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Epidemic dynamics and endemic states in complex networks
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We study by analytical methods and large scale simulations a dynamical model for the spreading of epi-
demics in complex networks. In networks with exponentially bounded connectivity we recover the usual
epidemic behavior with a threshold defining a critical point below that the infection prevalence is null. On the
contrary, on a wide range of scale-free networks we observe the absence of an epidemic threshold and its
associated critical behavior. This implies that scale-free networks are prone to the spreading and the persistence
of infections whatever spreading rate the epidemic agents might possess. These results can help understanding
computer virus epidemics and other spreading phenomena on communication and social networks.
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I. INTRODUCTION

Many social, biological, and communication systems c
be properly described by complex networks whose no
represent individuals or organizations and links mimic
interactions among them@1,2#. Recently, many authors hav
recognized the importance of local clustering in comp
networks. This implies that somespecialnodes of the net-
work posses a larger probability to develop connectio
pointing to other nodes. Particularly interesting examples
this kind of behavior are found in metabolic networks@3#,
food webs@4#, and, most importantly, in the Internet and th
world-wide-web, where the networking properties have be
extensively studied because of their technological and e
nomical relevance@2,5–7#.

Complex networks can be classified in two main grou
depending on their connectivity properties. The first a
most studied one is represented by theexponentialnetworks,
in which the nodes’ connectivity distribution~the probability
P(k) that a node is connected to otherk nodes! is exponen-
tially bounded@8–10#. A typical example of an exponentia
network is the random graph model of Erdo¨s and Re´nyi @9#.
A network belonging to this class that has recently attrac
a great deal of attention is the Watts and Strogatz mo
~WS! @10–12#, which has become the prototypical examp
of a small-worldnetwork @13#. A second and very differen
class of graph is identified by thescale-free~SF! networks
that exhibit a power-law connectivity distribution@14#,

P~k!;k222g, ~1!

where the parameterg must be larger than zero to ensure
finite average connectivitŷk&. This kind of distribution im-
plies that each node has a statistically significant probab
of having a very large number of connections compared
the average connectivity of the network^k&. In particular, we
will focus here on the Baraba´si and Albert model~BA! @14#,
which results in a connectivity distributionP(k);k23.

In view of the wide occurrence of complex networks
nature, it becomes a very interesting issue to inspect the
fect of their complex features on the dynamics of epidem
and disease spreading@15#, and more in general on the non
1063-651X/2001/63~6!/066117~8!/$20.00 63 0661
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equilibrium phase transitions that usually characterize th
type of phenomena@16#. It is easy to foresee that the cha
acterization and understanding of epidemic dynamics
these networks can find immediate applications to a la
number of problems, ranging from computer virus infectio
@17#, epidemiology @18#, and the spreading of polluting
agents@19#.

In this paper, we shall study the susceptible-infecte
susceptible~SIS! model @18# on complex networks. We
study analytically the prevalence and persistence of infec
individuals in exponential and SF networks by using
single-site approximation that takes into account the inhom
geneity due to the connectivity distribution. We find th
exponential networks show, as expected, an epidemic thr
old ~critical point! separating an infected from a health
phase. The density of infected nodes decreases to zero a
threshold with the linear behavior typical of a mean-fie
~MF! critical point@16#. The SF networks, on the other han
show a very different and surprising behavior. For 0,g
<1 the model does not show an epidemic threshold and
infection can always pervade the whole system. In the reg
1,g<2, the model shows an epidemic threshold that is
proached, however, with a vanishing slope; i.e., in the
sence of critical fluctuations. Only forg.2 we recover
again the usual critical behavior at the threshold. In th
systems, because of the nonlocal connectivity, single site
proximation predictions are expected to correctly depict
model’s behavior. In order to test our predictions, we p
form large scale numerical simulations on both exponen
and SF networks. Numerical results are in perfect agreem
with the analytical predictions and confirm the overall p
ture for the SIS model on complex networks given by t
theoretical analysis. The striking absence of an epide
threshold on SF networks, a characteristic element in m
ematical epidemiology, radically changes many of the c
clusions drawn in classic epidemic modeling. The pres
results could be relevant also in the field of absorbing-ph
transitions and catalytic reactions in which the spatial int
action of the reactants can be modeled by a complex netw
@16#.

The paper is organized as follows. In Sec. II we introdu
the SIS model in a general context. Section III is devoted
©2001 The American Physical Society17-1
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ROMUALDO PASTOR-SATORRAS AND ALESSANDRO VESPIGNANI PHYSICAL REVIEW E63 066117
the analysis of exponentially bounded networks, exemplifi
by the WS model. In Sec. IV we analyze the scale-free
model, with connectivityP(k);k23. Section V extends the
analytical approach applied to the BA model to generaliz
SF networks, with connectivity distributionP(k);k222g,
g.0. Finally, in Sec. VI we draw our conclusions and pe
spectives.

II. THE SIS MODEL

To address the effect of the topology of complex n
works in epidemic spreading we shall study the standard
epidemiological model@18#. Each node of the network rep
resents an individual and each link is a connection along
the infection can spread to other individuals. The SIS mo
relies on a coarse grained description of the individuals
the population. Within this description, individuals can on
exist in two discrete states, namely, susceptible,
‘‘healthy,’’ and infected. These states completely neglect
details of the infection mechanism within each individu
The disease transmission is also described in an effec
way. At each time step, each susceptible node is infec
with probability n if it is connected to one or more infecte
nodes. At the same time, infected nodes are cured and
come again susceptible with probabilityd, defining an effec-
tive spreading ratel5n/d. ~Without lack of generality, we
set d51.! Individuals run stochastically through the cyc
susceptible→ infected→ susceptible, hence the name of t
model. The updating can be performed with both paralle
sequential dynamics@16#. The SIS model does not take int
account the possibility of individuals removal due to death
acquired immunization@18#. It is mainly used as a paradig
matic model for the study of infectious disease that lead
an endemic state with a stationary and constant value for
prevalence of infected individuals, i.e., the degree to wh
the infection is widespread in the population.

The topology of the network that specifies the interactio
among individuals is of primary importance in determini
many of the model’s features. In standard topologies
most significant result is the general prediction of a nonz
epidemic thresholdlc @18#. If the value ofl is above the
thresholdl>lc the infection spreads and becomes persis
in time. Below itl,lc , the infection dies out exponentiall
fast. In both sides of the phase diagram it is possible to st
the behavior in time of interesting dynamical magnitudes
epidemics, such as the time survival probability and the
laxation to the healthy state or the stationary endemic st
In the latter case, if we start from a localized seed we
study the epidemic outbreak preceding the endemic sta
zation. From this general picture, it is natural to consider
epidemic threshold as completely equivalent to a criti
point in a nonequilibrium phase transition@16#. In this case,
the critical point separates an active phase with a station
density of infected nodes~an endemic state! from an absorb-
ing phase with only healthy nodes and null activity. In pa
ticular, it is easy to recognize that the SIS model is a gen
alization of the contact process model, that has b
extensively studied in the context of absorbing-state ph
transitions@16#.
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In order to obtain an analytical understanding of the S
model behavior on complex networks, we can apply a sin
site dynamical MF approach, that we expect to recover
actly the model’s behavior due to the nonlocal connectiv
of these graphs. Let us consider separately the case o
exponentially bounded and SF networks.

III. EXPONENTIAL NETWORKS: THE
WATTS-STROGATZ MODEL

The class of exponential networks refers to random gr
models that produce a connectivity distributionP(k) peaked
at an average valuêk& and decaying exponentially fast fo
k@^k& andk!^k&. Typical examples of such a network a
the random graph model@9# and the small-world model o
WS @10#. The latter has recently been the object of seve
studies as a good candidate for the modeling of many r
istic situations in the context of social and natural networ
In particular, the WS model shows the ‘‘small-world’’ prop
erty common in random graphs@13#; i.e., the diameter of the
graph—the shortest chain of links connecting any t
vertices—increases very slowly, in general logarithmica
with the network size@12#. On the other hand, the WS mod
has also a local structure~clustering property! that is not
found in random graphs with finite connectivity@10,12#. The
WS graph is defined as follows@10,12#: The starting point is
a ring with N nodes, in which each node is symmetrica
connected with its 2K nearest neighbors. Then, for eve
node each link connected to a clockwise neighbor is rewi
to a randomly chosen node with probabilityp, and preserved
with probability 12p. This procedure generates a rando
graph with a connectivity distributed exponentially for larg
k @10,12#, and an average connectivity^k&52K. The graphs
have small-world properties and a nontrivial ‘‘clustering c
efficient’’; i.e., neighboring nodes share many comm
neighbors@10,12#. The richness of this model has stimulate
an intense activity aimed at understanding the networ
properties upon changingp and the network sizeN @10–
13,20,21#. At the same time, the behavior of physical mode
on WS graphs has been investigated, including epidem
logical percolation models@15,20,22# and models with epi-
demic cycles@23#.

Here we focus on the WS model withp51; it is worth
noticing that even in this extreme case the network reta
some memory of the generating procedure. The network
fact, is not locally equivalent to a random graph in that ea
node has at leastK neighbors. Since the fluctuations in th
connectivity are very small in the WS graph, due to its e
ponential distribution, we can approach the analytical stu
of the SIS model by considering a single MF reaction eq
tion for the density of infected nodesr(t),

] tr~ t !52r~ t !1l^k&r~ t !@12r~ t !#1~higher-order terms!.
~2!

The MF character of this equation stems from the fact t
we have neglected the density correlations among the dif
ent nodes, independently of their respective connectivities
Eq. ~2! we have ignored all higher order corrections inr(t),
since we are interested in the onset of the infection clos
7-2
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EPIDEMIC DYNAMICS AND ENDEMIC STATES IN . . . PHYSICAL REVIEW E63 066117
the phase transition, i.e., atr(t)!1. The first term on the
right-hand side~rhs! in Eq. ~2! considers infected nodes be
come healthy with unit rate. The second term represents
average density of newly infected nodes generated by e
active node. This is proportional to the infection spread
ratel, the number of links emanating from each node, a
the probability that a given link points to a healthy nod
@12r(t)#. In these models, connectivity has only expone
tially small fluctuations (̂k2&;^k&) and as a first approxi
mation we have considered that each node has the s
number of links,k.^k&. This is equivalent to an homogene
ity assumption for the system’s connectivity. After imposi
the stationarity condition] tr(t)50, we obtain the equation

r@211l^k&~12r!#50 ~3!

for the steady state densityr of infected nodes. This equatio
defines an epidemic thresholdlc5^k&21, and yields

r50 if l,lc ~4a!

r;l2lc if l.lc. ~4b!

In analogy with critical phenomena, we can considerr as the
order parameter of a phase transition andl as the tuning
parameter, recovering a MF critical behavior@24#. It is pos-
sible to refine the above calculations by introducing conn
tivity fluctuations~as it will be done later for SF networks
see Sec. IV!. However, the results are qualitatively and qua
titatively the same as far as we are only concerned with
model’s behavior close to the threshold.

In order to compare with the analytical prediction w
have performed large scale simulations of the SIS mode
the WS network withp51. Simulations were implemente
on graphs with number of nodes ranging fromN5103 to
N533106, analyzing the stationary properties of the dens
of infected nodesr, i.e., the infection prevalence. Initially
we infect half of the nodes in the network, and iterate
rules of the SIS model with parallel updating. In the acti
phase, after an initial transient regime, the systems stab
in a steady state with a constant average density of infe
nodes. The prevalence is computed averaging over at
100 different starting configurations, performed on at le
ten different realization of the random networks. In o

FIG. 1. Density of infected nodesr as a function ofl in the WS
network ~full line! and the BA network~dashed line!.
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simulations we consider the WS network with parame
K53, which corresponds to an average connectiv
^k&56.

As shown in Figs. 1 and 2, the SIS model on a WS gra
exhibits an epidemic thresholdlc50.164360.01 that is ap-
proached with linear behavior byr. The value of the thresh
old is in good agreement with the MF predictionslc
51/2K50.1666, as well as the density of infected nod
behavior. In Fig. 2 we plotr as a function ofl2lc in
log-log scale. A linear fit to the formr;(l2lc)

b provides
an exponentb50.9760.04, in good agreement with the an
lytical finding of the Eq.~4b!.

To complete our study of the SIS model in the WS n
work, we have also analyzed the epidemic spreading pro
ties, computed by considering the time evolution of infe
tions starting from a very small concentration of infect
nodes. In Fig. 3 we plot the evolution of the infected nod
density as a function of time for epidemics in the supercr
cal regime (l.lc) that start from a single infected node
Each curve represents the average over several sprea
events with the samel. We clearly notice a spreadin
growth faster than any power law, in agreement with Eq.~2!
that predicts an exponential saturation to the endemic ste
state. In the subcritical regime (l,lc), by introducing a
small perturbation to the stationary stater50, and keeping
only first order terms in Eq.~2!, we obtain that the infection
decays following the exponential relaxation] tr(t)
52^k&(lc2l)r(t). This equation introduces a character
tic relaxation time

t215^k&~lc2l! ~5!

FIG. 2. Log-log plot of density of infected noder as a function
of l2lc in WS network, withlc50.164360.01. The full line is a
fit to the formr;(l2lc)

b, with an exponentb50.9760.04.

FIG. 3. Density of infected nodesr(t) as a function of time in
supercritical spreading experiments in the WS network. Netw
size N51.53106. Spreading rates range froml2lc50.002 to
0.0007~top to bottom!.
7-3
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that diverges at the epidemic threshold. Below the thresh
the epidemic outbreak dies within a finite time, i.e., it do
not reach a stationary endemic state. In Fig. 4 we plot a
age ofr(t) for epidemics starting with an initial concentra
tion r050.01 of infected nodes; the figure shows a cle
exponential approach to the healthy~absorbing! state as pre-
dicted by Eq.~5!. In the subcritical regime, we can compu
also the surviving probabilityPs(t), defined as the probabil
ity that an epidemic outbreak survives up to the timet @16#.
In Fig. 5 we plot the survival probability computed from
simulations starting with a single infected node in a W
graph of sizeN533106. The survival probability decay is
obviously governed by the same exponential behavior
characteristic time of the density of infected nodes as c
firmed by numerical simulations. Indeed, below the epidem
threshold, the relaxation to the absorbing state does not
pend on the network sizeN ~see inset in Fig. 5!, and the
average lifetime corresponding to each spreading ratel can
be measured by the slope of the exponential tail ofPs(t) and
r(t). By plotting t21 as a function oflc2l ~see Fig. 6!, we
recover the analytic predictions, i.e., the linear behavior
the unique characteristic time for both the density and s
vival probability decay. The slope of the graph, measured
means of a least squares fitting, provides a value of

FIG. 4. Density of infected nodesr(t) as a function of time in
subcritical spreading experiments in the WS network. Network s
N533106. Spreading rates range fromlc2l50.005 to 0.03
~right to left!.

FIG. 5. Surviving probabilityPs(t) as a function of time in
subcritical spreading experiments in the WS network. Network s
N533106. Spreading rates range fromlc2l50.005 to 0.03
~right to left!. Inset: Surviving probability for a fixed spreading ra
lc2l50.005 and network sizesN533105, 106, and 33106.
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whereas the intercept yields 1.0, in good agreement with
theoretical predictions of Eq.~5!, ^k&56 and^k&lc51, re-
spectively.

In summary, numerical and analytical results confirm
that for WS graphs, the standard epidemiological picture~of-
ten called the deterministic approximation! is qualitatively
and quantitatively correct. This result, that is well known f
random graphs, holds also in the WS model despite the
ferent local structure.

IV. SCALE-FREE NETWORKS: THE BARABA´ SI-ALBERT
MODEL

The BA graph was introduced as a model of growi
network ~such as the Internet or the world-wide-web! in
which the successively added nodes establish links w
higher probability pointing to already highly connecte
nodes@14#. This is a rather intuitive phenomenon on th
Internet and other social networks, in which new individua
tend to develop more easily connections with individuals t
are already well known and widely connected. The BA gra
is constructed using the following algorithm@14#: We start
from a small numberm0 of disconnected nodes; every tim
step a new vertex is added, withm links that are connected to
an old nodei with probability

P~ki !5
ki

( j kj
, ~6!

whereki is the connectivity of thei th node. After iterating
this scheme a sufficient number of times, we obtain a n
work composed byN nodes with connectivity distribution
P(k);k23 and average connectivitŷk&52m ~in this work
we will consider the parametersm055 andm53). Despite
the well-defined average connectivity, the scale invari
properties of the network turns out to play a major role
the properties of models such as percolation@22,25#, used to
mimic the resilience to attacks of a network. For this class
graphs, in fact, the absence of a characteristic scale for
connectivity makes highly connected nodes statistically s
nificant, and induces strong fluctuations in the connectiv
distribution that cannot be neglected. In order to take i
account these fluctuations, we have to relax the homogen
assumption used for exponential networks, and consider
relative densityrk(t) of infected nodes with given connec

e

e

FIG. 6. Inverse relaxation time for the SIS model in the W
graph as a function of the spreading ratel, estimated from the slope
of the exponential decay of the infected nodes densityr(t) (s),
and the survival probabilityPs(t) (L).
7-4
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EPIDEMIC DYNAMICS AND ENDEMIC STATES IN . . . PHYSICAL REVIEW E63 066117
tivity k, i.e., the probability that a node withk links is in-
fected. The dynamical MF reaction rate equations can t
be written as

] trk~ t !52rk~ t !1lk@12rk~ t !#Q„r~ t !…, ~7!

where also in this case we have considered a unitary re
ery rate and neglected higher order terms@r(t)!1#. The
creation term considers the probability that a node withk
links is healthy@12rk(t)# and gets the infection via a con
nected node. The probability of this last event is proportio
to the infection ratel, the number of connectionsk, and the
probabilityQ„r(t)… that any given link points to an infecte
node. Here we neglect the connectivity corrections, i.e.,
consider that the probability that a link points to an infect
node does not depend on the connectivity of the enana
node and is only a function of the total density of infect
nodes pointed by the link@26#. In the steady~endemic! state,
r is just a function ofl. Thus, the probabilityQ becomes
also an implicit function of the spreading rate, and by imp
ing stationarity@] trk(t)50#, we obtain

rk5
klQ~l!

11klQ~l!
. ~8!

This set of equations show that the higher the node con
tivity, the higher the probability to be in an infected sta
This inhomogeneity must be taken into account in the co
putation ofQ(l). Indeed, the probability that a link points t
a node withs links is proportional tosP(s). In other words,
a randomly chosen link is more likely to be connected to
infected node with high connectivity, yielding the relation

Q~l!5(
k

kP~k!rk

(s sP~s!
. ~9!

Since rk is on its turn a function ofQ(l), we obtain a
self-consistency equation that allows to findQ(l) and an
explicit form for Eq.~8!. Finally, we can evaluate the orde
parameter~persistence! r using the relation

r5(
k

P~k!rk , ~10!

In order to perform an explicit calculation for the BA mode
we use a continuousk approximation that allows the pract
cal substitution of series with integrals@14#. The full connec-
tivity distribution is given byP(k)52m2/k23, wherem is
the minimum number of connection at each node. By no
ing that the average connectivity is^k&5*m

`kP(k)dk52m,
Eq. ~9! gives

Q~l!5mlQ~l!E
m

` 1

k3

k2

11klQ~l!
, ~11!

which yields the solution

Q~l!5
e21/ml

lm
~12e21/ml!21. ~12!
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In order to find the behavior of the density of infected nod
we have to solve Eq.~10!, that reads as

r52m2lQ~l!E
m

` 1

k3

k

11klQ~l!
. ~13!

By substituting the obtained expression forQ(l) and solv-
ing the integral we find at the lowest order inl

r;e21/ml. ~14!

This result shows the surprising absence of any epide
threshold or critical point in the model, i.e.,lc50. This can
be intuitively understood by noticing that for usual lattic
and MF models, the higher the node’s connectivity, t
smaller is the epidemic threshold. In the BA network t
unbounded fluctuations in the number of links emanat
from each node (̂k2&5`) plays the role of an infinite con
nectivity, annulling thus the threshold. This implies that i
fections can pervade a BA network, whatever the infect
rate they have.

The numerical simulations performed on the BA netwo
confirm the picture extracted from the analytic treatment. W
consider the SIS model on BA networks of size ranging fro
N5103 to N58.53106. In Fig. 1 we have plotted the epi
demic persistencer as a function ofl in a linear scale. The
functionr approaches smoothly the valuel50 with vanish-
ing slope. Figure 7, in fact, shows that the infection prev
lence in the steady state decays withl as r;exp(2C/l),
where C is a constant. The numerical value obtainedC21

52.5 is also in good agreement with the theoretical pred
tion C215m53. In order to rule out the presence of fini
size effect hiding an abrupt transition~the so-called smooth
ing out of critical points@16#!, we have inspected the beha
ior of the stationary persistence for network sizes vary
over three orders of magnitude. The total absence of sca
of r and the perfect agreement for any size with the anal
cally predicted exponential behavior allows us to definite
confirm the absence of any finite epidemic threshold. In F
8, we also provide an illustration of the behavior of the pro
ability rk that a node with given connectivityk is infected.
Also in this case we found a behavior withk in complete
agreement with the analytical prediction of Eq.~8!.

FIG. 7. Persistencer as a function of 1/l for BA networks of
different sizes:N5105 (1), N553105 (h), N5106 (3), N
553106 (s), andN58.53106 (L). The linear behavior on the
semilogarithmic scale proves the stretched exponential beha
predicted for the persistence. The full line is a fit to the formr
;exp(2C/l).
7-5
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Our numerical study of the spreading dynamical prop
ties on the BA network is reported in Figs. 9 and 10. In F
9 we plot the growth of the epidemics starting from a sin
infected node. We observe that the spreading growth in t
has an algebraic form, as opposed to the exponential gro
typical of mean-field continuous phase transitions close
the critical point@16#, and the behavior of the SIS model
the WS graph~see Fig. 3!. The surviving probabilityPs(t)
for a fixed value ofl and networks of different sizeN is
reported in Fig 10. In this case, we recover an exponen
behavior in time, that has its origin in the finite size of t
network. In fact, for any finite system, the epidemic w
eventually die out because there is a finite probability that
individuals cure the infection at the same time. This pro
ability is decreasing with the system size and the lifetime
infinite only in the thermodynamic limitN→`. However,
the lifetime becomes virtually infinite~the metastable stat
has a lifetime too long for our observation period! for
enough large sizes that depend upon the spreading ral.
This is a well-known feature of the survival probability
finite size absorbing-state systems poised above the cri
point. In our case, this picture is confirmed by numeri
simulations that shows that the average lifetime of the s
vival probability is increasing with the network size for a
the values ofl. Given the intrinsic dynamical nature o
scale-free networks, this result could possibly have sev
practical implications in the study of epidemic spreading
real growing networks.

The numerical analysis supports and confirms the ana

FIG. 8. The densityrk , defined as the fraction of nodes wit
connectivity k that are infected, in a BA network of sizeN
553105 and spreading ratesl50.1, 0.08, and 0.065~bottom to
top!. The plot recovers the form predicted in Eq.~8!.

FIG. 9. Density of infected nodesr(t) as a function of time in
supercritical spreading experiments in the BA network. Netw
sizeN5106.Spreading rates range froml50.05 to 0.065~bottom
to top!.
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cal results pointing out the existence of a different epidem
logical framework for SF networks. The absence of an e
demic threshold, a central element in the theory
epidemics, opens a different scenario and rationalization
epidemic events in these networks. The dangerous abs
of the epidemic threshold, that leaves SF networks co
pletely disarmed with respect to epidemic outbreaks, is f
tunately balanced from a corresponding exponentially l
prevalence at small spreading rates. In addition, the abs
of a critical threshold, and the associated diverging respo
function, makes the increase of the endemic prevalence
the spreading rate very slow. This new perspective seem
be particularly relevant in the rationalization of epidem
data from computer virus infections@27#.

V. GENERALIZED SCALE-FREE NETWORKS

Recently there has been a burst of activity in the model
of SF complex network. The recipe of Baraba´si and Albert
@14# has been followed by several variations and general
tions @28–31# and the revamping of previous mathematic
works@32#. All these studies propose methods to generate
networks with variable exponentg. The analytical treatmen
presented in the previous section for the SIS model can
easily generalized to SF networks with connectivity distrib
tion with g.0. Consider a generalized SF network with
normalized connectivity distribution given by

P~k!5~11g!m11gk222g, ~15!

where we are approximating the connectivityk as a continu-
ous variable and assumingm the minimum connectivity of
any node. The average connectivity is thus

^k&5E
m

`

kP~k!dk5
11g

g
m. ~16!

For any connectivity distribution, the relative density of i
fected nodesrk is given by Eq.~8!. Applying then Eq.~9! to
compute self-consistently the probabilityQ, we obtain

Q~l!5F„1,g,11g,2@mlQ~l!#21
…, ~17!

whereF is the Gauss hypergeometric function@33#. On the
other hand, the expression for the densityr, Eq. ~10!, yields

FIG. 10. Surviving probabilityPs(t) as a function of time in
subcritical spreading experiments in the BA network. Spread
rate l50.065. Network sizes ranging fromN56.253103 to N
553105 ~bottom to top!.
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r5F„1,11g,21g,2@mlQ~l!#21
…. ~18!

In order to solve Eqs.~17! and ~18! in the limit r→0
~which obviously corresponds also toQ→0, we must per-
form a Taylor expansion of the hypergeometric function. T
expansion for Eq.~17! has the form@33#

F„1,g,11g,2@mlQ~l!#21
…

.
gp

sin~gp!
~mlQ!g1g (

n51

`

~21!n
~mlQ!n

n2g
,

~19!

whereG(x) is the standard gamma function. An analogo
expression holds for Eq.~18!. The expansion~19! is valid for
any gÞ1,2,3, . . . . Integer values ofg must be analyzed in
a case by case basis.~The particular valueg51 was consid-
ered in the previous section.! For all values ofg, the leading
behavior of Eq.~18! is the same,

r.
11g

g
mlQ. ~20!

The leading behavior in the rhs of Eq.~19!, on the other
hand, depends on the particular value ofg.

~i! 0,g,1: In this case, one has

Q~l!.
gp

sin~gp!
~mlQ!g, ~21!

from which we obtain

Q~l!.F gp

sin~gp!G
1/(12g)

~ml!g/(12g). ~22!

Combining this with Eq.~20!, we obtain

r;l1/(12g). ~23!

Here we have again the total absence of any epidemic thr
old and the associated critical behavior, as we have alre
shown for the caseg51. In this case, however, the relatio
betweenr andl is given by a power law with exponentb
51/(12g), i.e., b.1.

~ii ! 1,g,2: In this case, to obtain a nontrivial informa
tion for Q, we must keep the first two most relevant terms
Eq. ~19!,

Q~l!.
gp

sin~gp!
~mlQ!g1

g

g21
mlQ. ~24!

From here we get

Q~l!.F2sin~gp!

p~g21!

m

~ml!g S l2
g21

mg D G 1/(g21)

. ~25!

The expression forr is finally

r.S l2
g21

mg D 1/(g21)

;~l2lc!
1/(g21). ~26!
06611
e
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That is, we obtain a power-law behavior with exponentb
51/(g21).1, but now we observe the presence of a no
zero threshold

lc5
g21

mg
. ~27!

In this case, a critical threshold reappears in the model. H
ever, the epidemic threshold is approached smoothly with
any sign of the singular behavior associated with criti
point.

~iii ! g.2: The relevant terms in theQ expansion are now

Q~l!.
g

g21
mlQ2

g

g22
~mlQ!2, ~28!

and the relevant expression forQ is

Q~l!.
g22

g21

1

l2m
S l2

g21

mg D , ~29!

which yields the behavior forr

r;l2lc ~30!

with the same thresholdlc as in Eq.~27! and an exponen
b51. In other words, we recover the usual critical fram
work in networks with connectivity distribution that decay
faster thank to the fourth power. Obviously, an expone
tially bounded network is included in this last case, recov
ing the results obtained with the homogeneous approxi
tion of Sec. III. It is worth remarking that the above resu
are obtained by neglecting connectivity correlations in
network, i.e., the probability that a link points to an infect
node is considered independent of the connectivity of
node from which the link is emanated@see Eq.~7!#. This
approximation appears to be irrelevant in the BA network.
different SF networks with more complex topological pro
erties, however, connectivity correlations could play a m
important role and modify the analytic forms obtained in th
section, Eqs.~23! and ~26!. On the other hand, conclusion
concerning the epidemic threshold absence for connecti
distributions decaying more slowly than a cubic power c
be considered of general validity. Indeed, for connectivit
decaying faster than the cubic power, the connectivity fl
tuations are bounded, and one would expect to obtain
same qualitative behavior as in exponential distribution.

In summary, for all SF networks with 0,g<1, we re-
cover the absence of an epidemic threshold and critical
havior, i.e.,r50 only if l50, andr has a vanishing slope
whenl→0. In the interval 1,g,2, an epidemic threshold
reappears (r→0 if l→lc), but it is also approached with
vanishing slope, i.e., no singular behavior. Eventually,
g.2 the usual MF critical behavior is recovered and the
network is indistinguishable from an exponential network

VI. CONCLUSIONS

The emerging picture for disease spreading in comp
networks emphasizes the role of topology in epidemic m
7-7
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eling. In particular, the absence of epidemic threshold
critical behavior in a wide range of SF networks provides
unexpected result that changes radically many standard
clusions on epidemic spreading. Our results indicate tha
fections can proliferate on these networks whatever spre
ing rates they may have. This very bad news is, howe
balanced by the exponentially small prevalence for a w
range of spreading rates (l!1). This point appears to b
particularly relevant in the case of technological netwo
such as the Internet and the world-wide-web that show a
connectivity with exponentsg.2.5 @5,6#. For instance, the
present picture fits perfectly with the observation from r
data of computer virus spreading, and could solve the lo
standing problem of the generalized low prevalence of co
puter viruses without assuming any global tuning of t
spreading rates@17,27#. The peculiar properties of SF ne
a-

om
,
-

,

e-
,
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e,
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works also open the path to many other questions concer
the effect of immunity and other modifications of epidem
models. As well, the critical properties of many nonequili
rium systems could be affected by the topology of SF n
works. Given the wide context in which SF networks appe
the results obtained here could have intriguing implicatio
in many biological and social systems.

ACKNOWLEDGMENTS

This work was partially supported by the European N
work through Contract No. ERBFMRXCT980183. R.P.-
also acknowledges support from Grant No. CICYT PB9
0693. We thank S. Franz, M.-C. Miguel, R. V. Sole´, M.
Vergassola, S. Visintin, S. Zapperi, and R. Zecchina
comments and discussions.
R.

-

Eu-

tts,

he

ev.

ev.

rint

ett.

i-

l

@1# G. Weng, U.S. Bhalla, and R. Iyengar, Science284, 92 ~1999!;
S. Wasserman and K. Faust,Social Network Analysis~Cam-
bridge University Press, Cambridge, 1994!.

@2# L.A.N. Amaral, A. Scala, M. Barthe´lémy, and H.E. Stanley,
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