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Detecting nonstationarity and state transitions in a time series
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One cause of complexity in a time series may be due to nonstationarity and transience. In this paper, we
analyze the nonstationarity and transience in a number of dynamical systems. We find that the nonstationarity
in the metastable chaotic Lorenz system is due to nonrecurrence. The latter determines a lack of fractal
structure in the signal. In 17 noise, we find that the associated correlation dimension are local graph dimen-
sions calculated from sojourn points. We also design a transient Lorenz system with a slowly oscillating
controlling parameter, and a transient Rossler system with a slowly linearly increasing parameter, with param-
eter ranges covering a sequence of chaotic dynamics with increased phase incoherence. State transitions, from
periodic to chaotic, and vice versa, are identified, together with different facets of nonstationarity in each
phase.
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[. INTRODUCTION paper, we shall first more fully explore the capabilitiasd
possibly limitation$ of those methods by applying them to a
Almost all existing linear and nonlinear time series analy-number of interesting nonstationary time series, namely, the
sis techniques assume that the time series under investigationetastable chaotic Lorenz systent,“1hoise, a transient Lo-
is stationary. However, many time series occurring in geofenz system with a slowly oscillating controlling parameter,
physics, physiology, finance, etc., are nonstationary. Tha&nd a transient Rossler system with a slowly linearly increas-
nonstationarity may be attributed to slow drift of the sys-ing parameter, with parameter ranges covering a sequence of
tem’s parameters during a measurement period, a changirgpaotic dynamics with increased phase incoher¢hze We
environment, etc. The existence of nonstationarity can causghall show that nonstationarity in the metastable chaotic Lo-
the interpretation of the results of many data analysis methrenz system and ¥ noise is due to nonrecurrence, and ex-
ods, especially those based on chaos theory, to be problerplore the consequences of nonrecurrence. In the transient Lo-
atic. For example, it was once thought that an estimated posienz and Rossler system, we shall show how the method
tive Lyapunov exponent or entropy, or a finite nonintegeridentifies state transitions, from periodic to chaotic, and vice
correlation dimension would suffice to indicate that the timeversa, and characteristics of nonstationarity in each phase.
series is chaotic. If this were true, then one would have to The remainder of the paper is organized as follows. In
conclude that I noise, < «<3, is chaotic, since it pro- Sec. I, we briefly review recurrence time statistics for deter-
duces a positivéK, entropy[1] and a finite noninteger cor- ministic chaos in dissipative systems and the two algorithms
relation dimensionD=2/(a—1) [2]. We now understand for the detection of nonstationarity and bifurcations. In Sec.
that such a conclusion is incorrect, since th&Igrocess is Ill, we detect nonstationarity in the metastable chaotic Lo-
just noise. Hence, simple and efficient methods capable dgenz system and in 1 noise. In Sec. IV, we design the
detecting nonstationarity in a time series would be valuabldransient Lorenz and Rossler systems to simulate the situa-
to researchers from a diversity of fields. tion common in experiments where one wishes to zero in on
This subject has attracted much attention recently. Probifurcations, and analyze various facets of nonstationarity in
posed methods include recurrence pli@$ and recurrence these systems. For simulating the scenario of scanning a
quantification analysi$4], space-time separation plof§],  wide range of parameters, we refer to the transient logistic
and their associated probability distributiof®], metady- map[4,11] and the transient Lorenz systeh3,14. These
namical recurrence pld¥], a statistical test using the infor- four systems provide easy-to-implement examples for detect-
mation of the distribution of points in the reconstructeding state transitions in dynamical systems. Finally, we give
phase spacg8], a cross-correlation sum analygi@], and  conclusions in Sec. V.
nonlinear cross prediction analy$0]. Most of these meth-
ods are based on quantifying certain aspects of the nearest
neighbors in phase space. It has been recently sHdawh '
that the nearest neighbors in phase space can be broken down
into true recurrence points and sojourn points. Accordingly,
these two types of recurrence points define two types of re- Most methods for detection of nonstationarity are based
currence times. Two convenient algorithms for detectingon quantifying features of nearest neighbors. The nearest
transience and nonstationarity in a time series have been daeighbors are also called Poincare recurrence points, and are
veloped based on the second type of recurrence times. In thfarther divided into two classegd 1], with two types of re-
currence times.
Given a scalar time serigx(i),i=1,2,..}, we first con-
*Email address: jpgao@ee.ucla.edu struct vectors of the formi15]: X;=[{x(i),x(i +L),... x[i
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" “ with d;=d; for discrete maps and continuous-time systems
') with small r (when the sojourn points form a 0D seand
\‘ d;=d;—1 for continuous-time systems with largewhen
the sojourn points form a 1D getFor a periodic signal,
T,(i) simply gives an estimation of the periodicity of the
signal.

" Based on an observation that, due to nonstationarity, suc-
cessive recurrence times of the second type will, on average,
be changing with time, we have designed two whys| of
detecting nonstationarity and state transitions:

FIG. 1. A schematic showing the recurrence points of the sec- Algorithm 1: Partition a long-time series int@verlap-
ond type (solid circle and the sojourn pointsopen circley in  ping or nonoverlappingblocks of data sets of short length
B (Xo)- and computeT,(r) for each data subset. The length of the

subset is chosen to be short enough so that nonstationarity is

+(m—1)L]}], with m being the embedding dimension and not a problem for the subset. At the same time, the subset is
L the delay time{X;, i=1,2,...N} then represents certain long enough so thaT,(r) can be reliably estimated. As a
trajectory in am-dimensional space. In this paper, we shallrule of thumb, we recommend that the subset contains a few
always normalize the time series into the unit intef@®l1]  cycles of oscillation, if the motion is oscillatory. One may
before subsequent analysis. Next, we arbitrarily choose a reflso want to choose a new length for the subset, suctkas 2
erence poink, on the reconstructed trajectory, and consideror k/2, and check whether the new result remains similar to
recurrences to its neighborhood of radius, (Xo) ={X:|[X  that when the length of the subsetkisUsually, overlapping
—Xol<r}. The subset of the trajectory that belongs toblocks are preferred so that bifurcation can be more accu-
B, (Xp) is denoted b)81={xtl,xt2,...,Xti...}. The elements rately located. To save computation, however, we do not

of the setS,; are the Poincare recurrence points. Usg ~ recommend maximal overlappin@ge., when adjacent data
we define the Poincare recurrence time as the elemefit ofsubsets differ by only one pointFor nonstationary and tran-
T.()=t;,,—t;, i=1,2,.}. For later convenience, we call Sient time series, we expect thg(r) will be different for
the elements ofT,(i)} the recurrence times of the first type. different blocks of data subsets. This algorithm is best suited
Sometimes we may havg,(i)=1 (for continuous-time for the detection of state transitions in a time se(msch as
systems, this means 1 unit of sampling timéor somei.  from chaotic to periodic, or vice vergasinceT,(r) simply
This corresponds to botk; andX, ,; belonging toS;. For  estimates the periodicity of a periodic signal.
deterministic continuous-time systems with fixésmal) Algorithm 2: With fixedr, computeTy(j) for all the ref-
sampling time, if the radius of B, (X) is not too small, then €rénce points in the entire dataset, whedenotes thgth
we can have a sequence suchXasX, . 1,....X, . belong- return to_the r_efgrer!ce point. Nonstationarity is seen when
. . . o U T,(j) varies withj. Since a given region in the phase space
ing to Sy, with k>1' This is shown sche.matlcall‘y‘/ n Fig. 1. may be visited by a given trajectory more often than other
We call the pointsXy.s,... Xy +« (éxcludingX;) “sojourn regions, to remove this dependence of visiting frequency on
points.” Whenk>1, each such sequence of points effec-the phase-space location, we perform the following normal-
tively represents a one-dimensionfdD) set. For maps or jzation. Let the reference point Bé,, and T,(j)[B,(Xo)],
continuous-time systems with smajlthe number of sojourn j=1 2 ..N,, be successive recurrencesBgX,). We nor-
points are negligible. Hence, sojourn points form a ODmaIizeTz(j)[Br(XO)], j=1,2,..Ng, by its mean. This pro-
(empty or almost empjyset. We now remove these points cedure is applied to all the reference points. Next, we group
from S; and denote the remaining points & by S,  the normalizedT,(j) together according tp {T,(j)(X;), i

:{Xti'xté""’xt{’“'}’ which in turn define a time sequence =0,1,2,.}, and compute the mean of each grotig(j). For

N

{To(i)=t{,,—t/, 1=1,2,.}. We call the elements &, re-  nonstationary time serieJ,,(j) will vary with j, while for
currence points of the second type, ang(i) recurrence stationary time seriesT,(j) will have an almost constant
times of the second type. value of 1.

For dissipative chaotic systems, we have shown that with The classification of recurrence points and times into two
fixed r, the distribution off T,(i)} is exponential, due to the types enables us to gain new insights into the structures of a
memoryless property of a chaotic system, and the mean atcurrence plotRP) [3,14], and to design new ways of quan-
Ty(i) and T,(i) are both related to the information dimen- tifying a RP[14]. Recall that a RP is aNx N array in which

siond; of the attractor by simple scaling laW$1], a dot is placed ati,j) whenever a poinX; on the trajectory is
. close to another poinX;. Hence it is clear that sojourn
Ty(r)~r 9 (1)  points will trace out a short verticgby symmetry, also hori-
zonta) line segment. Collection of sojourn points, hence,
and gives rise to squarelike texturésr blocks in a RP. In Sec.
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FIG. 2. An example of metastable Lorenz chaotic signal. An

arrow is drawn to separate the metastable and the decaying parts of FIG. 3. Variation ofT,(j) with j for a metastable chaotic signal
the signal. (curve A) and the chaotic signalcurve B). The scaler used to

generate the figure is™?. Embedding parameters ame=4 and

11 B, we shall show that a RP for 17 noise typically exhib- L =3. 25000 points are used in the calculation.

its such squarelike textures. ) _ ) ) o
signals are quite stationary. Using some criteria for chaos

such as phase diagrams and power spectra, we might classify
such metastable chaotic signals as genuine chaotic signals.

In this section, we apply Algorithm 2 described in the lastWe apply our tests of stationarity to see whether the meta-
section to detect nonstationarity in the metastable chaotistable chaos is stationary and whether it is really the same as
Lorenz system and in 17 noise. the conventional chaos.

We have generated 6 very long metastable chaotic time
series forR=23.5 using 6 different initial conditions. For
each time series, we retain only the middle 25000 points
ith sampling timest=0.06. We apply our Algorithm 2 to
analyze these time series. A typidal(j) vsj curve is shown
in Fig. 3 as curveA. As a comparison, the result for a true
chaotic time series correspondingRe- 28 is also shown as
curve B. For the true chaotic signal, we observe thafj)

IIl. DETECTION OF NONSTATIONARITY

A. Nonstationarity in the metastable chaotic Lorenz system

Some chaotic systems are found to exhibit an interestin
phenomenon called metastable chfb8], or chaotic tran-
sient[17]. Consider the Lorenz system:

dx/dt=—10x—y), dy/dt=—xz+Rx—y,

dz/dt=xy—8z/3. 3

For R<1, the system has a stable solution(@t 0, 0. For
R>1, there are three critical point§), 0, 0, (a,a,R—1),
and (—a,—a,R—1), wherea=[8/3(R—1)]"% For R be-

assumes more or less a constant value of 1, as expected.
However, for the metastable chaotic sigigl(j) varies con-
siderably withj. This indicates that dynamically, the meta-
stable chaos is nonstationary, though visually it appears quite
stationary. While at first sight this result might not be as

tween 1 andR,~24.74, the two nonzero solutions are stableexpected, on a second thought, one is compelled to accept it,
and attracting, and foR>R,, all three critical points are since the variations in the time series considered here is ul-
unstable, and the solution is chaotic. In a rangeRaf timately finite (i.e., it eventually decays to a stable fixed
~24.06<R<R,, it is observed that some trajectories tendpoint).
towards the strange attractor asymptotically, while others True chaotic attractors are often fractals. The fractality is
tend asymptotically towards the stable attracting points. Theaused by incessant stretching due to exponential separation
former trajectories oscillate irregularly without ever settling of nearby trajectories, and folding due to recurrence. Hence,
down. Such solutions are known as “sustained chad®$].  we surmise that nonrecurrence implies a lack of genuine
At R=Ry~13.926, a transition occufd8]. Inmediately fractal structure in the metastable chaotic signals studied
aboveR, there is an “exceptional” sefi.e., a set with mea- here. To test this hypothesis, we compute the correlation
sure zerpof chaotic orbits that oscillate forever. This chaotic dimension of the signal using the Grassberger-Procaccia al-
set is unstable foR betweenR, andR; . Its existence, how- gorithm[19]. Two typical results are shown in Fig. 4, where
ever, affects what is observed in numerical investigationsthe solid linesA; and A, are computed using two different
especially forR just belowR;, since the “decay time” for metastable chaotic data sets. Four other data sets give results
orbits near this chaotic set is very long. These predecayingimilar to eitherA; or A,. For comparison, the curve for the
trajectories are called “metastable chaos.” An example forchaotic signal aR=28 is shown as the dashed curve in Fig.
R=23.5 is shown in Fig. 2, where we observe that the meta4. We observe that for metastable chaotic signals, whenever
stable chaotic oscillations last more than 1700 natural timéhed log,oC(r) vsdlog;or curve has an appreciable plateau
units. With a sampling timét=0.06, this amounts to having (with a suitably chosen delay timk), the plateau either
a time series almost as long ax 30* points for the meta- settles at a value of 2, or the curve does not have a plateau.
stable chaos. We observe that visually metastable chaotic While it is unrealistic to check whether all metastable
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FIG. 4. Correlation dimension calculations for two metastable G- - Va”a}'on ofT(j) with j. The scaler used to generate
chaotic signalgsolid lines withm=4 andL=9 and denoted aa1  the figure is 2%. Embedding parameters ara=6 and L=1.
andA2) and a true chaotic signétiashed line wittm=4 andL 29000 points are used in the calculation.

7 for the metastable chaotic signal. In some sense, this indi-
chaotic Signa|s are nonfractals, we can Conjecture that whegates that the 1f noise is less nonrecurrent on finite scales.
ever a metastable chaotic signal is nonrecurrent for a numbdhis results in an appreciable plateau when the Grassberger-
of different scales, it lacks a genuine fractal structure. FurProcaccia algorithm is applied to such processes. We should
thermore, we surmise that even though the Grassbergeﬂ.ote, however, that the feature of being less nonrecurrent for
Procaccia algorithm gives an appreciable plateau for som&/f“ noise is scale dependent. When a smaller ball of radius
metastable chaotic Signmespecia”y forR just be|owR1)' r is used to define neighborhoods, them“lhoise is more
the plateau, which necessarily excludes those scales that cdionrecurrent.
respond to the signals to be dynamically nonrecurrent, would The nonrecurrent nature offf/noise can be better appre-
be so narrow that it would be destroyed by a tiny amount ofiated by computing a RP. Figure 6 shows an example. We
noise. observe that away from the main diagonal, the plot is basi-

cally blank, indicating lack of recurrence for the signal. Were
B. Nonstationarity in 1/f* noise a smallerr for the ball used, then the plot would be almost
o o ] ) completely blank except just near the main diagonal. The RP

1/f% noise is ubiquitous in nature and in man-made SySshown in Fig. 6 is simply a result of the finiteness of the size
tems[20,21]. Using 1f noise as an example, it has been{or the ball. This cutoff scale corresponds to the “knee”
demonstrated that the correlation dimension andkb@n-  gpserved in the dimension calculation of such procef2es
tropy measures alone cannot be used to distinguish betwegge also observe that the structure of the RP is basically
deterministic chaos and noifg,2]. In this section, we show  squarelike, indicating that the majority of the Poincare recur-

relation dimension is simply the local graph dimension of thecan obtain a schematic shown in Fig. 7, showing that when-
trajectory corresponding to the sojourn points.

1/f¢ noise can be obtained through its Fourier representa- 2000 . T
tion [1,2], i.e., by S

N/2
x(ti)zg,l A(w)co witi+dy), i,....N, 1500

2 —a el
A (wk)OCa)k ’ (4) -— 1000 3 .
where w,=2mk/NAt and the¢, are random uncorrelated
phases. We generate a number of realizations of such pro- ‘
cesses corresponding to different valuesxoEach realiza- 500k
tion is 32 768 points long. To remove possible edge effects, -
we analyze only the middle 25000 points. Figure 5 shows a
typical T»(j) vsj curve(corresponding tax=1.5). We ob- gy
serve thatT,(j) varies considerably witlj, indicating that 1000 1500 2000
the process is not recurrent, and is thus dynamically nonsta- :

tionary. _ ) ’ ] FIG. 6. A recurrence plot for a realization off#/noise with
Comparing Fig. 5 and Fig. 3 curw's, we find that the  4—1 5. The embedding parameters are 6 andL=1. The scale

variation ofﬂ(j) with j is less significant for I/ noise than  used is 2 “.
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FIG. 7. A schematic showing the recurrence points of the sec- S 130F
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B, (Xg) for 1/f* noise.

110F
100

ever a “recurrence” occurs, the sequence of sojourn points 0 20 40 60 80 100 120
is fairly long, due to finiteness of the size of the ball. Hence, Time t
what the Grassberger-Procaccia algorithm estimates is the
fractal dimension of such an irregular trajectory. Being able FIG. 8. (a) the transient Lorentz signalp) Parameter variation
to easily estimate the key parameter fof“lhoise should be (curveA) and variation ofT,(r) with time. The embedding param-
considered a merit of the Grassberger-Procaccia algorithmeters aren=3 andL=10. The scale used is 2.

An implication of the above results is that if an efficient
algorithm for the computation of the information dimension correctly locates the bifurcation points, and also offers a way
can be developed based on Eg), then a dimension calcu- of explaining why sometimes there are false indications of
lation may suffice to indicate whether a signal is chaotic orifurcations.
not. By efficient we mean that the size of the data set used Sometimes an experimentalist is most interested in locat-
for this purpose should be not much larger than that needeitig a bifurcation point for a controlling parameter. This ex-
for the Grassberger-Procaccia algorithm. This is left to futurgperimentalist would like to fix the parameter just before and
work. after that bifurcation point, yet is unable to, due to fluctua-

We also note that if one finds the signal under study igions in the equipment and environment. The parameter
nonstationary and belongs tof 4/noise, the next step in the sometimes becomes larger than the bifurcation point, some-
analysis of the time series may be to conduct multifractatimes smaller; overall, it more or less oscillates. This picture
analysis of the signal, to determine whether the signal isuggests that we design a transient Lorenz system in this
mono- or multifractal, and how intermittent the signal is. Seeway: integrate the Lorenz system of E§) with a fourth-
Ref.[22] for an introductory account of multifracta{struc-  order Runge-Kutta method and a timestep of 0.01, with the
ture function technique and singular measures parameteR(i) at stepi being

IV. DETECTION OF BIFURCATIONS R(i) =145+ 2 sin(2i/6000 + n(i), ®

In this section, we design the transient Lorenz systenyvhere 7(i) is an uncorrelated Gaussian noise with zero

with an oscillating parameter and the transient Rossler sydn€an and standard deviation 0.05. A time series of length
tem with a slowly linearly increasing parameter, and studyl2 001 points thus obtained is shown in Figa)8 We ob-

state transitions in these systems using our Algorithm 1S€rve that visually the time series is quite stationary, since

These systems are specifically designed to simulate a situffl€ amplitude of the signal is more or less a constant. In the

tion common in experiments where one wishes to zero in ofime interval considered, the parameter exactly oscillates two
bifurcations. cycles, as shown in Fig.(B) curve A. Note the curve is

blurred due to a random fluctuation.
One might expect that bifurcations occur at time instants
30, 60, and 90. This occurs if one integrates Bj).with a
Following Trullaet al.[4], lwanski and Bradley designed fixed R. Re-examining Fig. &), we notice that if there are
a transient Lorenz system. The system is obtained by interansitions, then those transitions occur later than the time
grating Eq.(3) with a time step of 0.01 and incrementing the instants of 30, 60, and 90. This implies that transitioning
parameteR from 28.0 to 268.0 by 0.002 at each integrationfrom an oscillatory phase to a chaotic phase, and vice versa,
step. The stationary Lorenz systdoprresponding to fixed requires time. To correctly locate the transition points, we
R) has periodic windows at 99.524R<100.795, 145R  computeT,(r) on time series data within episodic windows
<166, andR>214.4. This system has been carefully studiedconsisting of 1000 consecutive points. Sequential windows
using our Algorithm 1[14]. It is shown that the method are shifted by 10 pointéthus overlapping by 990 points

A. State transitions in the Lorenz system
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tral densities(PSD, E(f). [See also Ref[12] for phase
diagrams and PSD’s for attractors corresponding ato
=0.17, 0.19, and 0.20 The attractor corresponding @
=0.15 has a repeller near the origin, and is usually called the
simple Rossler attractor. We notice that as the paranagser
varied the attractor approaches the repghég. 9b)] until it
encompasses fFig. 9c)]. The attractor rolls up around the
repeller, developing a structure that has been called “the
funnel” [Fig. 9Ab)—9A(d)]. As seen from the power spectrum,
the simple Rossler attractor contains a sharp periodic motion
superimposed on otherwise chaotic behavior. This is called
phase coherendd?2]. As the funnel develops more turns the

phase coherence is lost. We want to clarify the nature of
these subtle chaotic bifurcatiorise., the process of phase
decoherende and whether these bifurcations are character-
ized by abrupt or continuous changes.

We integrate Eq.6) with a fourth-order Runge-Kutta
method and a time step of 0.05, by incrementing the param-
etera from 0.15 to 0.30 by 1.2810 ° at each integration
step. This gives a data seft) of total length 120 001 points.

We use our Algorithm 1 to study(t). We computeT ,(r)

on time seriex(t) data within episodic windows consisting
of 2000 consecutive points. Sequential windows are shifted
by 10 points(thus overlapping by 1990 pointgjiving a total

of 11 801 values foif 5(r). The result is shown in Fig. 10 as
the very irregular upper curve. For the parameter range
shown, the curve suggests three periodic windows, as indi-

FIG. 9. Phase diagrams and power spectra for Rossler attracto@f"‘te‘j by arrows and denoted by capital let#&r8, andC in

A, B, C, andD denote parameter values@&0.15, 0.18, 0.21, and the figure. By integrating Eq6) with fixed a belonging to
0.30, respectively. those windows, we find that motions corresponding to those

parameter values are indeed periodic. The existence of those
giving a total of 1101 values fof(r). Figure 8b) curveB 32\r/lgldolgmv22? ?)\;V?hgafsur?:\ve({)lFlir;sp. o&tg;'] tahn&p;iitlgggigglfy
shows the variation off»(r) vs time. We observe several g(d)] does not follow directly from the simple Rossler attrac-
interesting features: the variation @b(r) roughly consists  tor [Fig. 9(a)], since these states are separated by periodic
of two cycles, corresponding to the two cycles of the paramyindows and(ii) phase decoherence has to really refer to the
eter variation; the time of transitions occur later than timeygriation of chaotic behavior foa belonging to the second
instants of 30, 60, and 90. Due to nonstationarity, neither thenaotic window, roughlff0.17, 0.24. This result also com-
two chaotic nor the two oscillatory phases are identical; i”'pels us to think more carefully what characterizes phase de-
side each chaotic phase, there are wide variations, and variggherence.
tions inside the oscillatory phase, though much smaller, are sharp peak in a power spectrum can be generated by
still appreciable, indicating nonstationarity of the signal.  two mechanisms: a perfect periodic signal or a signal with
Note that these results are quite robust with respect tgyed frequency but varying amplitude. Phase decoherence
changes in the embedding parameters, the size of the bajjere refers to the latter case. For example, if one computes
and the length of the data subset. the time elapse between successive maxima of the chaotic
signalx(t) corresponding tea=0.17, then one finds that this
period is almost a constant. This suggests that we consider
the following time series@(t) = arctafx(t+L)/x(t)], whereL
is chosen to be 15 sampling time interval here. With this
dy/dt=x+ay, dzdt=b+z(x—c). the phase diagram(t+L) vsx(t), looks similar to those of
(6) Fig. 9. We then computd,(r) from 6(t). The result is
shown in Fig. 10 as the much regular lower curve. Very
The x and y equations are equivalent to those of a linearinterestingly, the curve also suggests a periodic window that
damped harmonic oscillator. All the nonlinearity comes fromis identical to the windowC given by x(t). In order to ex-
the x—z term in the third equation. Following Farmetal. = amine this curve more clearly, we magnify the segment for
[12], we chooseb=0.4 andc=8.5. Four chaotic attractors ae[0.15,0.24 and replot it as Fig. 11. We find that far
corresponding t@=0.15, 0.18, 0.21, and 0.30 are shown in smaller than 0.177, so long as the phase information is con-
Figs. 98)—9(d), respectively, together with their power spec- cerned, the chaotic motiofior example,a=0.15 and 0.1y

log,oE(f)

-5} -5}

! 1 1 i ! ) ! 1 !

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 05
Frequency f Frequency f

B. State transitions in the Rossler system

The Rossler system takes the fof28]:
dx/dt=—(y+2z),
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FIG. 10. Variation ofT5(r) with the parametea for x(t) (upper FIG. 11. A magnification of part of the lower more regular
irregular curvg and 6(t) (lower more regular curye The embed-  ¢yrve of Fig. 10.
ding parameters ama=3 andL=10. The scale used is 2*.

o . noise should actually be regarded as a merit of the algorithm,
and the periodic motioffor examplea=0.16) are not much  sq |ong as the danger of interpreting “Lhoise as determin-
different, sinceT,(r) varies only slightly. The transition jstic chaos is absent.
starts arounca=0.18, and becomes more dramatic around We have also designed a transient Lorenz system with a
a=0.20. Overall, however, the changes are gradual ratheslowly oscillating controlling parameter, and a transient
than abrupt. These quantitative features are consistent witRossler system with a slowly linearly increasing parameter,
those qualitative ones obtained by visually inspecting thewith the parameter range covering a sequence of chaotic dy-
phase diagrams and PSD’s of Fig. 9. namics with increased phase incoherence. State transitions,

As in the transient Lorenz system, we have also observeftom periodic to chaotic, and vice versa, have been identi-
that similar results are obtained when different embeddingied, together with different facets of nonstationarity in each
parameters and scalesare used, and when the size of the phase. These results do not depend sensitively on the specific

data subset is 1000 points. values for the embedding parameters, the size of the ball, and
the length of the data subset, indicating the method should be
V. CONCLUSIONS easy to use in practice.

While the main purpose of this paper is to detect state

In this paper, we have analyzed a number of interestingransitions in experimental situations, the techniques may
dynamical systems to detect nonstationarity and transience iglso be used to detect the bifurcations of a system when the
time series, and to understand various consequences of nogquations of motion are known. More precisely, when many
Stationarity. In particular, we find that nonstationarity in theparameters are invo|ved, one may integrate or iterate the
metastable chaotic Lorenz System is due to nonreCUrrenC@quationS of motion by Continuous|y Varying one or a few
Nonrecurrence then determines lack of fractal structure in thgarameters in every time step, and then study how the fea-
signal. In 1f* noise, we find that the correlation dimension tyres of the motion change with tinjeence, paramete)].
associated with such noisy processes are local graph dimen-
sions calculated from sojourn points. While the presence of ACKNOWLEDGMENTS
such dimensions has been considered one of the pitfalls of
the Grassberger-Procaccia algorithm, we have argued that The author thanks Johnny Lin for proofreading the manu-
being able to readily estimate the key parameter fdf* 1/ script and correcting the English.
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