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Chaos synchronization based on a continuous chaos control method in semiconductor lasers
with optical feedback
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Chaos synchronization using a continuous chaos control method was studied in two identical chaotic laser
systems consisting of semiconductor lasers and optical feedback from an external mirror. Numerical calcula-
tions for rate equations indicate that the stability of chaos synchronization depends significantly on the external
mirror position. We performed a linear stability analysis for the rate equations. Our results show that the
stability of the synchronization is much influenced by the mode interaction between the relaxation oscillation
frequency of the semiconductor laser and the external cavity frequency. Due to this interaction, an intensive
mode competition between the two frequencies destroys the synchronization, but stable synchronization can be
achieved when the mode competition is very weak.
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I. INTRODUCTION

Synchronization of coupled nonlinear oscillators has b
of great interest. It is a ubiquitous phenomenon and is o
observed in physical and biological fields@1#. In particular,
during the last decade, much interest in the phenomena o
synchronized chaotic behavior of coupled nonlinear syste
has developed since the concept of chaos synchroniza
was first reported by Pecora and Carroll in 1990@2#. Chaos
synchronization has a high potential for application to sec
communications. Although secure communications has b
demonstrated in a simple, low-dimensional chaotic sys
@3#, it was later realized that a sufficient level of secur
could not be ensured in such a simple system@4#. A time-
delay system is a good candidate for highly secure com
nications based on synchronized chaotic systems becau
its ability to generate high-dimensional chaos@5#.

Implementation of secure communications on an opt
system has also become a very interesting issue with
recent rapid development of optical-fiber communicatio
Laser sources generating chaos are required for such op
secure communication systems. Many researchers hav
ready investigated the chaotic behavior and physical me
nisms in several laser systems@6–12#. In recent years, chao
synchronization has been experimentally and theoretic
investigated in laser systems such as Nd:YAG lasers, C2
lasers, erbium-doped fiber ring lasers, and NH3 lasers@13–
17#. Furthermore, several demonstrations of secure com
nications based on such synchronized lasers have bee
ported, and the possibility of the practical application
optical secure communications has been suggested@18–21#.

There are many kinds of lasers, but semiconductor la
are the most attractive and important source generator
optical secure communications because they have alre
been used in optical-fiber communications. Recently, an
periment on secure communications using semiconducto
ser chaos was carried out by Geodgebueret al. @22#. They
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used a nonlinear optical component in an optoelectric fe
back loop to generate the submicrosecond chaotic fluc
tion. The bandwidth of the message signal in this system
a few kilohertz. In contrast, a much faster chaotic oscillat
can be obtained from direct optical feedback from an ex
nal mirror. In this case, the chaotic oscillation reaches
subnanosecond time scale. Several theoretical and ex
mental studies on synchronization and secure commun
tions using the optical-feedback-induced chaos have alre
been conducted@23–29#. However, Pecora and Carroll’
method is not suited for chaos synchronization in this c
because it requires dividing a chaotic system into two s
systems@21#. Therefore, a configuration of unidirectiona
light injection from a chaotic master to solitary slave lase
was used@21,30,31,25–28#. Similar chaotic outputs are ob
served between the two lasers in such a configuration. In
case, however, it is unclear whether chaotic outputs co
from a light amplification of the master’s chaotic emissi
through injection locking or a principle of chaos synchron
zation @21,27,28#.

Another practical technique for chaos synchronizat
was proposed by Pyragas in 1993@32#. He applied continu-
ous chaos control to chaos synchronization. This metho
very well suited for synchronizing two identical chaotic sy
tems@33#. Recently, this method was also applied to tim
delay systems, where it was analytically shown that sta
synchronization could be achieved@6,34#. In this paper, we
apply a continuous chaos control method to synchronize
identical chaotic systems consisting of a semiconductor la
and a delayed optical feedback. Feedback-induced op
chaos and synchronization in semiconductor lasers may
cilitate optical secure communications with a high level
security. We performed a numerical simulation and line
stability analysis for the rate equations and investigated
physical properties and stability for chaos synchronization
this case.
©2001 The American Physical Society03-1
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II. MODEL AND RATE EQUATIONS

Here we briefly review the synchronization scheme p
posed by Pyragas. We consider two identical time-de
feedback systems with the delay timet coupled in a driver-
response scheme as follows@5#:

ẋ5 f ~x,xt! @xtªx~ t2t!, f continuous#, ~1!

ẏ5 f ~y,yt!1K~x2y!. ~2!

The termK(x2y) in Eq. ~2! represents dissipative couplin
@34#, which leads to a continuous chaos control with co
pling strengthK. The two systems are synchronized wh
the difference in outputs always has a fixed zero value.
conditionx5y is usually called the ‘‘synchronization man
fold.’’ If the two outputs become slightly different, negativ
feedback always can restore the two systems to the sync
nization manifold. Therefore, stable synchronization can
achieved.

Next, we apply the synchronization scheme to a semic
ductor laser with optical feedback. The optical setup
chaos synchronization is shown in Fig. 1. The master
slave systems are identical and are composed of a sem
ductor laser and an external mirror.Lext andr ext represent the
external cavity length, defined as the distance from the la
exit facet to the external mirror, and the amplitude reflect
ity of the external mirror. Here we assume that the amplitu
reflectivity corresponds to the optical feedback rate injec
into the active layer of the semiconductor laser. The out
of the master laser is unidirectionally injected into the sla
laser via the optical isolator~IS!. A second external mirror
(M2nd) of external cavity lengthL2nd is introduced to apply a
second optical feedback loop to the slave laser. The inje
light from the master laser and the second optical feedb
light can provide a continuous chaos control to the sla
system, leading to synchronization.

FIG. 1. Optical setup for chaos synchronization based o
semiconductor laser with optical feedback from an external mir
Unidirectional coupling from the master to slave system is provid
by an optical isolator~IS!. Second mirrorM2nd is inserted in the
slave system to provide negative feedback to the slave laser.
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Mathematical expressions in our system are based on
well-known Lang-Kobayashi rate equations@6#, which give a
valid approximation for a single-mode semiconductor la
with weak to moderate optical feedback from an exter
mirror. The rate equations of the complex electric field a
the carrier density for the master and the slave lasers
given by

dEm~ t !

dt
5

1

2
~11 ia!$GN@Nm~ t !2N0#2gc%Em~ t !

1kEm~ t2t!e2 iv0t, ~3!

dEs~ t !

dt
5

1

2
~11 ia!$GN@Ns~ t !2N0#2gc%Es~ t !

1kEs~ t2t!e2 iv0t

1K@Einj~ t !1Es~ t2t2nd!e
2 iv0t2nd#, ~4!

dNm,s~ t !

dt
5J2gNNm,s~ t !2GN@Nm,s~ t !2N0#uEm,s~ t !u2,

~5!

where the subscriptsm and s correspond to the master an
slave lasers. The equations for the carrier density have
same form for the two lasers.a is the linewidth enhancemen
factor, GN is the linear gain coefficient,gc is the cavity de-
cay rate,gN is the carrier decay rate,N0 is the carrier density
at transparency, andJ is the injection current density. For th
master laser, the second term on the right-hand side of
~3! accounts for the optical feedback effect.k5(1
2r 0

2)r ext/r 0 /t in represents the feedback strength, wherer 0 is
the amplitude reflectivity of the laser exit facet andt in is the
round-trip delay time within the laser cavity.t52Lext/c rep-
resents the round-trip delay time within the external cav
wherec is the velocity of light in vacuum.v0t is the round-
trip phase shift generated in the light propagation within
external cavity, wherev0 is the angular frequency of th
solitary laser. The dissipative coupling between the two la
outputs is presented in the third term on the right-hand s
of Eq. ~4!, and the coupling strength is denoted byK5(1
2r 0

2)kcp/r 0 /t in , wherekcp is the coupling rate. In the cou
pling term,Einj(t)5Em(t) andt2nd52L2nd/c. To produce a
continuous chaos control by the second mirror, we set
mirror position toL2nd5Lext6l/4 ~l being the wavelength
of the solitary laser!. The round-trip phase shift for the sec
ond external cavity becomesv0t2nd5v0t6v0l/(2c). Us-
ing l52pc/v0 , we obtainv0t2nd5v0t6p. The round-
trip times for the original and second external mirror a
approximately equal, i.e.,t2nd't. Consequently, the cou
pling of the optical feedback from the second external mir
becomes negative relative to that from the original feedba
i.e., Es(t2t2nd)exp(2iv0t2nd)'2Es(t2t)exp(2iv0t). We
call this ‘‘negative optical feedback’’ in the following. We
mention again that the relationv0t2nd5v0t6p is the re-
quired condition for continuous chaos control.

Assuming the complex electric field to beE(t)
5E0(t)exp@if(t)#, we obtain a complete set of rate equatio

a
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d
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CHAOS SYNCHRONIZATION BASED ON A CONTINUOUS . . . PHYSICAL REVIEW E 63 066203
for the field amplitude, phase, and carrier density. We p
form numerical simulations based on these rate equation
employing a fourth-order Runge-Kutta algorithm. Langev
noise and other noise must be taken into account in ac
semiconductor lasers. However, we do not consider th
noises because we treat only deterministic dynamics in
paper. Laser parameter values used in our investigation
based on AlxGa12xAs CSP semiconductor lasers with
wavelength of 800.0 nm, as listed in Table I. In the nume
cal simulation, we chose a conditionv0t2nd5v0t1p for
setting the second mirror position. The following prese
fundamental characteristics of the feedback-induced ch
and discusses chaos synchronization of the two semicon
tor lasers.

III. BIFURCATION OF SEMICONDUCTOR LASERS
WITH OPTICAL FEEDBACK

Before considering the synchronization problem, we w
present the fundamental characteristics of the optical fe
back system. In a semiconductor laser with optical feedba
the laser output exhibits a bifurcation route to chaos with
increase of the feedback strength. The relaxation oscilla
and external cavity frequencies play key roles in the bifur
tion scenario. The former is the dominant oscillation mode
a solitary semiconductor laser, and the latter is the freque
determined by the round-trip time of light propagation with
the external cavity. A typical bifurcation sequence with o
tical feedback is as follows. In the absence of feedback,
laser output exhibits constant intensity after the relaxat
oscillation. However, when the laser is subjected to opt
feedback, the relaxation oscillation becomes undamped
the stable output intensity evolves into a periodic oscillat
at the frequency of the relaxation oscillation. This is call
‘‘Hopf bifurcation’’ @7,11#. As the optical feedback is in
creased, the external cavity frequency is excited and la
output exhibits higher-order periodic or quasiperiodic os
lations. Finally, the laser reaches the chaotic state at a s
cient level of optical feedback.

In the bifurcation route, the mode interaction between

TABLE I. Parameter values for the rate equations based
Al xGaAs12x CSP semiconductor lasers.

Symbol Parameter Value

GN Gain coefficient 8.4310213 m3 s21

a Linewidth enhancement factor 3
r 0 Facet amplitude reflectivity 0.556
Nth Carrier density at threshold 2.01831024 m23

N0 Carrier density at transparency 1.431024 m23

ts Carrier lifetime 2.04 ns
tp Photon lifetime 1.927 ps
t in Round-trip time in the laser cavity 8 ps
V Active region volume 6.96310217 m3

l Wavelength 800.0 nm
am Facet loss 35 cm21

mg Group refractive index 4
06620
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relaxation oscillation and external cavity frequencies is
very important factor because it changes bifurcation stabil
This has already been demonstrated both theoretically
experimentally@8,9#. Here we briefly explain it. For ex-
ample, Fig. 2 is a phase diagram showing a boundary of
Hopf bifurcation as a function of the amplitude reflectivi
and the external cavity length for the external mirror, at
injection currentJ51.3Jth . The round-trip phase was set t
2p. The laser output below the boundary has a stable fi
state. In this case, the relaxation oscillation frequency isf R
52.5 GHz. We can see that the boundary has a perio
structure alongLext. The external cavity frequencyf ext
changes for variations ofLext. When the relaxation oscilla
tion frequencyf R becomes close to the external cavity fr
quency or a harmonic of it, namely,f R'm fext ~m being in-
teger!, an intensive mode competition between the tw
frequencies occurs. An external cavity mode suppresses
excitation of the relaxation oscillation. Consequently, t
Hopf-bifurcation boundary exhibits local peaks as shown
the figure. For example, we see a model of this kind of
furcation in Fig. 5~a!, below. We call this bifurcation ‘‘un-
stable bifurcation’’ in the following. In contrast, the bifurca
tion sequence is relatively smooth at the external cav
lengths around the valleys of Fig. 2 because the mode c
petition is so weak that the relaxation oscillation can eas
be excited. We call this kind of bifurcation ‘‘stable bifurca
tion’’ in the following. We expect that the synchronizatio
characteristic is also different for these stable and unsta
bifurcations. In the next section, we present numerical res
of the synchronization for an external cavity length ofLext
515 cm(12 cm), corresponding to the valley~peak! in Fig.
2.

IV. SYNCHRONIZATION

We will first present an example of synchronizing chao
state for a stable bifurcation. Figures 3~a! and 3~b! show the

FIG. 2. Phase diagram for stability in semiconductor laser w
a single external mirror as a function of amplitude reflectivity a
external cavity length for the external mirror. Feedback phase
the external cavity length is always fixed to be 2p.

n
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ATSUSHI MURAKAMI AND JUNJI OHTSUBO PHYSICAL REVIEW E63 066203
chaotic temporal wave forms and the correlation plots for
output intensities of the master and slave lasers. The ou
intensity was calculated asI 5@hcvamV/(4pmg)#E@23#.
The parameter values are the injection current ofJ
51.3Jth , the external cavity length ofLext515 cm, the ex-
ternal reflectivity of r ext51.3%, and the coupling rate o
kcp51.0%. In Fig. 3~a!, the solid~dashed! line represents the
chaotic output intensities of the master~slave! laser. It is
explicitly shown that there is a 1-ns time lag for the synch
nization, which is identical to the delay timet. Therefore, the
synchronization manifold is given asI m(t)5I s(t2t). This
is called ‘‘anticipating synchronization,’’ which can be se
in synchronization for time-delay systems@34#. In this case,
the slave system always anticipates future states of the m
ter system’s behavior. In Fig. 3~b!, the linear correlation be
tween the two outputs demonstrates that good synchron
tion is achieved. We introduce here a synchronization er
which is defined ass5^uI m(t)2I s(t2t)u&/^I m(t)& where
^¯& denotes the time average@28#. We define a critical error
for good synchronization ass<5%. We investigated syn
chronization for various master system outputs with differ
values ofr ext. Figure 4 shows an example of a bifurcatio
diagram in the master system and a corresponding sync
nization region in the slave system. Figure 4~a! shows a qua-
siperiodic route to chaos with increases ofr ext. It should be
noted that it is a stable bifurcation. Figure 4~b! represents an
interval of kcp corresponding to the synchronization as
function of r ext for s<5%. The solid line denotes the rela
tion of kcp5r ext. We see a wide region for the synchroniz
state when the coupling rate is smaller than the feedb
rate. The chaos synchronization is seen in the range ofr ext
51.15% – 1.50%. For a high feedback level, the two las
can no longer synchronize. We can consider that strong fe
back degrades the laser coherence, leading to a loss of
chronization with decreased efficiency of continuous ch
control. Here we mention the synchronization condition
kcp5r ext, denoted by the solid line in the figure. Under th
condition, the optical feedback effects of the two mirrors
the slave system are compensated for. The slave system
haves like a simple, solitary laser injected only by the out
of the master laser. Therefore, much more stable synchr
zation is expected.

Another synchronization result, which corresponds to
unstable bifurcation, is shown in Fig. 5. The external cav

FIG. 3. Synchronized chaotic wave forms. The solid~dashed!
curve represents chaotic output from the master~slave! system. Pa-
rameter values areJ51.3Jth, Lext515 cm, r ext51.3%, andkcp

51.0%. The time lag between them is 1 ns, corresponding to
external delay timet52Lext /c. Thus the synchronization manifol
is xm(t)5xs(t2t) ~x5E, f, andN!.
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length isLext512 cm. The obtained result somewhat diffe
from that in Fig. 4 in that most of the synchronization regi
is below the condition ofkcp5r ext. It is difficult to obtain a
synchronized chaotic state for such an unstable bifurcat
Even for the periodic state, the synchronization tends to
lost before the coupling rate reaches the feedback rate. T
observations will be discussed in the next section.

V. STABILITY OF SYNCHRONIZATION

In this section, we analytically examine the stability
chaos synchronization based on a linear stability analysis
the rate equations and discuss the numerical results. M
ematically, linear stability analysis is limited for direct app
cation to dynamic behavior because of its linearization in
analysis. However, the analysis is a useful tool for obtain
physical insight into the dynamic behavior of a semicond
tor laser with optical feedback@8#. In the following, we in-
vestigate the stability of synchronization of the two syste
in their fixed states very close to a Hopf-bifurcation point

We assume a synchronization manifold as the station
state of the two lasers, i.e.,Em(t)5Es(t)5Est, fm(t)
5fs(t)5fst(t)5(vst2v0)t, and Nm(t)5Ns(t)5Nst. A
slight deviation from the synchronization manifold is cons
ered in the slave system, such asxs(t)5xst1dx(t) ~x5E, f,
andN!. Here the deviation is defined as an exponential p
turbation in the form ofdx(t)5dx0 exp(st), where s5g
1 iv is a complex parameter, referred to as the ‘‘line
mode.’’ g and v represent the decay rate and oscillati

e

FIG. 4. ~a! Bifurcation diagram of the master system with in
creased feedback.~b! Region of the coupling rate corresponding
the synchronized slave system. Parameter values areJ51.3Jth and
Lext515 cm. The external cavity length corresponds to a stabi
bottom, which provides a stable bifurcation. The solid line in~b!
represents the relation ofkcp5r ext .
3-4
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CHAOS SYNCHRONIZATION BASED ON A CONTINUOUS . . . PHYSICAL REVIEW E 63 066203
frequency of the linear mode. Therefore, it follows that t
synchronization is stable for a linear mode with a negat
value ofg because of its exponential decrease with time.
contrast, the slight deviation diverges and the synchron
tion is lost when a linear mode has a positiveg. Hereg50
represents a boundary of the stability for synchronizati
Substituting all the assumptions into Eqs.~3!–~5! leads to
linearized equations for the perturbationdx(t). We then ob-
tain a characteristic equation for the stability of the synch
nization ~see the Appendix for the detailed derivation!. Cal-
culating the characteristic equation, we have a large num
of linear modes as a solution. In general, a linear mode
tribution can vary depending on the system’s conditio
which leads to interaction and competition among line
modes. It is possible to experimentally investigate these p
nomena by observing the optical spectra of laser outputs@9#.
In the following, we present the distribution and transition
the linear modes to discuss the stability of the synchron
tion for stable and unstable bifurcation sequences.

Figure 6 illustrates linear mode transitions with chang
of the coupling between the two systems. It correspond
the numerical results for the stable bifurcation shown in F
4. The parameter values areJ51.3Jth , Lext515 cm, and
r ext50.26%. Note that they correspond to the Hop
bifurcation point in Fig. 4~a!. The horizontal and vertica
axes represent the real and imaginary parts ofs. Synchroni-
zation stability with linear mode transitions differs in th
coupling ranges ofkcp,r ext and kcp.r ext. We present the
results for the former and latter cases in Figs. 6~a! and 6~b!.
In Fig. 6~a!, the circles represent linear modes without co

FIG. 5. ~a! Bifurcation diagram of the master system.~b! Syn-
chronization region for the coupling rate atJ51.3Jth and Lext

512 cm. The external cavity length corresponds to a stability pe
which provides an unstable bifurcation. The solid line in~b! also
shows the relation ofkcp5r ext .
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pling kcp50%. HereX is the mode distribution atkcp5r ext
50.26%. The gray dots represent loci of the mode transit
for 0,kcp,0.26%. ModeA is a linear mode having the
highest value ofg and is located near the relaxation oscill
tion frequency of the solitary laser~2.5 GHz atJ51.3Jth in
this case!. All of the other stable modes originate from th
external cavity frequency and its harmonics. In the abse
of coupling, modeA is an unstable solution for synchroniza
tion because the real part is located on theg50 axis, while
the other modes are stable solutions. When the two syst
are coupled, modeA becomes stable so that the two syste
synchronize. The mode transition explicitly shows that t
stability of the synchronization is increased as the coupl
rate increases. In contrast, forkcp.r ext, the stability de-
creases with increased coupling, as shown in Fig. 6~b!. One
can see that the mode competition between modesA andB
occurs around the relaxation oscillation frequency. Fina
the synchronization is destroyed when modeC becomes un-

k,

FIG. 6. Distribution and transition for the linear mode with in
creased coupling rate for stable bifurcation. Parameter values
J51.3Jth Lext515 cm, andr ext50.26%. The value ofkcp is varied
~a! 0–0.26% and~b! 0.26%–0.8%.
3-5
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ATSUSHI MURAKAMI AND JUNJI OHTSUBO PHYSICAL REVIEW E63 066203
stable atkcp50.80%. These two figures reveal that the int
val of kcp corresponding to the synchronization is 0.8
which coincides with the numerical result shown in Fig.
We can see a special case of stability atkcp5r ext, which
corresponds to the boundary between the two coup
ranges. Under this condition, there exists only one sta
mode, the relaxation oscillation mode. All of the other ext
nal cavity modes from optical feedback are eliminated. T
is because the two optical feedbacks in the slave sys
compensate for each other so that the slave system s
like a simple, solitary laser injected only by the master la
output. The mode distribution, denoted byX, implies that
this condition can provide stable synchronization witho
any mode competition. It is also interesting that the situat
is the same as a synchronization configuration based on
jection locking, which several researchers used in their
periments in Refs.@21#, @26–28#. An injection-locking
scheme can be considered as a special case of our con
ration. It is beyond the scope of this paper to discuss whe
or not the injection-locking scheme corresponds to the s
chronization scheme using continuous chaos control. H
ever, we will mention that optical injection from a chaot
master into solitary slave lasers is one configuration
achieving stable chaos synchronization in laser systems

We show another result of the linear stability analysis
Fig. 7. The figure is the result for an unstable bifurcati
corresponding to the numerical result shown in Fig. 5. T
two lasers are set to their fixed states close to a Ho
bifurcation point in Fig. 5~b!. The parameter values areJ
51.3Jth , Lext512 cm, andr ext50.86%. A mode transition
with increased coupling differs somewhat from that for t
stable bifurcation. In Fig. 7, the white circles are line
modes without the coupling. There are two modesA andB
near the relaxation oscillation frequency. These two mo
originate from the relaxation oscillation frequency and t
external cavity frequency. Mode competition between

FIG. 7. Distribution and transition for the linear mode with i
creased coupling rate for unstable bifurcation. Parameter value
J51.3Jth , Lext512 cm, and r ext50.86%. Here kcp is varied
0–0.86%.
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two modes occurs with the coupling. ModeA becomes much
more stable, while modeB becomes unstable as the couplin
rate increases. Consequently, the synchronization is
when modeB reaches theg50 axis atkcp50.3%. The in-
terval of kcp for synchronization is 0.3%, which also agre
well with the numerical result in Fig. 5.

VI. DISCUSSION

From an experimental point of view, it is difficult to se
the position of the second external mirror so that the con
tion L2nd5Lext6l/4 is satisfied. For that reason, we inves
gated the sensitivity of chaos synchronization to a sm
variation of the second mirror position around the requir
condition. We show the result in Fig. 8~a!. The synchronized
chaotic state is the same as that in Fig. 3. We varied
external cavity length for the second mirror from 15.0 cm
15.0 cm11.5mm. As a result, we could see several sep
rated regions along the variation in the second mirror po
tion with a period equal to half of the optical waveleng
~50.40mm! @10#. Figure 8 shows the difference in the roun
trip phase shift between the second and the original exte
mirrors, which was calculated asv0t2nd2v0t. It is explic-
itly shown that the phase difference is linearly changed
tween2p andp for variation in the second mirror position
Comparing these two figures, we found a corresponde
between the synchronization region and phase differenc
6p. Note that the phase difference corresponds to the
quired condition for continuous chaos control. However,
should also be noted that the second external cavity len
has to be restricted to withint2nd't, as already mentioned
in Sec. II.

are

FIG. 8. ~a! Synchronization region as a function ofL2nd andkcp.
Here L2nd is slightly changed from 15.0 cm to 15.0 cm11.5mm.
The other parameter values areJ51.3Jth , Lext515 cm, andr ext

51.2%. ~b! Variation in the round-trip phase differencev0t2nd

2v0t with a change ofL2nd.
3-6
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VII. CONCLUSIONS

We have investigated chaos synchronization and its
bility in two chaotic laser systems based on a semicondu
laser with optical feedback. The chaos synchronizat
scheme using continuous chaos control proposed by Pyr
was applied to our case. The two systems are optic
coupled by light injection from the master to slave lasers
order to achieve continuous chaos control, we introduce
second external mirror to the slave system. The position
the second external mirror was adjusted so that the round
phase was shifted byp relative to that for the original exter
nal mirror in the slave system. Consequently, the sec
external mirror can provide negative optical feedback re
tive to the original optical feedback, which leads to contin
ous chaos control.

We performed numerical simulations for the rate eq
tions and presented the parameter regions correspondin
the chaos synchronization. Based on the numerical res
we applied linear stability analysis to the rate equatio
around the Hopf-bifurcation points. By investigating the d
tribution and transition of the linear modes, we obtained s
eral properties for synchronization stability. Consequen
we found that mode interactions between the relaxation
cillation and external cavity frequencies affect the synch
nization stability. Stable synchronization can be achiev
when the mode competition between the two frequencie
relatively weak. However, synchronization can be easily l
due to the intensive mode competition between the two
quencies. In particular, we found that there is no mode co
petition when the coupling rate is identical to the feedba
rate. Under this condition, all of the external cavity mod
are eliminated in the slave system, and we expect stable
chronization in this case.

Finally, we discussed these results from the pract
point of view. We investigated chaos synchronization
slight variations in the second mirror position on the order
the optical wavelength. As a result, we found the sensitiv
of synchronization to the round-trip phase shift for the s
ond external mirror.
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APPENDIX

In this appendix, we perform a linear stability analysis
the synchronization around the stationary state. At synch
nization manifold, the mathematical expressions for the t
systems are identical. In this condition, rate equations for
amplitude, phase, and carrier density are written as follo
@6–8#:

Ė~ t !5
1

2
$GN@N~ t !2N0#2gc%E~ t !1kE~ t2t!

3cos@f~ t !2f~ t2t!1v0t#, ~A1!
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ḟ~ t !5
a

2
$GN@N~ t !2N0#2gc%

2k
E~ t2t!

E~ t !
sin@f~ t !2f~ t2t!1v0t#, ~A2!

Ṅ~ t !5J2gNN~ t !2GN@N~ t !2N0#E~ t !2. ~A3!

Let us assume stationary states as their synchroniza
manifold. SubstitutingE(t)5Est , f(t)5(vst2v0)t, and
N(t)5Nst into Eqs.~A1!–~A3!, the stationary solutions ar
given by the following equations:

Est5
J2gNNst

GN~Nst2N0!
, ~A4!

vst2v05k@a cos~vstt!1sin~vstt!#, ~A5!

Nst5N01
gc22k cos~vstt!

GN
. ~A6!

In the slave system, assuming exponential perturbation f
the synchronization manifold, such asxs(t)5xst
1dx0 exp(st) ~x5E, f, andN!, we obtain the following lin-
earized equations for the perturbations in matrix form:

S s1z cos~vstt! zEstsin~vstt! 2
1

2
GNEst

2z
sin~vstt!

Est
s1z cos~vstt! 2

a

2
GN

2GNEst~Nst2N0! 0 s1gN1GNEst
2

D
3S dE0

df0

dN0

D 50, ~A7!

wherez5k2(k2K)exp(2st). Equation~A7! has a solution
only if the determinant of the coefficient matrix vanishe
Therefore, we obtain the following characteristic equati
for the stability of the synchronization:

D~s!5s31@gR12z cos~vstt!#s21@vR
212gRz cos~vstt!

1z2#s1gRz21vR
2z@cos~vstt!2a sin~vstt!#50,

~A8!

where vR
25GN

2 Est
2(Nst2N0)5gcGNEst

2 and gR5gN

1GNEst
2 represent an angular frequency and a decay rate

the relaxation oscillation of a solitary laser. Substitutings
5g1 iv, Eq. ~A8! is seen to have a large number of line
modes as pairs ofg andv @8#.
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