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Chaos synchronization based on a continuous chaos control method in semiconductor lasers
with optical feedback
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Chaos synchronization using a continuous chaos control method was studied in two identical chaotic laser
systems consisting of semiconductor lasers and optical feedback from an external mirror. Numerical calcula-
tions for rate equations indicate that the stability of chaos synchronization depends significantly on the external
mirror position. We performed a linear stability analysis for the rate equations. Our results show that the
stability of the synchronization is much influenced by the mode interaction between the relaxation oscillation
frequency of the semiconductor laser and the external cavity frequency. Due to this interaction, an intensive
mode competition between the two frequencies destroys the synchronization, but stable synchronization can be
achieved when the mode competition is very weak.
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[. INTRODUCTION used a nonlinear optical component in an optoelectric feed-
back loop to generate the submicrosecond chaotic fluctua-
Synchronization of coupled nonlinear oscillators has beemion. The bandwidth of the message signal in this system was
of great interest. It is a ubiquitous phenomenon and is oftem few kilohertz. In contrast, a much faster chaotic oscillation
observed in physical and biological fielfis]. In particular,  can be obtained from direct optical feedback from an exter-
during the last decade, much interest in the phenomena of theal mirror. In this case, the chaotic oscillation reaches the
synchronized chaotic behavior of coupled nonlinear systemgypnanosecond time scale. Several theoretical and experi-
has developed since the concept of chaos synchronizatiqfental studies on synchronization and secure communica-
was first reported by Pecora and Carroll in 1990 Chaos  {jons using the optical-feedback-induced chaos have already
synchron_lzatllon has a high potential for app_hcayon to seCurgqen conducted23—29. However, Pecora and Carroll's
communications. Although secure communications has beeR g is not suited for chaos synchronization in this case

demonstrated in a simple, low-dimensional chaotic SyStenBecause it requires dividing a chaotic system into two sub-

[3], it was later realized that a sufficient level of security systems[21]. Therefore, a configuration of unidirectional

could not be ensured in such a simple sys{di A time- light injection from a chaotic master to solitary slave lasers
delay system is a good candidate for highly secure commu'd J y

nications based on synchronized chaotic systems because ‘Yf° used21,30,31,25-2B Slml!ar chaotic OquUtS are ob- .
its ability to generate high-dimensional chd6s. served between the two lasers in such a configuration. In this

Implementation of secure communications on an opticaf@Se, however, it is unclear whether chaotic outputs come
system has also become a very interesting issue with thEom @ light amplification of the master's chaotic emission
recent rapid development of optical-fiber communicationsthrough injection locking or a principle of chaos synchroni-
Laser sources generating chaos are required for such opticaition[21,27,28.
secure communication systems. Many researchers have al- Another practical technique for chaos synchronization
ready investigated the chaotic behavior and physical mechavas proposed by Pyragas in 1982]. He applied continu-
nisms in several laser systefis-12). In recent years, chaos ous chaos control to chaos synchronization. This method is
synchronization has been experimentally and theoreticallyery well suited for synchronizing two identical chaotic sys-
investigated in laser systems such as Nd:YAG lasers, COemg33]. Recently, this method was also applied to time-
lasers, erbium-doped fiber ring lasers, and;Né&bers[13—  delay systems, where it was analytically shown that stable
17]. Furthermore, several demonstrations of secure commusynchronization could be achiev§@,34]. In this paper, we
nications based on such synchronized lasers have been m@pply a continuous chaos control method to synchronize two
ported, and the possibility of the practical application ofidentical chaotic systems consisting of a semiconductor laser
optical secure communications has been sugg¢&i@d21. and a delayed optical feedback. Feedback-induced optical

There are many kinds of lasers, but semiconductor lasershaos and synchronization in semiconductor lasers may fa-
are the most attractive and important source generators icilitate optical secure communications with a high level of
optical secure communications because they have alreadgcurity. We performed a numerical simulation and linear
been used in optical-fiber communications. Recently, an exstability analysis for the rate equations and investigated the
periment on secure communications using semiconductor Igghysical properties and stability for chaos synchronization in
ser chaos was carried out by Geodgebeieal. [22]. They  this case.
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Master system Mathematical expressions in our system are based on the
Lo o we!l—known L.ang.—Kobayashi rate equatidi, _vvhich give a
valid approximation for a single-mode semiconductor laser
with weak to moderate optical feedback from an external
mirror. The rate equations of the complex electric field and
the carrier density for the master and the slave lasers are
given by

Maser LD

s
dEq(t) 1

Slave system T—§(1+ia){GN[Nm(t)_No]_YC}Em(t)
¢ Lan E. . Lext’ Text .
ny + KEp(t—7)e™ @07, (©)]

Slave LD

. dEM) 1
Msua ’ dt _§(1+Ia){GN[NS(t)_N0]_’)/C}Es(t)

FIG. 1. Optical setup for chaos synchronization based on a +KEs(t_7')e_iw°T
semiconductor laser with optical feedback from an external mirror. o
Unidirectional coupling from the master to slave system is provided T K[Einj(t) + E5(t— 7o)€ '“0720d], (4)
by an optical isolato(IS). Second mirrorfM 4 is inserted in the
slave system to provide negative feedback to the slave laser. dNp s(t)
T =J- 7NNm,s(t) - GN[Nm,s(t) - NO]l Em,s(t)lza

II. MODEL AND RATE EQUATIONS (5)

Here we briefly review the ;ynchrom;aﬂon schgme PrOyyhere the subscriptsr and s correspond to the master and
posed by Pyragas. We consider two identical time-dela

feedback svat ith the delav ti led in a dri %lave lasers. The equations for the carrier density have the
eedback systems wi € delay imeoupled In a driver- same form for the two lasera.is the linewidth enhancement
response scheme as follo\s:

factor, Gy is the linear gain coefficienty, is the cavity de-
cay rate,yy is the carrier decay ratdl, is the carrier density

X=f(x,X;) [x;=x(t=7), f continuou3, (1)  attransparency, antiis the injection current density. For the
master laser, the second term on the right-hand side of Eq.
y=1(y,y,) +K(x—y). (20 (3 accounts for the optical feedback -effeci=(1

- ré)rext/ ro/ i, represents the feedback strength, whgres

The termK(x—y) in Eq. (2) represents dissipative coupling the amplitude reflectivity of the laser exit facet ang is the
[34], which leads to a continuous chaos control with cou-round-trip delay time within the laser cavity= 2L ¢/ rep-
pling strengthK. The two systems are synchronized whenresents the round-trip delay time within the external cavity,
the difference in outputs always has a fixed zero value. Th#herec is the velocity of light in vacuumw, is the round-
conditionx=Yy is usually called the “synchronization mani- trip phase shift generated in the light propagation within the
fold.” If the two outputs become slightly different, negative external cavity, wherew, is the angular frequency of the
feedback always can restore the two systems to the synchrgolitary laser. The dissipative coupling between the two laser
nization manifold. Therefore, stable synchronization can b@utputs is presented in the third term on the right-hand side
achieved. of Eq. (4), and the coupling strength is denoted Ky (1
Next, we apply the synchronization scheme to a semicon="15)Kep/To/7in, Whereke, is the coupling rate. In the cou-
ductor laser with optical feedback. The optical setup forpling term,E;y(t) =Ep(t) and 7,,4=2L,n¢/C. To produce a
chaos synchronization is shown in Fig. 1. The master angontinuous chaos control by the second mirror, we set the
slave systems are identical and are composed of a semicomirror position toL .= Ley*A/4 (X being the wavelength
ductor laser and an external mirrar,,, andr ., represent the of the solitary lasgr The round-trip phase shift for the sec-
external cavity length, defined as the distance from the laseand external cavity becomes,,,4= wo7= woh/(2C). Us-
exit facet to the external mirror, and the amplitude reflectiv-ing A=2mc/wqy, we obtain wg7on¢= wer* 7. The round-
ity of the external mirror. Here we assume that the amplituddrip times for the original and second external mirror are
reflectivity corresponds to the optical feedback rate injectecpproximately equal, i.e.rony~7. Consequently, the cou-
into the active layer of the semiconductor laser. The outpupling of the optical feedback from the second external mirror
of the master laser is unidirectionally injected into the slavebecomes negative relative to that from the original feedback,
laser via the optical isolatoilS). A second external mirror i.e., Eq(t— mond €Xp(—iwgmnd =~ — Es(t— 7)exp(—iwg7). We
(M9 of external cavity lengtlh,,4is introduced to apply a call this “negative optical feedback” in the following. We
second optical feedback loop to the slave laser. The injecteshention again that the relatiog7o,q= wo7= 7 IS the re-
light from the master laser and the second optical feedbacuired condition for continuous chaos control.
light can provide a continuous chaos control to the slave Assuming the complex electric field to bé(t)
system, leading to synchronization. =Ey(t)exdi¢(t)], we obtain a complete set of rate equations
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TABLE |. Parameter values for the rate equations based on K e e e e e e I L e e o e e e e
Al,GaAs _, CSP semiconductor lasers.
Symbol Parameter Value

Gy Gain coefficient 8.410 B¥mis? o E ]

a Linewidth enhancement factor 3 ) ]

Mo Facet amplitude reflectivity 0.556 s f

N Carrier density at threshold 2.0%804m™3 :5 - .

No Carrier density at transparency xa0¥m=3 - ]

Ts Carrier lifetime 2.04 ns 1 7]

™ Photon lifetime 1.927 ps C ]

Tin Round-trip time in the laser cavity 8 ps i ]

\Y; Active region volume 6.98 10" 1"m?3 - - 1

A Wavelength 800.0 nm ) | .St.ab.le .fvn(e(.i S.tat.e M I B

O Facet loss 35 cmt 0 5 10 15 20

Mg Group refractive index 4 L, (em

FIG. 2. Phase diagram for stability in semiconductor laser with

. . . . a single external mirror as a function of amplitude reflectivity and
for the fleld_ amp_lltude,_ phase, and carrier density. We perexternal cavity length for the external mirror. Feedback phase for
form numerical simulations based on these rate equations kie external cavity length is always fixed to be.2

employing a fourth-order Runge-Kutta algorithm. Langevin

noise and other noise must be taken into account in actugbjaxation oscillation and external cavity frequencies is a
semiconductor lasers. However, we do not consider thesgery important factor because it changes bifurcation stability.
noises because we treat only deterministic dynamics in thignis has already been demonstrated both theoretically and
paper. Laser parameter values u_sed in our investigat_ion agperimentally[8,9]. Here we briefly explain it. For ex-
based on AlGa _,As CSP semiconductor lasers with a ample, Fig. 2 is a phase diagram showing a boundary of the
wavelength of 800.0 nm, as listed in Table I. In the numeri-Hopf bifurcation as a function of the amplitude reflectivity
cal simulation, we chose a conditiany7,ng= w7+ 7 for  and the external cavity length for the external mirror, at an
setting the second mirror position. The following presentSipjection currentd=1.3)y,. The round-trip phase was set to
fundamental characteristics of the feedback-induced chags; The laser output below the boundary has a stable fixed
and discusses chaos synchronization of the two semicondugtate. In this case, the relaxation oscillation frequenciiis
tor lasers. =2.5GHz. We can see that the boundary has a periodic
structure alonglL.,. The external cavity frequency.y
changes for variations df,,;. When the relaxation oscilla-
tion frequencyfr becomes close to the external cavity fre-
guency or a harmonic of it, namelyg~mf.,; (M being in-
Before considering the synchronization problem, we willteged, an intensive mode competition between the two
present the fundamental characteristics of the optical feedfrequencies occurs. An external cavity mode suppresses the
back system. In a semiconductor laser with optical feedbaclexcitation of the relaxation oscillation. Consequently, the
the laser output exhibits a bifurcation route to chaos with arHopf-bifurcation boundary exhibits local peaks as shown in
increase of the feedback strength. The relaxation oscillatiothe figure. For example, we see a model of this kind of bi-
and external cavity frequencies play key roles in the bifurcafurcation in Fig. %a), below. We call this bifurcation “un-
tion scenario. The former is the dominant oscillation mode ofstable bifurcation” in the following. In contrast, the bifurca-
a solitary semiconductor laser, and the latter is the frequencion sequence is relatively smooth at the external cavity
determined by the round-trip time of light propagation within lengths around the valleys of Fig. 2 because the mode com-
the external cavity. A typical bifurcation sequence with op-petition is so weak that the relaxation oscillation can easily
tical feedback is as follows. In the absence of feedback, thbe excited. We call this kind of bifurcation “stable bifurca-
laser output exhibits constant intensity after the relaxatiortion” in the following. We expect that the synchronization
oscillation. However, when the laser is subjected to opticatharacteristic is also different for these stable and unstable
feedback, the relaxation oscillation becomes undamped argfurcations. In the next section, we present numerical results
the stable output intensity evolves into a periodic oscillationof the synchronization for an external cavity lengthlof,
at the frequency of the relaxation oscillation. This is called=15cm(12cm), corresponding to the vallgyeak in Fig.
“Hopf bifurcation” [7,11]. As the optical feedback is in- 2.
creased, the external cavity frequency is excited and laser
output exhibits higher-order periodic or quasiperiodic oscil-
lations. Finally, the laser reaches the chaotic state at a suffi-
cient level of optical feedback. We will first present an example of synchronizing chaotic
In the bifurcation route, the mode interaction between thestate for a stable bifurcation. Figure&@Band 3b) show the

Ill. BIFURCATION OF SEMICONDUCTOR LASERS
WITH OPTICAL FEEDBACK

IV. SYNCHRONIZATION
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FIG. 3. Synchronized chaotic wave forms. The sdficished! oF

curve represents chaotic output from the ma&kve system. Pa- —
rameter values ard=1.3Jy, Leg=15Cm, re=1.3%, andkg,
=1.0%. The time lag between them is 1 ns, corresponding to the
external delay time-=2L,/c. Thus the synchronization manifold

is Xp(t) =x4(t—7) (X=E, ¢, andN).

<
=) —mu

chaotic temporal wave forms and the correlation plots for the 1.5 3 AL

output intensities of the master and slave lasers. The outpu-. j;

intensity was calculated as=[hcwan,V/(4muy)]E[23]. ES“ 1 j}

The parameter values are the injection current Jbf i
0.5 .

=1.3Jy,, the external cavity length df,,,=15cm, the ex-
ternal reflectivity ofr.,=1.3%, and the coupling rate of i
kep=1.0%. In Fig. 3a), the solid(dashedlline represents the 0 0.5 1
chaotic output intensities of the mastesiave laser. It is 7 e (%)
explicitly shown that there is a 1-ns time lag for the synchro-
nization, which is identical to the delay timeTherefore, the
synchronization manifold is given dg(t)=14(t— 7). This

is called “anticipating synchronization,” which can be seen
in synchronization for time-delay systerf&4]. In this case,
the slave system always anticipates future states of the m
ter system’s behavior. In Fig(B), the linear correlation be-
tween the two outputs demonstrates that good synchronizzpéngth isL
tion is achieved. We introduce here a synchronization error
which is defined asr={|I,(t)—1s(t—7)|}/{I4(t)) where

FIG. 4. (a) Bifurcation diagram of the master system with in-
creased feedbackb) Region of the coupling rate corresponding to
the synchronized slave system. Parameter valued=afe3l,, and
Lox=15cm. The external cavity length corresponds to a stability
bottom, which provides a stable bifurcation. The solid ling(tn
aF‘e'presents the relation &f,=rcy.

ext— 12 cm. The obtained result somewhat differs
rom that in Fig. 4 in that most of the synchronization region

, | )/ is below the condition ok¢,=rey. It is difficult to obtain a
(-+-) denotes the time avera@BS].OWe define a critical ermor gy nchronized chaotic state for such an unstable bifurcation.
for good synchronization as<5%. We investigated syn- gyen for the periodic state, the synchronization tends to be

chronization for various master system outputs with differenjog; pefore the coupling rate reaches the feedback rate. These
values ofre,. Figure 4 shows an example of a bifurcation ,pseryations will be discussed in the next section.
diagram in the master system and a corresponding synchro-

nization region in the slave system. Figui@4shows a qua-
siperiodic route to chaos with increasesrgf;. It should be
noted that it is a stable bifurcation. Figuré#represents an In this section, we analytically examine the stability of
interval of k¢, corresponding to the synchronization as achaos synchronization based on a linear stability analysis for
function ofr,, for c<5%. The solid line denotes the rela- the rate equations and discuss the numerical results. Math-
tion of kep,=rex. We see a wide region for the synchronized ematically, linear stability analysis is limited for direct appli-
state when the coupling rate is smaller than the feedbackation to dynamic behavior because of its linearization in the
rate. The chaos synchronization is seen in the ranggpf analysis. However, the analysis is a useful tool for obtaining
=1.15%-1.50%. For a high feedback level, the two laserghysical insight into the dynamic behavior of a semiconduc-
can no longer synchronize. We can consider that strong feeder laser with optical feedbadi]. In the following, we in-
back degrades the laser coherence, leading to a loss of syvestigate the stability of synchronization of the two systems
chronization with decreased efficiency of continuous chao# their fixed states very close to a Hopf-bifurcation point.
control. Here we mention the synchronization condition of We assume a synchronization manifold as the stationary
kep=Text, denoted by the solid line in the figure. Under this state of the two lasers, i.eEn(t)=Eg(t)=Eg, ¢n(t)
condition, the optical feedback effects of the two mirrors in= ¢(t) = dst) = (ws— wo)t, and Np(t)=Ng(t)=Ng. A
the slave system are compensated for. The slave system k&light deviation from the synchronization manifold is consid-
haves like a simple, solitary laser injected only by the outpuered in the slave system, suchxabt) = xg+ X(t) (X=E, ¢,
of the master laser. Therefore, much more stable synchron&ndN). Here the deviation is defined as an exponential per-
zation is expected. turbation in the form of 5x(t) = 6xyexp@t), where s=vy
Another synchronization result, which corresponds to antiw is a complex parameter, referred to as the “linear
unstable bifurcation, is shown in Fig. 5. The external cavitymode.” y and o represent the decay rate and oscillation

V. STABILITY OF SYNCHRONIZATION
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FIG. 5. (a) Bifurcation diagram of the master systeth) Syn- i:i L Be m‘s 1
chronization region for the coupling rate at=1.3Jy, and Lgy :j . ]
=12 cm. The external cavity length corresponds to a stability peak, -2foc ; -
which provides an unstable bifurcation. The solid line(in also [ ! 2 . A
shows the relation ok,=rey. [ : e g o o ]
4k ® ° : -
frequency of the linear mode. Therefore, it follows that the : o © o ; H ! E ]
A . . . . . B
synchronization is stable for a linear mode with a negative o 1 2 ® s e .
value of y because of its exponential decrease with time. In [ g i s © ‘. ]
contrast, the slight deviation diverges and the synchroniza: i M o °© ° ]
tion is lost when a linear mode has a positiveHere y=0 gl v ol v L b e e b e
re i izati 0 1 2 3 4 5
presents a boundary of the stability for synchronization. w27 (GH2)
Substituting all the assumptions into Eq8)—(5) leads to
linearized equations for the perturbatiér(t). We then ob- FIG. 6. Distribution and transition for the linear mode with in-

tain a characteristic equation for the stability of the synchrocreased coupling rate for stable bifurcation. Parameter values, are
nization (see the Appendix for the detailed derivatio@al-  J=1.3y, Le,=15cm, and ¢=0.26%. The value ok, is varied
culating the characteristic equation, we have a large numbe&g) 0-0.26% andb) 0.26%—0.8%.
of linear modes as a solution. In general, a linear mode dis-
tribution can vary depending on the system’s condition,pling k,,=0%. HereX is the mode distribution & ,=r gy
which leads to interaction and competition among linear=0.26%. The gray dots represent loci of the mode transition
modes. It is possible to experimentally investigate these phedor 0<k.,<0.26%. ModeA is a linear mode having the
nomena by observing the optical spectra of laser ouf@jts highest value ofy and is located near the relaxation oscilla-
In the following, we present the distribution and transition oftion frequency of the solitary las€2.5 GHz atJ=1.3], in
the linear modes to discuss the stability of the synchronizathis casg All of the other stable modes originate from the
tion for stable and unstable bifurcation sequences. external cavity frequency and its harmonics. In the absence
Figure 6 illustrates linear mode transitions with changesof coupling, modeA is an unstable solution for synchroniza-
of the coupling between the two systems. It corresponds ttion because the real part is located on $he0 axis, while
the numerical results for the stable bifurcation shown in Figthe other modes are stable solutions. When the two systems
4. The parameter values ade=1.3Jy, Ley=15cm, and are coupled, modé becomes stable so that the two systems
lexe=0.26%. Note that they correspond to the Hopf-synchronize. The mode transition explicitly shows that the
bifurcation point in Fig. 4a). The horizontal and vertical stability of the synchronization is increased as the coupling
axes represent the real and imaginary parts. @ynchroni-  rate increases. In contrast, fég,>re,, the stability de-
zation stability with linear mode transitions differs in the creases with increased coupling, as shown in Fig).8ne
coupling ranges oK., <rey and ke, >rey . We present the can see that the mode competition between medasd B
results for the former and latter cases in Fig®) &nd &b). occurs around the relaxation oscillation frequency. Finally,
In Fig. 6(a), the circles represent linear modes without cou-the synchronization is destroyed when mdgibecomes un-
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FIG. 7. Distribution and transition for the linear mode with in- e A 1 VAR BT A A
creased coupling rate for unstable bifurcation. Parameter values ar 0 025 0.5 6LO(ZuSn \ ! 125 1.5

J=1.3), Lex=12cm, andrq,=0.86%. Herekg, is varied
0-0.86%. FIG. 8. (a) Synchronization region as a functionlof,q andk,.
Here L,,q is slightly changed from 15.0 cm to 15.0 end.5um.

stable ak.,=0.80%. These two figures reveal that the inter-The other parameter values ale-1.3Jy, Lex=15cm, andrey
val of k¢, corresponding to the synchronization is 0.8%,=1.2%. (b) Variation in the round-trip phase differenceyrsng
which coincides with the numerical result shown in Fig. 4. — wo7 with a change ot ;.
We can see a special case of stabilitykgi=rc,;, which
corresponds to the boundary between the two couplindwo modes occurs with the coupling. Mo#lebecomes much
ranges. Under this condition, there exists only one stablenore stable, while modB becomes unstable as the coupling
mode, the relaxation oscillation mode. All of the other exter-rate increases. Consequently, the synchronization is lost
nal cavity modes from optical feedback are eliminated. Thisvhen modeB reaches they=0 axis atk,,=0.3%. The in-
is because the two optical feedbacks in the slave systererval ofkg, for synchronization is 0.3%, which also agrees
compensate for each other so that the slave system seemvell with the numerical result in Fig. 5.
like a simple, solitary laser injected only by the master laser
output. The mode distribution, denoted By implies that
this condition can provide stable synchronization without
any mode competition. It is also interesting that the situation From an experimental point of view, it is difficult to set
is the same as a synchronization configuration based on irthe position of the second external mirror so that the condi-
jection locking, which several researchers used in their extion L,,i= L+ N/4 is satisfied. For that reason, we investi-
periments in Refs.[21], [26—-28. An injection-locking gated the sensitivity of chaos synchronization to a small
scheme can be considered as a special case of our configeariation of the second mirror position around the required
ration. It is beyond the scope of this paper to discuss whetheasondition. We show the result in Fig(aé. The synchronized
or not the injection-locking scheme corresponds to the synehaotic state is the same as that in Fig. 3. We varied the
chronization scheme using continuous chaos control. Howexternal cavity length for the second mirror from 15.0 cm to
ever, we will mention that optical injection from a chaotic 15.0cmt+1.5um. As a result, we could see several sepa-
master into solitary slave lasers is one configuration forated regions along the variation in the second mirror posi-
achieving stable chaos synchronization in laser systems. tion with a period equal to half of the optical wavelength

We show another result of the linear stability analysis in(=0.40um) [10]. Figure 8 shows the difference in the round-
Fig. 7. The figure is the result for an unstable bifurcationtrip phase shift between the second and the original external
corresponding to the numerical result shown in Fig. 5. Themirrors, which was calculated asyrony— wo7. It is explic-
two lasers are set to their fixed states close to a Hopfitly shown that the phase difference is linearly changed be-
bifurcation point in Fig. B). The parameter values ade  tween— and s for variation in the second mirror position.
=13}, Lex=12cm, andr.,=0.86%. A mode transition Comparing these two figures, we found a correspondence
with increased coupling differs somewhat from that for thebetween the synchronization region and phase difference of
stable bifurcation. In Fig. 7, the white circles are linear =7. Note that the phase difference corresponds to the re-
modes without the coupling. There are two modeandB  quired condition for continuous chaos control. However, it
near the relaxation oscillation frequency. These two modeshould also be noted that the second external cavity length
originate from the relaxation oscillation frequency and thehas to be restricted to within,,~ 7, as already mentioned
external cavity frequency. Mode competition between then Sec. Il.

VI. DISCUSSION
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VII. CONCLUSIONS

. (44
t)= = {GN[N(t)—Ng]—
We have investigated chaos synchronization and its sta- () 2{ NEN(D =Nol = e}

bility in two chaotic laser systems based on a semiconductor
laser with optical feedback. The chaos synchronization _ M i — h(t—
: . K si(t) = p(t— 1)+ wo7], (A2)

scheme using continuous chaos control proposed by Pyragas E(t)
was applied to our case. The two systems are optically
coupled by light injection from the master to slave lasers. In
order to achieve continuous chaos control, we introduced a
second external mirror to the slave system. The position of
the second external mirror was adjusted so that the round-tripet us assume stationary states as their synchronization
phase was shifted by relative to that for the original exter- manifold. SubstitutingE(t)=Eg;, ¢(t)=(ws— wo)t, and
nal mirror in the slave system. Consequently, the secong(t)=Ny, into Egs.(A1)—(A3), the stationary solutions are
external mirror can provide negative optical feedback relagiven by the following equations:
tive to the original optical feedback, which leads to continu-
ous chaos control.

We performed numerical simulations for the rate equa- E.— J— nNst (A%)
tions and presented the parameter regions corresponding to S GN(Ng—Np)
the chaos synchronization. Based on the numerical results,
we applied linear stability analysis to the rate equations

N(t)=J— yyN(t) = Gn[N() —No]E(1)2.  (A3)

around the Hopf-bifurcation points. By investigating the dis- wst— wo= K[ & COL wg) +si ) ], (AS)
tribution and transition of the linear modes, we obtained sev-

eral properties for synchronization stability. Consequently, Ye— 2k COS wgT)

we found that mode interactions between the relaxation os- Ng=Ng+ Gn . (AB)

cillation and external cavity frequencies affect the synchro-
nization stability. Stable synchronization can be achieved
when the mode competition between the two frequencies it the slave system, assuming exponential perturbation from
relatively weak. However, synchronization can be easily losthe  synchronization manifold, such asxg(t)=xg

due to the intensive mode competition between the two fre-+ 5x, expt) (x=E, ¢, andN), we obtain the following lin-
quencies. In particular, we found that there is no mode comearized equations for the perturbations in matrix form:
petition when the coupling rate is identical to the feedback

rate. Under this condition, all of the external cavity modes

are eliminated in the slave system, and we expect stable syn-| s+ ¢ coq wqr) LEgSin(wgr) _ EGNEst
chronization in this case. 2
Finally, we discussed these results from the practical sin(wgr)

point of view. We investigated chaos synchronization for -
slight variations in the second mirror position on the order of
the optical wavelength. As a result, we found the sensitivity \ 2GNEg(Ng— No) 0 s+ yn+ GNEZS
of synchronization to the round-trip phase shift for the sec-
ond external mirror. 9Eq
X| ¢ | =0, (A7)

SNy

o
E. S+ { cog wyT) — 5GN
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wherel= k— (k—K)exp(—s7). Equation(A7) has a solution
only if the determinant of the coefficient matrix vanishes.
Therefore, we obtain the following characteristic equation

for the stability of the synchronization:
APPENDIX

In this appendix, we perform a linear stability analysis of D(s)=s3+[yg+2{ cog wstT)]52+[w§+27R§ cos wyT)
the synchronization around the stationary state. At synchro-

nization manifold, the mathematical expressions for the two +%]s+ Yr{?+ wR{[ COS wgr) — o SiN wgT) ] =0,
systems are identical. In this condition, rate equations for the (A8)
amplitude, phase, and carrier density are written as follows

[6-8]:

where wZR:Glz\lEgt(Nst_NO):')’cGNEgt and  yr=1yN

. 1 + G\EZ represent an angular frequency and a decay rate for
E(t)=5{GNIN() = No] = e} E(t) + xE(t—7) the relaxation oscillation of a solitary laser. Substitutig
=y+iw, Eq.(A8) is seen to have a large number of linear
xcog ¢(t) = ¢(t— 1)+ woT], (A1)  modes as pairs of and w [8].
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