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Ehrenfest’'s argument extended to a formalism of nonequilibrium thermodynamics
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A general method of constructing dissipative equations is developed, following Ehrenfest’s idea of coarse
graining. The approach resolves the major issue of discrete time coarse graining versus continuous time
macroscopic equations. Proof of tHetheorem for macroscopic equations is given, several examples support-
ing the construction are presented, and generalizations are suggested.
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I. INTRODUCTION f:J(f), (h)

In their seminal papdrl], P. and T. Ehrenfest have given
an argument on how irreversibility can be derived from re-wheref(x,t) is the distribution function over the phase space
versible dynamics. Ehrenfest's consideration was based ovariablesx at the timet, and where operatal may be linear
two important notions: Coarse grainirigeplacement of a or nonlinear. Conservation is understood in the following
continuous distribution function by a set of averaged valuesense: There exists a concave functio®@l) (the entropy
over a system of phase celland theH curve(a sequence of \hose values do not change along solutions to @&y. S
values that the entropy takes in the course of a discrete timg<DS(f)|J(f)>=o for anyf. HereDS(f) is the first differ-
marching over coarse-grained statéthe impact of EAren- gntia| of Siin the statef, and angle brackets denote scalar
fest's ideas on the long-standing discussions of the foundagtiplication. Concavity ofS means that the second differ-
tions of nonequilibrium thermodynamics is enormdi®.  ential D25(f) defines a nonpositive definite quadratic form
However, to the best of our knowledge, Ehrenfest's approacl}, each state. A typical example of dynamicél) is the
has never been systematically exploited for the purpose qfioyille equation for classical particles, asds the Gibbs-
practical derivations of macroscopic equations. It is the goakpannon entropy functional.
of this paper to extend Ehrenfe_st's_ argument to a s_imple and | ot M(f)={M(f)} be a set of linear functionals, where
general formalism for such derivations. Starting point of oury, «(f)=(mf). Values of functional$/ are called the mac-
consideration is the well known quasiequilibrium approxi- roscopic variables. The quasiequilibrium approximation

mation that, for the sake of completeness, is discussed briefly*(M) maximizes the entropy subject to fixed valueshof
below. Next, a formalization of Ehrenfest's argument is e o concavity of the entropy, if such a maximizer exists,

given. It resolves the major issue, namely, the coarse graifjp,ep, jt is unique Dynamics of macroscopic variables in the
INg 1S th_e dlscrfate time process while the macroscopic dyEJuasiequilibrium approximation is given by equations,
namics is continuous in time. In most of the earlier ap-

proaches based on a coarse graining, transition to the

continuous time dynamics is done by introducing much v =(mJJ*) )
larger time scales. Here we demonstrate that it is possible to k : '

reconstruct uniquely the macroscopic dynamics within the

time interval between the coarse-graining events. This recondere J* =J(f* (M)) is the right hand side of Edq1) evalu-
struction is the main result of our paper, and it leads to ated in the quasiequilibrium. In the sequel we skip the label
simple formalism in a rather straightforward way. Severalpf the macroscopic variablels The quasiequilibrium ap-
examples are considered in order to illustrate the construgyroximations do not change the type of dynamics: Conserva-
tion. Finally, we discuss how the suggested formalism isjon of the entropy in the microscopic dynamics implies con-
related to other well known methods of nonequilibrium ther-seryation of the macroscopic entrop§* (M) = S(f* (M)),

modynamics, as well as some generalizations. in the quasiequilibrium dynamic&®). Quasiequilibrium ap-
proximations to the Liouville equation are nondissipative. In
Il. QUASIEQUILIBRIUM APPROXIMATION t_hel case of thg Glb'bs—Shannon entropy, the use of quasiequi-
FOR CONSERVATIVE DYNAMICS librium approximations has been stressed by Jaynes in his

well known works[3]. At present, the usefulness of quasi-
Let us consider a conservative dynamics given by arequilibrium approximations is well understood both for
equation, entropy-conserving dynamid¢d], as well as for the dissipa-
tive dynamicg5-7]. Relatively less studied remains the case
of open or externally driven systems, where invariant quasi-
*Corresponding author. Email address: ikarlin@ifp.mat.ethz.ch equilibrium manifolds may become unstahg.
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coarse graining is implemented within a discrete time pic-
ture, and the coarse-graining timemust be finite. There-
fore, continuous time equations for macroscopic variables
need to be specified by an additional construction, which is
the main goal of our paper.

IV. CONSTRUCTION OF THE MACROSCOPIC
DYNAMICS

We seek equations for the macroscopic variables in the
form,

M=R(M,7), (4)

where functionsR are yet unknown. They are derived from
the requirement that solutions to Eg) with the initial con-
dition M (ts) coincide at the timég+ 7 with the macroscopic
variables evaluated at the sitg, ; of theH curve,to a given
accuracy "), for everyt,=sr, and for every initial qua-
siequilibrium condition. This requirement is written as

FIG. 1. Entropy-conserving dynamics with periodic coarse
graining. The dashed convex curves represent the levels of the en- MO (te+7)—(m|TWEE)=0(7"*1), 5
tropy. Each straight solid line represents the plane that contains all
states with the fixed values of macroscopic parameters. The valudkéhere the first term is evaluated using an approximation of
of macroscopic parameters are different on different planes. Thé1€ macroscopic equatiofd), while the second term is
points where the planes touch levels of the entropy are the quasevaluated using the corresponding approximation to the mi-
equilibrium states. The totality of these tangent points makes up theroscopic solution. Polynomial approximations employed for
quasiequilibrium manifold)*. Curved arrows represent the micro- this purpose result in a system of recurrently solvable equa-
scopic solutions, straight arrow€G) represent the coarse-graining. tions. Let us construct explicitly the first two iterations.
The first-order accuracy in E¢5) requires only the zero-

lIl. EXTENDED EHRENFEST'S ARGUMENT order accuracy for the functiorR, and we write R

=R(O)(M)+O(7). From Eq.(4) and from Eq.3) it follows,

Let us now consider an extension of the quasiequilibrium . ) . .
espectively(in order to save notations, we writénstead of

dynamics in order to introduce dissipation. This is achieved
by the periodic coarse graining of the microscopic solution's’*
with the fixed time stepr>0. Specifically, a sequence of
quasiequilibrium state$? is constructed as the iteration of

the following three steps: First, taking the quasiequilibrium
state f; as the initial condition to Eq(1), the solution

fo(7)=T,f5 is found, wherel _ is the formal solution opera- From Eq.(5) it follows that R©=(m|J*). That is, to the
tor of the Eq.(1). Second, the macroscopic variabMsare  |owest order of our construction, the macroscopic dynamics
evaluated with the microscopic solutid(7) to getMs.1  (4) is the quasiequilibrium approximatio®). On the next
:<m|T7f§> Th|rd, the S+ 1)th quasiequi”brium is defined order,R: R(0)+ TR(1)+ 0(7-2)_ By the same pattern,

as

MD(t+7)=M+ RO+ 0(7?),

(m|TWEY =M+ 7(m|I*)+ O( ). (6)

2
;
¥ = (m|Tf5)). 3  MO@(t+7)=M+ 7RO+ 2RO+ EDMR(O)- RO+0(7%),

The procedure is then iterated. Periodic coarse graining just
described is sufficient to introduce irreversibility, and to
prove the discrete-timél theorem: Quasiequilibrium states
f¥ form the Ehrenfest'sH curve; if the quasiequilibrium (7)
approximation is not the solution to the microscopic dynam- . ] ) ) o
iCS, then the values of the macroscopic entrsp}'ctly in- Here DJ* is the first differential of the vector field in the
crease a|0ng thél curve, S*(MS+1)>S* (MS) The latter quaS?eqU?l?br?um, Wh||d:)MR(O) iS.the first differential of the -
statement is a direct implication of the convexity of the en-duasiequilibrium vector field with respect to macroscopic
tropy function, and of the noninvariance of the quasiequilib-variables, and denote action of corresponding linear opera-
rium approximation with respect to the microscopic dynam-tors. Thus,
ics, and it is visualized in Fig. 1.

However, Eq(3) as it stands does not solve yet the prob-
lem of derivation of the macroscopic equations. Indeed, the

2
;
(MTEE*) =M+ o(m|I*)+—(m[DI*-I*)+O(+%).

1
R=Z[(m[DJ*-3%)=Dyy(m|3*)-(m|I*)]. (8
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Higher order approximations are constructed recurrently irby Eq. (9), S~ 72 for small r. Therefore, if 7 is small
entirely the same way. They involve higher order and crosgnough, the right hand side in the above expression is posi-
products of differentials of the microscopic vector field andtive, and
of the macroscopic vector field of lower order approxima- _
tions. Thus, the macroscopic vector fi#dn the continuous 7S (0(n)) >0,
time Eq.(4) is uniquely constructed as a sequence of poly- . )
nomial approximationsR,y(M,7)=3p_o7"R(™M(M). This ~ where t<@<t+r. Finally, since Spy,(t)=S(s)
is the main result of our papeFhe macroscopic dynamics is +O(7") for any s on the segmeritt,t+ 7], we can replace
uniquely reconstructed from the condition of matching the'szkn)(g(n)) in the latter inequality b)‘BZ‘n)(t). The sense of this
microscopic and the macroscopic dynamics at the points oonsideration is as follows: Since the entropy production for-
coarse graining mula(9) is valid in the leading order of the construction, the
The most important consequence of the above construgntropy production will not collapse in the higher orders at
tion is that resulting continuous time macroscopic equationgeast if the coarse-graining time is small enough. More re-
retain the dissipation property of the discrete time coarsgined estimations can be obtained only from explicit analysis
graining on each order of approximatior=1. Let us first of higher-order corrections.
consider the entropy production formula for the first-order  Finally, a comment on the mathematical structure of the
apprOXimation. In order to shorten notations, itis Convenienﬂevek)ped approach is in order. The prob|em of coarse grain-
to introduce the quasiequilibrium projection operatef,g  ing is considered here as the problem of mapping of one
=Dyf*-(m|g). Direct computation demonstrates that the (microscopi¢ dynamic system into anothémacroscopit
entropy productionS(;,=DyS* -[R®+ rRM], equals dynamic system. While we have focused above on the
entropy-conserving dynamid$), it is instructive to contrast
_ r it with the dissipative systems. In that case just the mapping
)= §<(1_ P*)J*|D?S*|(1—P*)J*), (99  of thevector fieldss sufficient to derive the dissipative mac-
roscopic dynamic system. More specifically, if the micro-
scopic system is dissipatisuch as given by the Boltzmann
whereD?S* =D?S|;_¢« is the second differential of the en- equation, for examp)e with S its monotonically increasing
tropy evaluated in the quasiequilibrium. The entropy produc{.yapunov functional, then the mapping of the vector figld
tion (9) is non-negative definite due to concavity of the en-attached to each point of the quasiequilibrium manifold with
tropy. The entropy productiof®) is equal to zero only if the the help of the quasiequilibrium project&* onto the tan-
quasiequilibrium approximation is the true solution to thegent bundle of the quasiequilibrium manifold results in a
microscopic dynamics, that is, if (1P*)J*=0. While qua-  dissipative macroscopic system. In this case, either through
siequilibrium approximations that solve the Liouville equa- extension of the list of the macroscopic variables, or by con-
tion are uninteresting objectexcept, of course, for the equi- structing corrections to quasiequilibria within the list of cho-
librium itself), vanishing of the entropy production in this sen variables, one can expect to derive sufficiently accurate
case is a simple test of consistency of the theory. Note thalissipative macroscopic modelsee, e. g., Ref6,7] where
the entropy productioK9) is proportional tor. this point is discussed in detaiHowever, for the entropy-
Though Eq.(9) looks very natural, its existence is rather conserving systems just a mapping of the vector fields is not
subtle. Indeed, Eq(8) is a difference of the two terms, sufficient to derive dissipation. For such systems, neither the
(m|DJ*-J*) (contribution of the second-order approxima- enlargement of the list of the macroscopic variables, nor cor-
tion to the microscopic trajectoyyandDy(m|J*)-(m|J*)  rections intended to make the quasiequilibrium “more in-
(contribution of the second derivative of the quasiequilib-variant” can result in the dissipative macroscopic equations.
rium vector field. Each of these expressions separately givesor this reason, we have considered here a more general
a positive contribution to the entropy production, and 8.  natural projectionbased orsegments of trajectoriesf both
is the difference of two positive definite expressions. In thethe microscopic and the macroscopic systems, rather than on
higher order approximations, thesebtractionsare more in-  just the infinitesimal generators thereof. The simplest imple-
volved, and explicit demonstration of the entropy productionmentation of this approach as considered above is based on
formulase becomes a formidable task. Yet, it is possible tahe mapping of Taylor series expansions of the microscopic
demonstrate the increase in entropy without explicit compuand the macroscopic trajectories.
tation, though at a price of smallness of Indeed, let us

denoteSE*n) the time derivative of the entropy on theh V. EXAMPLES

order approximation. Then .
Same as any coarse-graining approach, the extended

r Ehrenfest’'s argument is a phenomenologi.cal construction.
f 'an)(s)ds: S*(t+7)—S* () +O(m* Y, Therefore, the relevance of results can be judged only from
t examples. We first consider the simplest case of the conser-
vative dynamics, the one-body Liouville equatior,
whereS* (t+ 7) and S*(t) are true values of the entropy at = —v,d, f, wheref(r,v,t) is the one-particle distribution
the adjacent states of thel curve. The differencedS  function. Subject to appropriate boundary conditions that we
=S*(t+ 7)— S*(t) is strictly positive for any fixedr, and, assume, this equation conserves the Boltzmann ent®py
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=—kg/ f In fdvdr. The local Maxwell distribution function is 3
the maximizer of the entropy subject to the constraints, 5
1
M:{MOALWM4}:f{1pa¢@Hdv, 0
wherea=1,2,3. Macroscopic variabldd are related to the 5

usual local hydrodynamic fields. Quasiequilibrium dynamics
is given by the Euler equations for nonviscous fluid. In this

case, =107
1 n_T — =] 5 2
Rg ):0, Rg)zié’ﬁ[an&auﬁ]’ 15 4
20 40 K 60 80 100
ST FIG. 2. Dispersion of various modes of the extended hydrody-
R =—0a,[nT 0}a,T]. (10 . \spersion of variou the ex ydrody
g '« @ namic equationgl1). The reduced attenuation rates &eand the

frequency Imw; of the diffusion modew, of the two sound modes
Heren, u, and T are number density, mean velocity, and w2, and of the two shear modes; are given as functions of the
temperature, overline denotes symmetric traceless dyad, afigduced wave vectdt. 1: Imw;(k), 2: Rew;(k), 3: Imw,(k), 4:
vr=(2kgT/m) 125 the thermal velocity. The first-order ap- Rewz(k)_, 5: Rews(K). Stability_c_)f dispersion relations means that
proximation is the Navier-Stokes equations, with transporfl! functions Rew; are nonpositive for any wave vector. For the
coefficients proportional to the time stepbetween coarse- Burmett hydrodynamicénot shown, function Rew, becomes posi-
graining events. Thus, in this example, coarse graining is '€ after some value of the wave vec{dd].
substitution for particle’s collisions, and the time stejpe-
tween coarse-graining events corresponds to the mean tinte=t/7, andr’ =r/\kgTom7. Omitting the primes, and using
between collisions. This is not surprising: the finite-time the system of units whetes/m=1, the linearized hydrody-
coarse graining plays here the same role as the relaxatiomamic equations to the ord@(7?) are found as follows:
time in the Bhatnagar-Gross-KrodBGK) model[9] of the
Boltzmann collision integral, whereas the outcoft6) cor- HN= =0 Ug,
responds to the first-order approximation of the Chapman-
Enskog method for that equation. It is well known that the 1 1 1
physical meaning of the relaxation time in the BGK model is ~ %tUa™ ~daN = daT +5dp(dalUp) + GAdaN+ 350, T,
the mean collision time.
The next,0(7?) correction in our formalism would cor- 2 5 1
respond to the Burnett-type hydrodynamjdg]. It is well HT=— 50Ut AT+ —Adgug. (11
known that the Burnett hydrodynamic equations, as derived 3 6 >4
from the Boltzmann equation, are exposed to difficulties that ) , i
preclude the correct entropy production. In particular, smalfi€réA is the Laplace operator. Direct computation demon-
perturbations of the global equilibrium due to the BurnettStrates that the dispersion relation for the syster) is
equations become unstable at a sufficiently short wavelenglit@Ple for arbitrary wave vectors, unlike the Burnett equa-
[11,12. It is of interest therefore to address the question of!0NS (S€e Fig. 2 Note that this result is different from regu-
stability of the Burnett-type hydrodynamics in our scheme. [fi@risation of the Burnett approximation obtained by summa-
should be also mentioned that the above scheme of derivdion of the Chapman-Enskog expansidr3, 14. o
tion in the higher orders requires a modification for systems, Another well known quasiequilibrium is the maximizer of
with local conservation laws. Indeed, the density balancdn® Gibbs-Shannon entropy subject to the one-body distribu-
equation, tion function f(p,r). The quasiequilibriunN-body distribu-
tion function is the product of one-body distribution func-
Mo+ 3d M,=0, tions. Assuming pair interactions in thé-body Liouville
equation, corresponding quasiequilibrium dynamics is given
holds identically for any solution of the one-particle Liou- by Vlasov's equation. The correctiai) gives (for smooth
ville equation. Therefore, any method of coarse grainingand finite pair potentials, all expressions below are well de-
should respect this identity. In our case, in the higher-ordefined:
construction, this amounts to using the Taylor expansion of
Mo(t+7) only up to the ordeO(7?). of of
It is convenient to introduce dimensionless variables, ot PPy~
=n/ng, u,=u,/\kgTo/m, and T'=T/T,, wheren, u,,
and T are small deviations of the number density, of theHere(---) denotes averaging with The (nondissipative
mean velocity, and of the temperature from their equilibriumVlasov terms are on the left hand side while the right hand
values. We also use the reduced time and space variableside is the dissipative correctiom; is the average number

2

of
Vo-)_pa<|:a>_D (12)

“Pop,apg
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density,f is normalized to the total number of particl€s, is  rived from kinetic theory of collision-dominated plasmas by
the @ component of the force between two particles, whiledifferent method$16]. We defer a further discussion of the
D,z is the diffusivity matrix, above examples to a separate publication.

T VI. DI ION AND NCLUSION
Dop=5 I{FuF )~ (Fa)(Fp)]- (13 SCUSSION AND CONCLUSIO

The fundamental Ehrenfest's idea of coarse graining has

This expression clearly indicates that the implementation obeen followed by many authof]. In most of the works,
the Coarse_graining procedure with the finitaesults in a transition to continuous time follows from a consideration of
short-memory approximation. Equatiéh?) is not yet suffi-  the time scales much larger than the coarse-graining time
cient for the following reason: Since the total energy is notWhile these results are very general, they are not directly
on the list of macroscopic variables, the diffusion term ag'elevant to the present analysis that concerns the tiwité
given in Eq.(12) does not have this conservation law. There-the coarse-graining time. On the other hand, quasiequilib-
fore, in order to restore the energy conservation, an addidum approximations were used by several authors in order to
tional restriction is required. Such a restriction is usuallydevelop a projection operator formalism for systems arbi-
termed a thermostat. In our case, a realization of the thermdtary far from equilibrium. In particular, Roberts¢f7] has

stat amounts to replacing the right hand side of @g) with ~ used the quasiequilibrium projection operator in order to re-
write the Liouville equation into an equivalent system of

d [ ot pgn—ijg ] equations for the motion along and transverse the quasiequi-
B Va0 TmeT [ (14 librium manifold. Exactness of this and similar transforms
P | IPg mkgT
has been stressed by many authdi®]. However, any sys-
wherej 4 is the local average momenturf,is the local ki- ~ tem that is equivalent to the Liouville equation cannot be
netic temperature, ana is the local number density. Dissi- irreversible, and a version of coarse graining is needed on the
pative terms of the typ€l4) were derived earlier by many later stages of the formalism. Unfortunately, there is no pre-
authors[15]. scription of how to do this in general, and results typically
Our final example is the derivation of the hydrodynamicverify Onsager-like symmetry relations but not readily the
equations from the Vlasov kinetic equatipEq. (12) with strict increase in entropy. Thel theorem can be demon-
the right hand side equal to zgrdt should be admitted that strated only in specific examples when system-dependent as-
most of the derivations of the nonequilibrium dynamics fromsumptions are accepted. The same difficulty is present in the
the Liouville equation essentially use the linearity of the lat-well known method of nonequilibrium statistical operator of
ter (see a discussion belpwand hence they are formally Zubarev: Though the time asymmetry is explicitly intro-
inapplicable to nonlineafmean field conservative systems duced into the Liouville equation, this is done at the expense
such as the Vlasov equation. Our approach is applicable tof a complicated limiting transition, and the theorem is
such systems without any modification. The lowest order disdifficult to prove[19].
sipative equations for the hydrodynamic variables as derived Finally, we stress that the correct implementation of the

from the Vlasov equation are as follow: Ehrenfest’s coarse graining requires subtraction of the mac-
roscopic component of motion. The natural projection of the
an=—d,(nu,), segments of trajectories requires that, for &wand givenr,

M (t+7)=(m|T,f*). (16)

T D P u— T
+ —aﬁ(nUT&aUB)_ Enq,a

n
d(nu,) = —ﬁa<—v$+ UgUign |+ 5

2 The latter condition should be treated with care because the
T left hand side of this expression is defined by theriori
+ Eaﬁn(ua(Fﬁ>—uB(Fa)), unknown exact macroscopic equations. In the p4pér, it

has been suggested to derive continuous time equations from

Eqg. (16) as follows:

> 2 o7 “1,4
de=—0dy| svINUL+UPUN |+ — 3 (nNT 079, T) \
2 8 M+ 7M=~(m|T £*). 17
N 3—T(v$<F }3uM)+ 7(F U Ugd g0 — nU, W In a contrast to our derivation, the latter expression does not
4 a/Oa a/Pa a-a

attempt to construct a mapping of the microscopic into the
macroscopic dynamics. Specifically, E@L7) ignores an
expansion of the macroscopic equat{omore precisely, Eq.
(17 implements what is known as the differential purfuit
In particular, if the second-order approximation is em-

o , , ployed in Eq. (17), the entropy production is,S*
Wo=- Nf Fa(rr)dglnug(r’)]dr’. = —(7/2)(J*|D?S* |J*). This expression is positive definite,
S0 an “increase in entropy” is present, but, in contrast to the
The set of Eqs(15) is quite similar to hydrodynamic equa- correct Eq(9), it does not turn into zero when the quasiequi-
tions for dense one-component plasma that have been dibrium solves the microscopic equation, as it should be.

+n(F ) (F,), (15

wheree = (3/2)nkgT is the energy density, and
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Therefore, Eq(17) cannot be valid as a systematic method M=AM,
of derivation of dissipative dynamics.

In conclusion, in this paper, for the first time to the best of
our knowledge, the approach of Ehrenfest’s has been syste
atically formalized to a simple and self-consistent tool for
derivation of physically sound, clearly dissipative equations.
As is, the resulting method qualifies for a class of “mean [exp(TA)M ], =(my|exp(7L)f* (M)).
free path theories,” incorporating in itself a simple phenom-
enological elementcoarse graining and in that respect is Then, formally,
close in spirit(but certainly not in the implementation, the
present approach is even simpléo the well known Kirk-
wood'’s time averaging approach. There are many ways the A= < m
present approach can be improved and generalized, in par-
ticular, the following.

(i) Going away from the short-memory approximationswhereA,, are the matrix elements of the operafarThus,
based on the finite coarse-graining timecorresponds to the exact near-equilibrium macroscopic dynamics is ex-
taking the limit 7—c in the Eq. (16). On qualitative pressed in terms of th@peratoy Liapunov exponent. More-
grounds, large enough coarse-graining time will allow allover, in the simplest case of a wide separation of time scales
correlations to be developed. This point is important andbf the macroscopic and of the microscopic motions, the more
deserves a further stud21]. Here we shall mention only the familiar Green-Kubo form can be derived from HGd$).
following result: Let us assume that the microscopic dynam-  (ii) Without any changes, the method is applicable in the
ics is defined by a linear equatioh=Lf, whereL is a linear ~ case when the dynamic equatid is dissipative, in particu-
(Liouville) operator. Let us also assume the equilibrifify  lar, to the Fokker-Planck equation.
such thatLf®%=0. For the sake of simplicity, let us also (i) The use of the thermodynamic projecfé;7] allows
assume that the macroscopic variabsare normalized in  to apply the method to nonquasiequilibrium approximations.
such a way thaf{my|f dmg)= 8,5, and thatmg=1 is in-
cluded in t.he Ii;t of them,’s. To_the.firs.t orQer in. the ACKNOWLEDGMENTS
macroscopic variable®l, the quasiequilibrium is a linear
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1
lim ;In[H exp(7L)f €91

T— 0

m|> ’ (18)
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