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The magnetic Eden modéMEM) [N. Vandewalle and M. Ausloos, Phys. Rev.58, R635(1994] with
ferromagnetic interactions between nearest-neighbor spins is studidd- ih) (dimensional rectangular geom-
etries ford=1,2. In the MEM, magnetic clusters are grown by adding spins at the boundaries of the clusters.
The orientation of the added spins depends on both the energetic interaction with already deposited spins and
the temperature, through a Boltzmann factor. A numerical Monte Carlo investigation of the MEM has been
performed and the results of the simulations have been analyzed using finite-size scaling arguments. As in the
case of the Ising model, the MEM ih=1 is noncritical(only exhibits an ordered phase®t0). Ind=2 the
MEM exhibits an order-disorder transition of second order at a finite temperature. Such transition has been
characterized in detail and the relevant critical exponents have been determined. These exponents are in
agreementwithin error bar$ with those of the Ising model in two dimensions. Further similarities between
both models have been found by evaluating the probability distribution of the order parameter, the magneti-
zation, and the susceptibility. Results obtained by means of extensive computer simulations allow us to put
forward a conjecture that establishes a nontrivial correspondence between the MEM for the irreversible growth
of spins and the equilibrium Ising model. This conjecture is certainly a theoretical challenge and its confirma-
tion will contribute to the development of a framework for the study of irreversible growth processes.
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I. INTRODUCTION count the corresponding interaction energies. By analogy to
the Ising model[15] one takes] as the coupling constant

The study of kinetic growth models such as directed perbetween nearest-neighb@iN) spinsS;; and the energ¥ is
colation, Eden growth, ballistic deposition, diffusion limited then given by
aggregation, random deposition with and without relaxation,
cluster-cluster aggregation, etc., is motivated by their interest E=— i >SS, )
in many areas of scientific research and technology such as 2 (7,17 Y
polymer science, crystal and polycrystalline growth, gela- o, L
tion, fracture propagation, epidemic spreading, bacterial anwhe_re(u X J.> means th?t the summation is taken over oc-
fungi growth colonies, colloids, et¢1-5]. Within this con- cuplef NN sites. The Spins can assume two values, namely,
text the Eden mod€l6] has become an archetype growth Sj=*1. Throughoutt_ms work we ;et the B_oltzmann con-
model. Eden clusters are compact but the self-affinity thatc'tant equal to unityKg=1), we consided=0 (i.e., the fer-

. . LT . magneti nd we take th lute temperatdr
characterizes the behavior of the growing interface is o{g agnetic cageand we take the absolute temperatdre

hi 719 F Ausl easured in units od. In the MEM a spin is added to the
muc mterest(s_ee, e.g.[7-12). ew years ago AUSIO0S o ster with a probability proportional to the Boltzmann fac-
et al. [13] have introduced an additional degree of freedo

. 9OMkor exp(~AE/T), where AE is the total energy change in-
to the Eden model, namely, the spin of the added particles;qyed. It should be noted that at each step all sites of the
More recently, the Eden growth of clusters of charged parperimeter are considered and the probabilities of adding up
ticles has also been studigti]. and down spins have to be evaluated. After proper normal-
In the magnetic Eden modéVIEM) [13] with spins hav-  jzation of the probabilities the growing site and the orienta-
ing two orientationgup and downthe growth of the cluster tion of the spin are determined through a pseudorandom
starts from a single seed, e.g., a spin up seed, placed at thember generator.
center of the two-dimensional square lattice, whose sites are It is worth mentioning that the MEM has originally been
labeled by their rectangular coordinatesj). Then, the motivated by the study of the structural properties of mag-
growth process of the resulting magnetic cluster consists imetically textured materialsl3]. While these previous stud-
adding further spins to the growing cluster taking into ac-ies of the MEM were mainly devoted to determine the la-
cunarity exponent and the fractal dimension of the set of
parallel oriented spingl3], the aim of the present work is to
*Present and Permanent address: DepartamentosiaFracul-  complement these previous investigations by studying the
tad de Ciencias Exactas, Universidad Nacional de La Plata, CC 6Tritical behavior of the MEM using extensive Monte Carlo

(1900 La Plata, Argentina. simulations and applying a finite-size scaling theory. Also,
TFAX: 0054-221-4254642. our study is performed in confinddtripped geometries that
Email address: ealbano@inifta.unlp.edu.ar resemble recent experiments where the growth of quasi-one-
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dimensional strips of Fe on a Cill) vicinal surface[16] lll. STUDY OF THE MEM IN  (1+1)-DIMENSIONS:
and Fe on a W10 stepped substratupd7] have been per- RESULTS AND DISCUSSION
formed. In fact, the preparation and characterization of mag-
netized nanowires is of great interest for the development Otfini
advanced microelectronic devicgs6—19. Furthermore, the
growth of metallic multilayers of Ni and Co separated by a
Cu spacer layer has recently been also stufied

Another goal of the present work is to compare the result
obtained for the MEM with the well-known behavior of the
classical Ising modef15,21, an archetypical model in the
study of thermally driven(reversible phase transitions in
equilibrium systems. The Ising Hamiltoniaf{] is given by

Magnetic Eden clusters grown on a stripped geometry of
te linear dimensiorL at low temperatures show an inter-
esting behavior that we call magnetization reversal. In fact,
we have observed that long clusters are constituted by a se-
uence of well-ordered magnetic domains. Spins belonging

0 each domain, of average lendth>L, have mostly the
same orientation and consecutive domains have opposite ori-
entation. Letlg be the characteristic length for the occur-
rence of the magnetization reversal. Singe-L, we then
conclude that the problem has two characteristic length
scales, namelylp andlg such that p>1g.

In ordinary thermally driven phase transitions, the system
2 SiSjr ) changes from a disordered state at high temperatures to a
(j,i"j") spontaneously ordered state at temperatures below some

critical valueT, where a second-order phase transition takes

place. Regarding the Ising model, one has that, in the ab-
where(ij,i’j’) means that the summation runs over all NN sence of an external magnetic field € 0), the low tempera-
sites, ;=1 is the state of the spin at the site of coordi- tyre ordered phase is a state with nonvanishing spontaneous
nates (,j) andJis the coupling constanti>0). magnetization ¢ Mg,). This spontaneous symmetry break-

The MEM is also similar to a family of models for the jng is possible in the thermodynamic limit only. In fact, it is
stochastic growth of crystals generically known as crystakound that the magnetizatiod of a finite sample can pass
growth modelSCGM) [22-28, for a review, see e.9127].  with a finite probability from a value near M, to another
As in the MEM, in the case of CGM each atom is adsorbechegr —Myg,, as well as in the opposite direction. Conse-
with a given probability conditional to the actual configura- quently, the magnetization of a finite system, averaged over a
tion of neighboring atoms on the previous lajgerHowever,  gyficiently large observation time, vanishes at every positive
in contrast to the MEM, the crystal is supposed to grow 'aye"temperature. The equatidvl (T,H=0)~0 holds if the ob-
a_\fter layer. It should also be notice_d that relations_hips estalseryation time (59 becomes larger than the ergodic time
lished between CGM and a special class of Ising mOdelﬁte,g), which is defined as the time needed to observe the
[24,26,28 have allowed to derive exact results. Therefore,system passing fromt M, to =My, Increasing the size of
useful comparisons with the MEM will be also discussed inthe sample the ergodic fime increases 100, such that in the
the presentation of our results. _ thermodynamic limit ergodicity is broken due to the diver-

This paper is organized as follows. In Sec. Il we give gence of the ergodic time, yielding broken symmetry. Since
details on the simulation method, Sec. Il is devoted to theyionte Carlo simulations are restricted to finite samples, the
presentation and discussion of the results obtained for thgiangard procedure to avoid the problems treated in the fore-
MEM in (1+1)-dimensions, while Sec. IV refers to results 44ing discussion is to consider the absolute magnetization as
corresponding to (2 1)-dimensions. In Secs. lll and IV, an order parametd®9]. Turning back to the MEM, we find
detailed discussions comparing our results with the behavigf 5t the phenomenon of magnetization reversal also causes
of the I;ing magnet are outlined. Finally our conclusions argpe magnetization of the whole cluster to vanish at every
stated in Sec. V. nonzero temperature, provided that the length of the cluster

Ic (which plays the role oft,,9 is much larger tharp
(which plays the role of,,4). Therefore, we have measured

H=—

Nl G

[l. DESCRIPTION OF THE SIMULATION METHOD the mean absolute column magnetization, given by
The MEM in (1+1)-dimensions is studied in the square L
lattice using a rectangular geometrty< M with M>L and Im(i,L,T)|= E S s, 3)
imposing periodic boundary conditions along thdirection. Y L= )

The location of each site on the lattice is specified through its

rectangular coordinatesi,{), (1<isM,1l<j=<L). The In the stripped geometry used in this work the bias intro-
starting seed for the growing cluster is a column of parallelduced by the lineal sed@ starting column made up entirely
oriented spins placed at1. It should be noticed that pre- of up sping can be avoided by calculating relevant properties
vious simulations of the MEM were restricted to rather mod-after disregarding spins within a distance approximately
est cluster sizes, i.e., containing up to 8000 spir8§, while  equal to few time4. from the seed. The procedure of column
in the present work clusters having up to Epins have been averaging out from the transient region represents a signifi-
typically grown. We have also studied the MEM in cant advantage of the stripped geometry used for the simu-
(2+1)-dimensions employing abh XL XM geometry M lation of the MEM. In fact, when a single seed at the center
>L) with periodic boundary conditions along badthdirec-  of the sample is used, the definition of the average magneti-
tions. zation of the whole cluster is strongly biased by the cluster’'s
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0.03 Decreasing temperature, the order parameter probability
° o T=045 °© distribution broadens, it becomes non-Gaussian, and Tear
* T=0.50 it splits into two peaks that get more separated at lower tem-
002 | A T=0.56 perature. ForT<T, and linear dimensions much larger

° T=0.63

% o than the correlation length of order parameter fluctuations,
e o o one may approximat®, (M) near the peaks by a double-
;u o © Gaussian distribution, i.e.,

0.01
o (M —(M—Mgp3L? —(M+Mgp2LY
L(M)xex 2Tx +ex 2Tx ,
(6)
0L . . .
-1 -0.5 0 0.5 1 whereMg, is the spontaneous magnetization, while the sus-

m ceptibility y is now given by

FIG. 1. Plots of the probability distribution of the mean column Ld
magnetizationP (m) versusm for the fixed lattice widthL =128 X= T«M 2 —(IM])?). (7)
and different temperatures. The sharp peaksmat+1 for T

=0.45 have been truncated in order to allow a detailed observatiOﬁrom Eq.(4), it turns out that the Gaussian squared width
of the plots corresponding to higher temperatures. This beha\’ipéssociated \,Nith high temperature distributions is very close

resembles that of the one-dimensional Ising model. More details in -
the text. to the second moment of the order parameter, i.e.,

2 2
o _ ~(M?). 8
kernel orientation at the early stages of the growing process. o*~(M%) ®
In addition, using several randomly generated seeds Wggquation(8) is a consequence of the Gaussian shape of the
could also establish that the system evolves into a givegrder parameter probability distribution and, thus, it holds
stationary state independently of the seed employed. for the MEM as well. From the known one-dimensional ex-

The mean column magnetization is a fluctuating quantityact solution for a chain off Spins[37y38j| one can obtain
that can assumke+ 1 values. Then, for given values of both

L and T, the probability distribution of the mean column

magnetizationP_ (m)) can be evaluated, since it represents X= fexp(ZFI') ©)

the normalized histogram of taken over a sufficiently large

number of columns in the stationary regil30—32. In the  then, Eqs(5) and(9) lead us to

thermodynamic limit the probability distributiofP..(m)) of

the order parameter of an equilibrium system at criticality is o 1

universal(up to rescaling of the order paramegtand thus it (M%) = Eexp(ZfI’) (10)
contains very useful and interesting information on the uni-

versality class of the systefi83—35. Figure 1 shows the (where it has been taken into account tkit)=0 due to
thermal dependence d? (m) for a fixed lattice size Il finite-size effects, irrespective of temperafuerom Eqs(8)
=128) as obtained for the MEM. At high temperaturesand(10) we can see that the high temperature Gaussian prob-
P_(m) is a Gaussian centered mt=0 but when the tem- ability distribution broadens exponentially agjets lowered,
perature gets lowered, the distribution broadens and developstil it develops deltalike peaks Bt==*1 as a consequence
two peaks am=1 andm= — 1. Further decreasing the tem- of a boundary effect on the widely extended distribution. It
perature causes these peaks to become dominant while teRould be noticed that fod=2 this phenomenon is pre-
distribution turns distinctly non-Gaussian, exhibiting a mini- vented by the finite critical temperature that splits the Gauss-
mum just atm=0. The emergence of the maxima i@ ian, as implied by Eq(6).

==*1 is quite abrupt. This behavior reminds us the order Turning back to the MEM, Fig. 1 strongly suggests that
parameter probability distribution characteristic of the one-an analogous mechanism should be responsible for the ther-
dimensional Ising model. In fact, for the well-studied mal dependence exhibited by the MEM’s order parameter
d-dimensional Ising mode[32,36], we know that forT  distribution function. So, by analogy to E¢(P), we assume
>T., P.(M) is a Gaussian centered lt=0, given by the relation

_ MZLd
PL(M)“eXL{ ZTX ),

where the susceptibility is related to order parameter fluc- to hold for the MEM, where we have introduced a phenom-
tuations by enological parametex, and the susceptibility is given by
g Eqg.(5). We find an excellent agreement to the data by choos-
_ L—((M 2 (M)?) 5) ing the valuea=1.6 as observed in Fig(®, where In-linear
X7 ' plots ofL{m?) versus 1T are shown for strip widths varying

(4) X= %exp( alT) (11
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v 04 [ E:AA% o, %4 FIG. 3. Comparison of results corresponding to the
':%:; %, ° o o (1+1)-dimensional MEM and the=1 Ising model.(a) Plots of
02 o e, S0 o ° (|m|) versusT obtained for a lattice of side=128.(b) Linear-log
L N Z
) ;v::..ﬁﬁA o oa e © plots of (|M|}(L,T) = (|m|wem)(L,T) versusL ™! for T=0.5 and
E"V§9 [ 2] s . s T=1.0. Hence, differences in the magnetization due to finite-size
0.0 : ' : : : effects appear to vanish in the thermodynamic limit.
0.0 0.5 1.0 1.5 2.0 2.5
T

the behavior ofP(nyy) as a function of temperature. Using
FIG. 2. Data for strip widths in the range €6.<1024.(a)  this probability we have evaluateghyy)=2.0000(1) irre-
Log-linear plots ofL{m?) versusT 1. The slope of the solid line spective of the temperature. This result can be understood
(linear fit to the datais a=1.6. (b) Plots of(|m|) versusT. More  considering that the growing process that leads to the assign-
details in the text. ment of a spinS;=+1 to each lattice site of coordinates

in the range 1& L <1024. Figure 2) shows plots of |m|) (i,]) can be studied by means of a bond model. In fact, we
versusT for the same lattices. This figure shows that byCan assign a_bond to e_ach pair of neighboring S|_tes, pointing
increasingL, the order parameter curves approach the on rom the earlier occupied site to the Igter oc_cupleq one. 5o,
that corresponds to the thermodynamic linfite., (|m|) he process that leads to a given spin configuration can be
— 6(T), whered is the Heaviside function specified by the fielddy(i,j) and bR(l,J_), where subin-

However, it should be pointed out that the results obtaine&Iexesu andR refer t.o the upper bond. of ’0.) [i.e., the bond
for the (1+1)-dimensional MEM and the one-dimensional 1At CONNECs the site of coordinatésj§ with that of coor-
(1D) Ising model do not exactly coincide for finite lattices, asd!nates (’J. D1, anq to theright bond of .th.e site O.f coor-
Fig. 3(@) shows for the case of the magnetization. Anyway,d'nates (.j), respectively{39]. We takeb(i,j)=+1 if the
this fact should not alarm us, since it can be seen that differ-
ences in the results obtained for both models are a direct
consequence of the finite-size nature of the lattices used in
the simulations and consequently they tend to vanish in the
thermodynamic limit. This is actually shown by Fig(b},
where log-linear plots of|M|ging) (L, T) —(|mM[yem)(L,T)
versusL ~! for two different fixed values of temperature are
presented. Thus, we conclude that in view of the full quali-
tative and quantitative agreement between both models we
can safely establish that, as in the 1d Ising model, the (1
+1)-dimensional MEM is not criticali.e., it also undergoes
a phase transition &t;=0).

We have also computed the number of already occupied
NN sites every time a new particle was added to the spin
system, and thus we have obtained the normalized probabil- FIG. 4. Plots ofP(nyy) versusT for nyy=1,2,3,4. The lines are
ity P(nyn) of havingnyy occupied NN sites. Figure 4 shows guides to the eye. More details in the text.
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_FIG' S PlOtS_OﬂD(AE) vgrsusT for AE:O’il'iz'i_?"t_‘l (in FIG. 6. Plots of the probability distributioR (m”) versusm”
units ofJ). The lines are guides to the eye. More details in the texts, the fixed lattice sizé = 16 and different temperatures. The oc-
. . I, . currence of two maxima located @' = = M, (for a given value of
bond points outwards and(i,j)=—1 if it is directed in- M, such that 6<M¢,<1) is the hallmark of a thermal continuous

wards. Therefore, the net bond flux at a given lattice Sitghase transition that takes place at a finite critical temperature.
(i,j) is given by

. . . . ) ) to establish dual transformations with the kinetic Ising model
o(i,j)=by(i,j) +Dbg(i,j)—by(i,j—1)—bg(i—1,) [25,26 and to extract some exact results. In contrast, the

) growing interface of the MEM is self-affine and the system is

and the possible values thétcan take arep=—4,—2,0,2. far from equilibrium. So, the link between the 1D Ising
After some algebra, it follows thatyy=(4— ¢) holds for _model and the (% 1)-dimensional MEM is quite challeng-
every site on the lattice. Moreover, it can be seen that, for a#'9:

arbitrary d-dimensional lattice of coordination number
Nan=2(q— ). Then, IV. STUDY OF THE MEM IN (2+1)-DIMENSIONS:

RESULTS AND DISCUSSION

(NN = Eq (13 A. The order parameter and its probability distribution
2 function
is the mean number of occupied NN, singg)=0. For the In order to compare the (21)-dimensional MEM and

two-dimensional square latticej=4 and Eq.(13) yields the 2D Ising model, we have first studied the order parameter
(Nun) =2, in agreement with the result we have already ob-Probability distributionP (m"), wherem" takes nowL?
tained by means of Monte Carlo simulations. +1 possible valuegsee Fig. 6. For high temperatures, the

Further insights into the MEM'’s growing process can beProbability distribution corresponds to a Gaussian centered at
gained by studying the mean energy change involved in th&""=0. At lower temperatures we observe the onset of two
addition of a new particle to the system. The process ofnaxima located an”= = Mg, (0<Ms,<1), which become
adding a new spin involves an energy chadde and from  sharper and approash”==*1 asT is gradually decreased.
the definition of the (% 1)-dimensional MEM, the possible Figure 7 shows the location of the maximum of the probabil-
values tha\E can take are @; 1,+2,+3,%4 (in units ofJ). ity distribution as a function of temperature for botd (
Figure 5 shows plots of the normalized probabilRyAE) +1)-dimensional MEM models witld=1,2. While for the
versusT for each of these values. The nonequilibrium natured=2 case we observe a smooth transition from thig,
of the MEM manifests itself through much more complex =0 value characteristic of high temperatures to nonzero
probability distributionsP(AE) (see Fig. 5 than those cor- my, ., values that correspond to lower temperatures, the curve
responding to the equilibrium 1D Ising model whex& can  obtained ford=1 shows, in contrast, a Heaviside-like jump.
take only three different values, namely,#04 (in units of As already discussed, the behavior exhibited by the
J). The results shown in Figs. 4 and 5 confirm the nontrivial(2+ 1)-dimensional MEM(e.g., as displayed by Figs. 6 and
nature of the link established between the MEM at station) is the signature of a thermal continuous phase transition
arity and the Ising model in equilibrium. that takes place at a finite critical temperature.

It should be noticed that for the case of CGRR—24 the The broken symmetry at a finite critical temperatdig
growing conditions are quite different than those of theimplied by the thermal continuous phase transition can be
MEM. In fact, in CGM the crystal grows layer by layer in a explained in terms of the broken ergodicity that occurs in the
given direction[24,26]. Furthermore, the probability distri- system when we tend to the thermodynamic linit—+¢<)
bution of the predecessor spin layer is sampled from thenaking use of the temperature dependence exhibited by the
equilibriumdistribution, so will be the probability of spins in order parameter distribution function. In fact, if we set the
subsequent layers. This particular growth mechanism allowsharacteristic length of MEM’s domairlg, equal to an er-
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FIG. 7. Plots showing the location of the maximum of the prob-  FIG. 8. Plots ofT,(L) versusL ! (for n=1,2). The solid lines
ability distribution as a function of temperature for both show the linear extrapolations that meet at the critical point given
(d+ 1)-dimensional MEM modelsd=1,2). The lines are guides to by T,=0.69+0.01.
the eye. The smooth transition fd=2 constitutes another evidence
of the finite critical point associated with the 421)-dimensional Furthermore, from well-established finite-size scaling re-
MEM. lations, the followingAnsaze hold just at criticality:

godic lengthl ¢4, we can carry out a complete analogy with (Im"(L, T=Ty)|yecL=A" (16)
the Ising model by associatifg, to te4 (the Ising model
ergodic tim¢ and the cluster’s total length: (already de-
fined in Sec. ) to the Ising model observation tinig,. In
this way, we encounter that excursions wf’ from m” Ymax L)L, (17)
=+ Mg, tom”=—Mg, and vice versa occur at length scales

of the order oflerq. When the cluster's total length becomes yhere and y are the order parameter and the susceptibility
larger and largerlg>leg) the whole cluster's magnetiza- critical exponents, respectively. Note that.,(L), as given

tion is averaged to zero. Furthermotg,q diverges as the py Eq.(17), refers to the maximum of(L,T) as a function
strip’s width becomes larger and larger, and again brokewyf T for fixed lattice sizel .

symmetry arises as the consequence of broken ergodicity. |5 view of the encountered analogies between the MEM
and the Ising model, it is natural to test the validity of Eqgs.
B. Order-disorder phase transition in the (2+1)-dimensional (14)—(17) for the case of the MEM in (2 1) dimensions. It
MEM: Finite-size effects and scaling analysis should be noted that as in the case of equilibrium systems, in
As already anticipated and as it follows from Figs. 6 andtN€ Present case various “effectivel-dependent critical
7, the (2+ 1)-dimensional MEM exhibits a thermally driven tgmperatures can also be defined. In pamcalar, we will de-
order-disorder transition at a finite temperature. In the therfin® Tea(L) as the value that corresponds(ten”|)=0.5 for
modynamic limit (L—=) we expect to determine a critical fixed L, andTc,(L) as the one corresponding to the maxi-
temperaturel,, such that|m’|)=0 for T>T, while (|jm’]) ~ mum of the susceptibility for a giveh, assuming that the
remains nonvanishing at temperatures below susceptibility is related to .qrd_er parameter flgctuatlons in the
From the finite-size scaling theory, developed for theS&Me manner as for equilibrium systepas given by Egs.
treatment of finite-size effects at criticality and under equi-(® @nd(7)]. Then, we should be able to obtalg from plots
librium conditions[40,41), it is well known that if a ther- ©Of Ten(L) versusL™" (for n=1,2) as is shown in Fig. 8.
mally driven phase transition occurs at a temperalye0  Following this procedure we find that bothc,(L) and
in the thermodynamic limit, then in a confined geometry this! c2(L) €xtrapolatgapproximately to the same value, allow-
transition becomes smeared out over the temperature regidid Us to evaluate the critical temperatdrg=0.69+0.01 in
AT(L) around a shifted effective transition temperaturethe thermodynamic limit.

and

T.(L), and the following relationships hold: After determiningT,, the correlation length exponemnt
can be evaluated by means of Efj5), making the replace-
AT(L)ocL ™Y, (14 ment\ =1/v. In fact, takingT; at the mean, maximum, and
g minimum values allowed by the error bars, we obtain six
an

log-log plots of| T.,(L)—T.| versusL for n=1,2. The slope
_ N of each of these plots, not shown here for the sake of space,
[Te(L) = Tel L™, (19 yields a value forv. The obtained values are
where the rounding and shift exponents are givengbya
=p~1, respectively(recalling thaty is the exponent that v=1.08T,=0.68, »=1.00T.=0.69,
characterizes the divergence of the correlation length at criti-
cality). r=0.88T.,=0.70 for n=1, (18
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FIG. 9. Behavior of the susceptibility as a function of tempera- ~ FIG. 11. Log-log plots of(m"(T=T,)) versusL ! for the

ture. Each curve shows a peak that becomes sharper and shifigean, maximum, and minimum allowed valuesTgf. The linear
towards lower temperatures &sis increased. The inset shows in fits (solid line9 yield an estimate3/vr=0.16+0.05.

greater detail the peaks corresponding to the smaller lattices (

=16,24,32). error. From this value and the value formerly obtainedifor

we thus determingg=0.16+0.05.
The critical exponents of the MEM in (21) dimensions
»=1.20T,=0.68, »=1.08T.=0.69, as obtained using a finite-size scaling analysis are sovfar:
=1.04+0.16, y=2.10+0.36, andB=0.1620.05. If we re-
»=0.95T.=0.70 for n=2. (19) call the exactly known critical exponents of thde=2 Ising
model, i.e.v=1, y=7/4, andB=1/8, we find that the (2
Thus our estimate is given by=1.04+0.16, where the +1)-dimensional MEM has the same critical exponents
error bars reflect the error derived from the evaluatiogf ~ Within error bars. These results further support our conjec-
as well as the statistical error. ture on the connection between the MEM in{2) dimen-
Figure 9 shows plots of the susceptibility versuas ob- ~ Sions and the Ising model in two dimensions.
tained using lattices of different side. It is found that the ~AS in the case of the MEM inl=1, we have also com-
susceptibility exhibits a peak that becomes sharper and shiffguted the number of already occupied NN sites every time
towards lower temperatures wheris increased. This behav- that a new particle was added to the spin system. We found
ior is, in fact, already anticipated by E617), and it allows  that the valugnyy)=3.0000(1) holds for all temperatures,
us to evaluatey/v from the slope of a log-log plot of,,.x ~ Which is indeed the result given by E@.3), sinceq=6 for
versusL, as Fig. 10 shows. The linear fit yieldg»=2.02  the three-dimensional square lattice.

+0.04. Using this value and the value formerly obtained for At this stage, we may recall that for the
v we thus determine/=2.10+0.36. (1+1)-dimensional MEM({nyy) equals the coordination

Figure 11 shows log-log plots ¢fm”|)(T=T,) versusL number of thed= 1 Ising model, and that we found that both
for the mean, maximum, and minimum allowed values ofmodels have the same critical temperature and exhibit the
T.. Considering only the larger lattices, the linear fits to theSame critical behavior. Reasoning by analogy, we may ex-
data according to Eq(16) yield the following estimates: Pect a cqmmdgnce between the critical temperature for the
B/v=0.11, B/v=0.16, andg/v=0.19. We then assume the (2+1)-dimensional MEM and the corresponding one for a
value /v=0.15+0.04, where the error bars reflect the errord=2 Ising model defined on a lattice of coordination number

derived from the evaluation of, as well as the statistical 9=3. However, this comparison cannot be carried out, since
the critical temperature of an Ising model depends on both

1000 the coordination numben and the topological structure of
the lattice, but fod=2 and a given value aj the topologi-

cal structure is not unique. For instance, b+ 2 andq=3,

we can pass from the honeycomb lattidél) to the ex-
panded kagoméattice (EKL) through the application of a
star-triangle transformation and obtain the exact values of
their critical points, which turn out to bpt2] T.=1.5187
(HL) and T.=1.4530(EKL).

and

100

xmax

V. CONCLUSIONS

10 L 100 In the present work we have studied the growth of mag-
netic Eden clusters with ferromagnetic interactions between
FIG. 10. Log-log plot ofymax vVersus.. The linear fit(solid line) nearest-neighbor spins in @+ 1)-dimensional rectangular
yields y/v=2.02+0.04. geometry(for d=1,2), using Monte Carlo simulations and
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applying a finite-size scaling theory. The results obtainedest of the posed conjecture will certainly require a consid-
allow us to conjecture a nontrivial correspondence betweeerable computational effort but it will be of great interest.
the MEM for the irreversible growth of magnetic materials Furthermore, analytical developments aimed to establish a
and the classical Ising model under equilibrium conditionstheoretical framework for the understanding of far from equi-

In fact, we have found that thed(+ 1)-dimensional MEM  |ibrium growth phenomena will become stimulated by the
and thed-dimensional Ising model behave identicalgx-  reported findings.

cept for finite-size differences that vanish in the thermody-

namic limit) at criticality, i.e., that both models belong to the

same universality class: We qlso cor)jectur_e that this corre- ACKNOWLEDGMENTS

spondence would remain at higher dimensiods2). The

results obtained strongly suggest a link between the temporal This work is supported financially by CONICET, UNLP,
evolution of equilibrium systems and the stationary growthCIC (Bs. As), ANPCyT, and Fundacio Antorchas(Argen-
of nonequilibrium systems. We thus believe that this worktina), and the Volkswagen Foundatid@®ermany. The au-
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