumulate
phase ofp which remains trapped within the output structu
and no stationary states exist. This accumulated phas
‘‘discharged’’ by a DW in the radial direction. Such a DW
localized in f, the azimuthal coordinate, in the same w
that its Cartesian analog is localized inx.

Figure 12 shows asymptotic spatial signal amplitudes
different values of the input topological chargem and vari-
ous initial conditions. In the case ofm equal to an odd inte-
ger, the total number of DW trapped in the beam is alwa
an odd number while form even, zero or an even number o
DW are observed in the signal output. The presence
trapped domain walls in the case ofm52 @see Fig. 12~f!#
does not contradict our previous considerations. The ph
can jump several times by6p during a loop of the centra
spot but the total number of jumps has to be odd form odd
and even form even in order to satisfy~24!.

Whenever the asymptotic solution contains a number
trapped DW, the signal intensity rotates around the opt
axis at a constant speed. The frequency of rotation depe
on the topological input chargem but not on the number o
trapped DW. So, for example, the speed of rotation is
same for the configurations displayed in Figs. 12~a!–12~d!
sincem51. The rotation of the DW is always in the direc
tion of growing pump phase as expected for spatially loc
ized structures@26#.

In order to find an analytical expression for the angu
frequency of the rotations, we consider an input field of t
form given by ~24! and the following ansatz for the pum
and signal fields

s
.

9-10
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CHARACTERIZATION, DYNAMICS AND . . . PHYSICAL REVIEW E63 066209
A05C0~r !g0~r ,f2vt !eimf,
~27!

A15C1~r !g1~r ,f2vt !eimf/2.

Solutions of this form rotate with a fixed frequencyv. Sub-
stituting the ansatz~27! into Eqs. ~1! and comparing with
~25!, one is left with

v5a
m

r 2
. ~28!

This expression suggests a motion of the trapped dom
wall in the direction of increasing phase of the input pump
agreement with Ref.@26#, a zero rotation in the absence
diffraction, and a radially dependent angular velocity. T
latter feature would, in principle, progressively shear the D
during its temporal evolution. Such a shear mechanism
however counterbalanced by the curvature effect of tw
dimensional DW that favors straight DW as described in
preceding section. Indeed, close to threshold we observ
the numerical simulations almost straight, radially direc
DW trapped in the signal beam, in good agreement with
previous argument. Away from threshold, the shear effec
~28! is visible in the local curvature of the trapped doma
wall. The curvature effect requires a straightforward mod
cation of the expression for the frequency of rotation to
clude radial averages. This is easily achieved by replacinr
in ~28! by

^r &5

E dr r uA1u2

E druA1u2

[
E dr r uC1~r !u2

E druC1~r !u2

. ~29!

FIG. 12. Stable output configuration of the signal intensity fo
DRDOPO pumped by a Gauss–Laguerre mode of azimuthal in
m51 @panels~a!–~d!# and m52 @panels~e! and ~f!#. Transverse
domain width 20p, E52.0 for panels~a!–~d!, E53.0 for panels~e!
and ~f! and other parameters as in Fig. 2.
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Figure 13 provides quantitative support for our predicti
~28! with r replaced bŷ r & given in ~29!. The frequency of
rotation has been evaluated from numerical simulations
plotted as a function ofE for m51 andm52. The full lines
in Fig. 13 are the analytical results of~28! and ~29!. The
agreement with the angular frequency observed close
threshold, where we expect our analysis to be valid, is ex
lent in spite of the drastic approximations made, such as
form of the solution~27! in separable polar variables and th
neglect of diffraction in~29!.

ex

FIG. 13. Comparison of the frequency of rotation of trapp
DW versus the input pump amplitudeE between formulas~28! and
~29! ~solid lines! and numerical simulations~diamonds! for m51
@panel~a!# andm52 @panel~b!#. Parameters as in Fig. 11.
9-11
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FIG. 14. Phase dynamics in the DRDOPO above the threshold for the formation of cavity solitons. The figures show Re(A1) in the
transverse plane at~a! t530, ~b! t590, ~c! t5150, ~d! t5210, ~e! t5660, ~f! t5900, ~g! t51140, and~h! t51380. E52.5, transverse
domain width 250 and other parameters as in Fig. 2.
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V. CHARACTERIZATION AND STABILITY
OF DARK-RING CAVITY SOLITONS IN DOPO

In Sec. III we pointed out that for sufficiently high value
of the pump, shrinking domains in the DRDOPO, instead
collapsing to zero area, eventually form spatial solita
waves. An example of this is shown in Fig. 14, where
initial random arrangement of domains evolves toward
final state consisting of a distribution of solitary waves~or
cavity ‘‘solitons’’!. The images are obtained by integratin
Eqs. ~1! on a 2563256 grid with periodic boundary condi
tions using a split-step algorithm. The solitons consist o
peak in the signal intensity at the center, surrounded b
dark ring where the signal intensity is zero@Fig. 15~a!#. For
that reason we term them dark ring cavity solitons~DRCS!.
This dark ring is what remains of the DW although the fie
in the region bounded by the ring no longer correspond t
stationary homogeneous solution of the DRDOPO@Fig.
15~b!#. When considering a radial cut through the DRC
one can again view the soliton as a homoclinic orbit wh
spirals out from one of the homogeneous fixed points in
complex signal plane and returns to the same fixed p
asymptotically. The fact that DRCS are associated with
moclinic rather than heteroclinic orbits clearly shows th
they are not circular domain walls@8#. Since there are two
homoclinic orbits, each associated with a different homo
neous fixed point, there are obviously DRCS with two opp
site phases: peaks with positive~negative! values ofU sur-
rounded by areas whereU is negative~positive!.

The oscillatory tails of the DW are a prerequisite for t
formation of solitons: there is no counterpart to these str
tures in diffusive systems whose domain boundaries de
monotonically. Nevertheless, the presence of oscillation
not a sufficient condition. It is only when the amplitudes
these oscillations become large enough~on increasing the
pump or decreasingG, for instance! that solitons appear. As
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an example, whenD150 andG51, solitons are observed in
simulations only forE>2.21.

Another indication of this requirement is the absence
solitons in the SRDOPO. With diffraction of the pump fie
neglected, DW in the SDROPO have lower frequen
smaller amplitude spatial oscillations than those in
DRDOPO~cf. Fig. 2!.

Simulations of Eqs.~1! can find stable solitons given ap
propriate initial conditions. In order to find all soliton solu
tions, stable and unstable, and thereby uncover the natu
the bifurcations from which these structures emerge, we a
lyze Eqs.~3! directly, with]xx replaced by¹2. The solutions
we seek are invariant with respect to rotations about th
center and so“2 can be written as

“

25
]2

]r 2
1

1

r

]

]r
, ~30!

FIG. 15. ~a! Plot of the signal intensity on a one-dimension
section through the center of a DRCS.~b! The soliton in~a! plotted
in the complexA1 plane. The diamonds indicate the stationa
homogeneous solutions.E52.4, other parameters as in Fig. 2.
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CHARACTERIZATION, DYNAMICS AND . . . PHYSICAL REVIEW E63 066209
where r is a radial coordinate relative to an origin at th
center of the soliton.

Stationary solutions of Eqs.~3! which satisfy the bound-
ary conditions

] rA0~r 50!5] rA1~r 50!50,

A0~r→`!5A0
s , ~31!

A1~r→`!5A1
s

can be found using the method referred to in Sec. II a
described in detail in the Appendix. Their stability~at least to
radially symmetric perturbations! can also be calculated sim
ply by computing the spectrum of the Jacobian of the sys
around the soliton solution. This enables us to draw bifur
tion diagrams such as Fig. 16 forD150 which shows the
DRCS emerging from a saddle-node bifurcation atE52.21.
The quantity plotted on the vertical axis of Fig. 16 and su
sequent bifurcation diagrams is the soliton~signal! energyE
defined as

E5E
0

`

uA1~r !2A1~r→`!u2r dr . ~32!

Also shown in Fig. 16 is another pair of solution branch
corresponding to a different kind of spatial soliton. The
solutions still have a dark ring around the central part
display a local dip of the signal intensity close to the cen
~a gray spot! unlike the previous family of DRCS~Fig. 17!.
Their spontaneous formation from collapsing circular d
mains has been observed in simulations of Eqs.~1! for E
.3.72, although the first family of DRCS is also stable
this region. It is important to stress that this second family

FIG. 16. Bifurcation diagram showing the existence of tw
types of cavity soliton solutions in the DRDOPO (D150, a50.5,
G051). Both types of solution emerge from saddle node bifur
tions. Solid lines denote stable solutions, and dashed lines, uns
ones. The lower pair of branches corresponds to the DRCS.
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DRCS is also represented by homoclinic orbits in the co
plex phase space of the signal field@see Fig. 17~b!#. The
central region has a different amplitude and phase with
spect to the first family of DRCS but the homoclinic orb
still ends up far from any fixed point representing a hom
geneous solution. The existence of yet more soliton soluti
surrounded by a dark ring has not been ruled out. The co
istence of cavity solitons of different sizes is a novel res
with potential applications in the design of optical memorie
Lattices of the two cavity solitons can be superimposed
greatly increase the information storage of the DOPO use
a memory array. Applications of DOPO cavity solitons
information technology will be discussed elsewhere.

The DRCS do not exist only at resonance, which wou
make them difficult to observe, but also forD1.0, as Fig.
18~a! shows. AsD1 increases, however, the value ofE at
which the solitons appear also increases progressively
lowing the signal generation threshold. The size of t
DRCS also increases with the detuning. We are able to lo
in the (E, D1) plane the line of saddle-node bifurcation
from which the DRCS emerge by using the method d
scribed in the Appendix. Figure 19 shows a drastic lower

-
ble

FIG. 17. ~a! Plot of the signal intensity on a one-dimension
section through the center of a cavity soliton. The soliton belong
the stable branch of the pair at the top right of Fig. 15.~b! The
soliton in ~a! plotted in the complexA1 plane. The diamonds indi-
cate the stationary, homogeneous solutions.E53.8, other param-
eters as in Fig. 2.

FIG. 18. Bifurcation diagrams showing the DRCS soluti
branches for~a! D150.5 ~other parameters as in Fig. 14! and ~b!
G050.2 ~other parameters as in Fig. 14!. Solid lines denote stable
solutions, and dashed lines, unstable ones.
9-13
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OPPO, SCROGGIE, AND FIRTH PHYSICAL REVIEW E63 066209
of the threshold of DRCS for cavities of higher finesse
the pump field@27#. This is a very important fact with regar
to possible experimental observation of DRCS in DOP
The lowering of the DRCS threshold is in agreement w
the diagrams of Fig. 4~a!; large amplitude oscillations of th
DW tails are intrinsically related to the pump diffraction an
are the key element for the stabilization of DRCS.

Since DRCS in the DRDOPO exist forD1>0 they are
unrelated to any modulational instability. They cannot the
fore be interpreted as single peaks of a pattern, unlike
structures in Ref.@5#. One advantage of the DRCS over th
usual cavity solitons due to the simultaneous presence
pattern and a homogeneous solution is their broad rang
existence. In the past, and in analogy with the o
dimensional case~Sec. II!, similar spatial structures hav
been said to arise as the result of an interaction between
moving fronts, each of which separates a pair of homo
neous solutions@17#. As the fronts approach each other the
oscillatory tails lock together and the fronts are pinned. T
picture, however, cannot be generalized to two spatial
mensions where there is no real pairwise interaction of fro
but rather a single front interacting with itself and whe
local curvature effects of the fronts play such an import
role. Nevertheless, it remains true that the spatial oscillati
in the collapsing DW are a necessary feature for the form
tion of the cavity solitons. Their importance seems to lie
generating, through an interference effect, a local ‘‘hotsp
~or ‘‘hot-circle’’ in the case of the second family of DRC
described above! of the appropriate intensity and phase in t
interior of the collapsing DW. This is not possible if th
spatial oscillations are too small in amplitude, hence the
istence of a threshold for DRCS formation.

It is interesting to look at the local energy balance with
DRCS. Consider the total energyS at any point

FIG. 19. Threshold for the appearance of cavity solitons in
(E,D1) parameter space. The solid line is the signal threshold,
dotted line is the DRCS threshold forG50.2, the dashed line fo
G50.6 and dashed-dotted line forG51.
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S5uA0u21GuA1u2. ~33!

The factor ofG arises from the normalizations ofA0 andA1
@1#. Using Eqs.~1! it is easy to show that in steady stat
when] tS50,

22G~ uA0u21uA1u2!1GE~A01A0* !

52 i
a

2
~A0* ¹2A02A0¹2A0* !

2 iaG~A1* ¹2A12A1¹2A1* !. ~34!

The first term on the left-hand side represents losses thro
the cavity mirrors. The second term is the energy put into
system by the external pump. The nonlinear terms me
transfer energy from one field to the other with no loss
gain and so they make no contribution to Eq.~34!. The two
terms on the right-hand side represent transverse en
transport caused by diffraction. The solution is formed wh
the excess of the left-hand side of Eq.~34!, due to the devia-
tion from the homogeneous steady state, is counterbalan
by diffraction.

In Fig. 20 we plot the left-hand side of Eq.~34! across a
slice through a DRCS of each family. It can be seen tha
the center, the net contribution of the damping and driv
terms is negative and the energy deficit must be compens
by a transverse transport of energy towards the center. C
versely, the sum of the driving and damping terms in t
region of the dark ring is positive which implies a transpo
of energy out of the dark ring. The picture that emerg
then, is of energy moving from the dark ring to the brig
peak~or area! at the center to sustain the DRCS.

Finally, we mention that in the nondegenerate case w
the frequencies of the signal,A1, and idler,A2, fields are
well separated, the symmetryA1→2A1 of the degenerate
case is replaced by the symmetry@A1 ,A2* #→eif@A1 ,A2* #.
The pair of homogeneous stationary states of the degene
case is replaced by an entire family of possible homogene
stationary solutions with arbitrary phase. The main effect
this nondegenerate symmetry is to destabilize some of
Ising-type DW and DRCS described in this paper via a p

e
e

FIG. 20. The local energy gain@left-hand side of Eq.~34!# on a
transverse slice through two cavity solitons:~a! the DRCS of Fig.
15 and~b! the cavity soliton of Fig. 17.
9-14
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gressive shift of the phase, since the real and imaginary p
of the signal field are not constrained to be equal to z
simultaneously.

VI. DISCUSSION AND CONCLUSIONS

The nature, characteristics, stability, interaction, and e
lution of diffractive domain walls and dark ring cavity sol
tons in degenerate OPO have been exhaustively analy
Our study builds on previous short studies that focused
one or a few of these topics@3–5,8#. In particular, we have
shown that DW of the Ising type are commonplace in
signal field of degenerate OPO in both the singly and dou
resonant configurations.

The DW in DOPO often correspond to spiral heteroclin
connections and present oscillatory tails. Thresholds sep
ing oscillatory from nonoscillatory tails have been identifi
in both the singly and doubly resonant cases. This anal
allows us to exclude dark ring spatial solitons, which requ
large amplitude oscillations in the tails of the DW, fro
large regions of the parameter space. It is important to n
however that such soliton structures in 2D do not corresp
to circular domain walls@8# since they are homoclinic solu
tions which end very far from the homogeneous fixed po
present in a DW.

DW in DOPO may appear to be elusive to experimen
observation since they either appear during transients or
quickly move across and out of the optical beam in the pr
ence of walk-off@24#. We have discussed a simple expe
mental arrangement based on an input pump beam of do
nut shape and unit topological charge~corresponding to
Gauss-Laguerre modes of zero radial index and azimu
index of one! for the indefinite trapping of single and mu
tiple DW. These structures rotate in the transverse plane
to diffraction. Such a rotation can be overcome by fast
tection systems which can identify sudden periodic dis
pearances of the signal intensity at certain distances from
optical axis, thereby providing evidence for the existence
a DW. We are currently investigating the possibility of u
lizing these rotating structures containing DW for the m
nipulation of trapped cold atoms.

After this paper was completed, Ref.@28# appeared. In
Ref. @28# it is shown that the stability of localized structure
in DOPO is enhanced by pump diffraction. We note that t
fact was already stated in Ref.@4#, that their Eqs.~7! and~8!
have already appeared and have been discussed in Re@4#
and that in a confocal resonator every ray does not have
same optical length in one cavity trip thus invalidating th
usage of Eqs.~1! with changing diffraction coefficients.
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APPENDIX

In this Appendix we describe the relaxation meth
@29,30# used to compute stationary DW and soliton solutio
of the DOPO equations as well as the technique for calcu
ing their stability. Consider Eqs.~3! for stationary solutions
of the doubly resonant DOPO in one transverse dimens
To solve these equations on a grid ofN points we define the
variables$A0

( i )% and$A1
( i )%, i 51 . . .N, the fields at the grid

points. We then have the following set of simultaneous eq
tions to solve

¹d
2A0

( i )22i S G

a D @2A0
( i )1E2~A1

( i )!2#50,

~A1!

¹d
2A1

( i )2 i S 1

aD @2A1
( i )2 iD1A1

( i )1A0
( i )~A1

( i )!* #50,

where ¹d
2 is a discretized version of the Laplacian in on

dimension. We choose to calculate the¹d
2A0

( i ) and ¹d
2A1

( i )

terms using fast Fourier transforms~FFTs! @30# rather than a
more common finite difference approximation. The form
has the advantage of greater accuracy@O(dxN)# so that in
principle a larger space step can be used. Thus we take
FFT of the field made up of the$A0

( i )% or $A1
( i )%, multiply by

(2k( i ))2, where$k( i )% is an array of spatial frequencies, an
take the inverse transform. We then have two arrays cont
ing the values of¹d

2A0
( i ) and¹d

2A1
( i ) at each point on the grid

from which the value to be used in each of the equatio
~A1! can be read. The FFT imposes the constraint of perio
boundary conditions but in practice this is not too much o
problem: in one dimension it simply means that we can o
look at even numbers of DW.

To arrive at a solution of equations~A1! we start from an
initial guess for the$A0

( i )% and $A1
( i )% and apply a multidi-

mensional Newton’s method@30#. At each iteration of the
method we compute the magnitude of the left hand side
Eqs. ~A1!, which should be zero for an exact solution. T
process is continued until this quantity falls below some p
determined tolerance, whereupon we have our solution.

Once a solution has been calculated its stability can a
be determined. We compute the Jacobian matrix of Eqs.~1!
numerically around the known solution. Then it is just
matter of calculating the eigenvalues and eigenvectors of
Jacobian. At least one eigenvalue with positive real part
plies instability of the solution. Otherwise it is stable.

A modification of the method to deal with radially sym
metric solutions in two dimensions is quite straightforwa
The Laplacian is now given by Eq.~30!. The ]/]r and
]2/]r 2 terms are again evaluated in Fourier space us
FFTs, and the results combined to give¹d

2 . In order to sat-
isfy the periodic boundary conditions which the discre
Fourier transform requires, we embed our grid ofN points in
a larger grid of 2N points by reflecting our solution about th
point r 50. While the smaller grid contains the fields fro
r 50 to r 5r max, the larger grid contains~formally! the fields
from r 52r max to r 5r max. The derivatives are then evalu
ated on the larger grid where periodic boundary conditio
9-15
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are certainly satisfied. Note that the grid of 2N points is only
used to evaluate the spatial derivative terms; the search
solution using the Newton method is still carried out on t
smaller grid ofN points, both for reasons of efficiency and
avoid spurious, asymmetric solutions which might be gen
ated on the larger grid.
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The stability of a solution is computed in the same way
it is in one dimension: the Jacobian of the solution is cal
lated and its eigenvalues and eigenvectors found num
cally. Of course, this simple technique, which omits any a
muthal dependence, can only check for stability with resp
to radially symmetric perturbations.
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