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Epidemic dynamics and endemic states in complex networks
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We study by analytical methods and large scale simulations a dynamical model for the spreading of epi-
demics in complex networks. In networks with exponentially bounded connectivity we recover the usual
epidemic behavior with a threshold defining a critical point below that the infection prevalence is null. On the
contrary, on a wide range of scale-free networks we observe the absence of an epidemic threshold and its
associated critical behavior. This implies that scale-free networks are prone to the spreading and the persistence
of infections whatever spreading rate the epidemic agents might possess. These results can help understanding
computer virus epidemics and other spreading phenomena on communication and social networks.
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I. INTRODUCTION equilibrium phase transitions that usually characterize these
type of phenomenfl6]. It is easy to foresee that the char-
Many social, biological, and communication systems caracterization and understanding of epidemic dynamics on
be properly described by complex networks whose nodeghese networks can find immediate applications to a large
represent individuals or organizations and links mimic thenumber of problems, ranging from computer virus infections
interactions among theiid,2]. Recently, many authors have [17], epidemiology[18], and the spreading of polluting
recognized the importance of local clustering in complexagentg19].
networks. This implies that somspecialnodes of the net- In this paper, we shall study the susceptible-infected-
work posses a larger probability to develop connectionsusceptible(SIS) model [18] on complex networks. We
pointing to other nodes. Particularly interesting examples oktudy analytically the prevalence and persistence of infected
this kind of behavior are found in metabolic networld, individuals in exponential and SF networks by using a
food webs[4], and, most importantly, in the Internet and the single-site approximation that takes into account the inhomo-
world-wide-web, where the networking properties have beemyeneity due to the connectivity distribution. We find that
extensively studied because of their technological and ecaxponential networks show, as expected, an epidemic thresh-
nomical relevancé¢2,5-7. old (critical point) separating an infected from a healthy
Complex networks can be classified in two main groupsphase. The density of infected nodes decreases to zero at the
depending on their connectivity properties. The first andthreshold with the linear behavior typical of a mean-field
most studied one is represented by éx@onentiahetworks,  (MF) critical point[16]. The SF networks, on the other hand,
in which the nodes’ connectivity distributidithe probability  show a very different and surprising behavior. Fog
P(k) that a node is connected to othenodes is exponen- <1 the model does not show an epidemic threshold and the
tially bounded[8-10]. A typical example of an exponential infection can always pervade the whole system. In the region
network is the random graph model of Esdand Reyi [9]. 1< y=<2, the model shows an epidemic threshold that is ap-
A network belonging to this class that has recently attractegiroached, however, with a vanishing slope; i.e., in the ab-
a great deal of attention is the Watts and Strogatz modedence of critical fluctuations. Only foy>2 we recover
(WS) [10-12, which has become the prototypical exampleagain the usual critical behavior at the threshold. In these
of a small-worldnetwork[13]. A second and very different systems, because of the nonlocal connectivity, single site ap-
class of graph is identified by thecale-free(SF) networks  proximation predictions are expected to correctly depict the

that exhibit a power-law connectivity distributigt4], model’s behavior. In order to test our predictions, we per-
) form large scale numerical simulations on both exponential
P(k)~k™=77, (1) and SF networks. Numerical results are in perfect agreement

with the analytical predictions and confirm the overall pic-
where the parametey must be larger than zero to ensure ature for the SIS model on complex networks given by the
finite average connectivityk). This kind of distribution im-  theoretical analysis. The striking absence of an epidemic
plies that each node has a statistically significant probabilitghreshold on SF networks, a characteristic element in math-
of having a very large number of connections compared t@matical epidemiology, radically changes many of the con-
the average connectivity of the netwdk). In particular, we  clusions drawn in classic epidemic modeling. The present
will focus here on the Baralsaand Albert mode(BA) [14], results could be relevant also in the field of absorbing-phase
which results in a connectivity distributioR(k)~k 2. transitions and catalytic reactions in which the spatial inter-
In view of the wide occurrence of complex networks in action of the reactants can be modeled by a complex network
nature, it becomes a very interesting issue to inspect the ef16].
fect of their complex features on the dynamics of epidemic The paper is organized as follows. In Sec. Il we introduce
and disease spreadif@5], and more in general on the non- the SIS model in a general context. Section 11l is devoted to

1063-651X/2001/6@&)/0661178)/$20.00 63066117-1 ©2001 The American Physical Society



ROMUALDO PASTOR-SATORRAS AND ALESSANDRO VESPIGNANI PHYSICAL REVIEW &3 066117

the analysis of exponentially bounded networks, exemplified In order to obtain an analytical understanding of the SIS
by the WS model. In Sec. IV we analyze the scale-free BAmodel behavior on complex networks, we can apply a single
model, with connectivityP(k) ~k 3. Section V extends the site dynamical MF approach, that we expect to recover ex-
analytical approach applied to the BA model to generalizedactly the model’s behavior due to the nonlocal connectivity
SF networks, with connectivity distributioR(k)~k 277, of these graphs. Let us consider separately the case of the
v>0. Finally, in Sec. VI we draw our conclusions and per-exponentially bounded and SF networks.
spectives.

1. EXPONENTIAL NETWORKS: THE

Il THE SIS MODEL WATTS-STROGATZ MODEL

To address the effect of the topology of complex net- The class of exponential networks refers to random graph

works in epidemic spreading we shall study the standard Slgosr]elz\fggg%r%iﬁg(; ;r?g%i‘gg’;%;'gg&fgﬂ'glIsi:i;??or
epidemiological mode[18]. Each node of the network rep- > (k) andk<(k). Typical examples of such a network are

resents an individual and each link is a connection along th%}_‘ d h yes d th I Id del of
the infection can spread to other individuals. The SIS mode e random graph mod¢] and the small-world model o

relies on a coarse grained description of the individuals VS [10]. The latter has recently been the object of several

the population. Within this description, individuals can only .St;.Jd'e.f af. a ggo?hcandugatcta- f?r th_e Imoddelln? oflmatny rial—
exist in two discrete states, namely, susceptible, ofStiC sttuations in the context of soclal and natural NEwWorks.

“healthy,” and infected. These states completely neglect théntparticular, the Wﬁ model sh;)?\:v.s_ thet‘r‘]sm da_lll-wotrld” ]E’trﬁp'
details of the infection mechanism within each individual, €™y €0Mmon in random graphs3]; i.e., the diameter of the

The disease transmission is also described in an effectiv%raph_the shortest chain of links connecting any two

way. At each time step, each susceptible node is infecteﬁgrtices—increasgs very slowly, in general logarithmically
with probability » if it is connected to one or more infected with the network siz¢12]. On the other hand, the WS model

nodes. At the same time, infected nodes are cured and b as also a local structureelustering property that is not

: : . - . ound in random graphs with finite connectiv(t§0,12. The
come again susceptible with probabiliéy defining an effec- . : ) : L
tive spreading rata = v/ 8. (Without lack of generality, we WS graph is defined as folloW20,12: The starting point is

set 6=1.) Individuals run stochastically through the cycle a ring with N nodes, in which each node is symmetrically

. : : connected with its B nearest neighbors. Then, for every
susceptible— infected— susceptible, hence the name of the . . : X .
; . node each link connected to a clockwise neighbor is rewired
model. The updating can be performed with both parallel or

sequential dynamickl6]. The SIS model does not take into toa random!y chosen nOQe with probabilityand preserved
account the possibility of individuals removal due to death orW'th probability 1-p. This procedure generates a random

) . S ; . . raph with a connectivity distributed exponentially for large
acquired immunizatiof18]. It is mainly used as a paradig- g N
matic model for the study of infectious disease that leads t [10,12, and an average connectivitk)=2K. The graphs

an endemic state with a stationary and constant value for the]jaf;i:?esr’]rp,‘f"";Vgorligr%%%:;ﬁs ar?g dzsnosnﬁg;/e'almgrl:SteCrg:ﬁrﬁ;
prevalence of infected individuals, i.e., the degree to which™ . T ghboring . y
the infection is widespread in the population. neighbord10,12. The richness of this model has stimulated

The topology of the network that specifies the interaction$" intense activity aimed at understanding the network’s

among individuals is of primary importance in determining properties upon changing and the network sizé\ [10—

many of the model's features. In standard topologies the13,20,211. At the same time, the behavior of physical models

N . - WS graphs has been investigated, including epidemio-
most significant result is the general prediction of a nonzer n : . .
epidemic threshold\. [18]. If the value of\ is above the ?(z)gmal percolation model§15,20,23 and models with epi-

) ; . emic cycleq23].
threshold\ = \ . the infection spreads and becomes per5|sten$I Here we focus on the WS model wigh=1: it is worth

in time. Below ith <A, the infection dies out exponentially noticing that even in this extreme case the network retains
fast. In both sides of the phase diagram it is possible to stud 9 . .
ome memory of the generating procedure. The network, in

the behavior in time of interesting dynamical magnitudes o . ; .
. . . . o fact, is not locally equivalent to a random graph in that each
epidemics, such as the time survival probability and the re- . X . ;
. : . node has at leadt neighbors. Since the fluctuations in the
laxation to the healthy state or the stationary endemic Statec‘onnectivit are very small in the WS araoh. due to its ex-
In the latter case, if we start from a localized seed we car) onential d%stributior)( we can a roacr? th% ,anal tical stud
study the epidemic outbreak preceding the endemic stabilf? ' can appro: yi y
. . X S : of the SIS model by considering a single MF reaction equa-
zation. From this general picture, it is natural to consider th%ion for the density of infected nodes(t)
epidemic threshold as completely equivalent to a critical y ’
point ina non_equmbrlum phase tr_ansm@IDG]. In_ this case, g 5(t)=—p(t)+A(K)p(t)[1— p(t)]+ (higher-order terms
the critical point separates an active phase with a stationary )
density of infected node@n endemic stajdrom an absorb-
ing phase with only healthy nodes and null activity. In par-The MF character of this equation stems from the fact that
ticular, it is easy to recognize that the SIS model is a generwe have neglected the density correlations among the differ-
alization of the contact process model, that has beeent nodes, independently of their respective connectivities. In
extensively studied in the context of absorbing-state phasEg. (2) we have ignored all higher order correctionspit),

transitions[16]. since we are interested in the onset of the infection close to
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FIG. 1. Density of infected nodgsas a function oh in the WS FIG. 2. Log-log plot of density of infected nogeas a function

network (full line) and the BA networkdashed ling of A —\. in WS network, with\ ;.=0.1643+0.01. The full line is a

fit to the formp~ (A —\.)?, with an exponen=0.97+ 0.04.

the phase transition, i.e., @(t)<1. The first term on the g jations we consider the WS network with parameter
right-hand siderhs) in Eq. (2) considers infected nodes be- «—3  \hich corresponds to an average connectivity
come healthy with unit rate. The second term represents thg — g

average density of newly infected nodes generated by each’As shown in Figs. 1 and 2, the SIS model on a WS graph
active node. This is proportional to the infection spreadingexhibits an epidemic threshold,=0.1643+0.01 that is ap-
rate\, the number of links emanating from each node, andproached with linear behavior by The value of the thresh-
the probability that a given link points to a healthy node,old is in good agreement with the MF predictions,
[1—p(t)]. In these models, connectivity has only exponen-=1/2K =0.1666, as well as the density of infected nodes
tially small fluctuations (k?)~(k)) and as a first approxi- behavior. In Fig. 2 we plop as a function ofx —X\. in
mation we have considered that each node has the sanhag-log scale. A linear fit to the forrp~ (A —\.)# provides
number of links k= (k). This is equivalent to an homogene- an exponen=0.97+0.04, in good agreement with the ana-
ity assumption for the system’s connectivity. After imposing lytical finding of the Eq.(4b).

the stationarity conditio@;p(t)=0, we obtain the equation To complete our study of the SIS model in the WS net-
work, we have also analyzed the epidemic spreading proper-
p[—1+N(Kk)(1—p)]=0 3) ties, computed by considering the time evolution of infec-

tions starting from a very small concentration of infected

. . _ . nodes. In Fig. 3 we plot the evolution of the infected nodes
for the steady state densigyof infected nodes. This equation yensity as a function of time for epidemics in the supercriti-

defines an epidemic threshald= (k) ~*, and yields cal regime §>\,) that start from a single infected node.
Each curve represents the average over several spreading
p=0 if A<\ (48  events with the same.. We clearly notice a spreading
growth faster than any power law, in agreement with 9.
p~A—\, if A>\.. (4b) that predicts an exponential saturation to the endemic steady

state. In the subcritical regimex&A\.), by introducing a
small perturbation to the stationary staie 0, and keeping

In analogy with critical phenomena, we can consid@s the only first order terms in Eq2), we obtain that the infection

order parameter of a phase transition ands the tuning decays following the exponential relaxation,p(t)

parameter, recovering a MF critical behavi@#]. It is pos- ~ —"" - : L .
sible to refine the above calculations by introducing connec: {k)(Ac—=M)p(1). This equation introduces a characteris

tivity fluctuations(as it will be done later for SF networks, tic relaxation time

see Sec. IY. However, the results are qualitatively and quan- 7 =(k)(A¢—\) (5)

titatively the same as far as we are only concerned with the

model’s behavior close to the threshold. 10
In order to compare with the analytical prediction we &

have performed large scale simulations of the SIS model in i

the WS network withp=1. Simulations were implemented

on graphs with number of nodes ranging fra+10° to p(t) 10

N=3x10°, analyzing the stationary properties of the density 1w0° L

of infected nodew, i.e., the infection prevalence. Initially

we infect half of the nodes in the network, and iterate the 10° L : > - .

rules of the SIS model with parallel updating. In the active
phase, after an initial transient regime, the systems stabilize
in a steady state with a constant average density of infected F|G. 3. Density of infected nodgs(t) as a function of time in
nodes. The prevalence is computed averaging over at leasiipercritical spreading experiments in the WS network. Network
100 different starting configurations, performed on at leaskize N=1.5x10°. Spreading rates range from—\,=0.002 to
ten different realization of the random networks. In our0.0007(top to botton).
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FIG. 6. Inverse relaxation time for the SIS model in the WS
raph as a function of the spreading rateestimated from the slope
f the exponential decay of the infected nodes dengfty (O),
and the survival probabilityP(t) ().

FIG. 4. Density of infected nodgs(t) as a function of time in
subcritical spreading experiments in the WS network. Network siz
N=3x10. Spreading rates range from,—\=0.005 to 0.03
(right to left).

whereas the intercept yields 1.0, in good agreement with the
that diverges at the epidemic threshold. Below the thresholdheoretical predictions of Ed5), (ky=6 and(k)\.=1, re-

the epidemic outbreak dies within a finite time, i.e., it doesspectively.

not reach a stationary endemic state. In Fig. 4 we plot aver- |n summary, numerical and analytical results confirms
age ofp(t) for epidemics starting with an initial concentra- that for WS graphs, the standard epidemiological pictafe
tion pp=0.01 of infected nodes; the figure shows a clearten called the deterministic approximatjois qualitatively
exponential approach to the healtfapbsorbing state as pre- and quantitatively correct. This result, that is well known for
dicted by Eq.(5). In the subcritical regime, we can compute random graphs, holds also in the WS model despite the dif-
also the surviving probabilityP(t), defined as the probabil- ferent local structure.

ity that an epidemic outbreak survives up to the tinjé&6].

In Fig. 5 we plot the survival probability computed from |y scaLE-FREE NETWORKS: THE BARABA SI-ALBERT
simulations starting with a single infected node in a WS MODEL

graph of sizeN=3x10°. The survival probability decay is

obviously governed by the same exponential behavior and The BA graph was introduced as a model of growing
characteristic time of the density of infected nodes as connetwork (such as the Internet or the world-wide-wein
firmed by numerical simulations. Indeed, below the epidemigvhich the successively added nodes establish links with
threshold, the relaxation to the absorbing state does not déigher probability pointing to already highly connected
pend on the network sizBl (see inset in Fig. 5 and the nodes[14]. This is a rather intuitive phenomenon on the
average lifetime corresponding to each spreadingxatan  Internet and other social networks, in which new individuals
be measured by the slope of the exponential taigt) and  tend to develop more easily connections with individuals that
p(t). By plotting 7~ * as a function of.— A (see Fig. 6, we  are already well known and widely connected. The BA graph
recover the analytic predictions, i.e., the linear behavior ands constructed using the following algorithf#t4]: We start
the unique characteristic time for both the density and surfrom a small numbem, of disconnected nodes; every time
vival probability decay. The slope of the graph, measured bytep a new vertex is added, withlinks that are connected to
means of a least squares fitting, provides a value of 6.3n old node with probability

Ki
0 = —_—
10 ! - T H(kl)_zj le (6)
wherek; is the connectivity of theth node. After iterating
this scheme a sufficient number of times, we obtain a net-
work composed byN nodes with connectivity distribution
0 100 150 2003 P(k)~k ™2 and average connectivitk)=2m (in this work
t we will consider the parameters,=5 andm=3). Despite
the well-defined average connectivity, the scale invariant
properties of the network turns out to play a major role on
the properties of models such as percolafi2®,25, used to
107" : : s mimic the resilience to attacks of a network. For this class of
0 S0 100150 200 graphs, in fact, the absence of a characteristic scale for the
¢ connectivity makes highly connected nodes statistically sig-
FIG. 5. Surviving probabilityP((t) as a function of time in  Nificant, and induces strong fluctuations in the connectivity
subcritical spreading experiments in the WS network. Network sizélistribution that cannot be neglected. In order to take into
N=3x10°. Spreading rates range from,—\=0.005 to 0.03 account these fluctuations, we have to relax the homogeneity
(right to left). Inset: Surviving probability for a fixed spreading rate assumption used for exponential networks, and consider the
A¢—A=0.005 and network sizad=3x10°, 1¢°, and 3x 1¢F. relative densityp,(t) of infected nodes with given connec-
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tivity k, i.e., the probability that a node witk links is in-

fected. The dynamical MF reaction rate equations can thus 107
be written as
Irpi(1) = = pi(1) +NK[ 1= py(1) O (p(1)), (7 Pt

where also in this case we have considered a unitary recov-
ery rate and neglected higher order terppgt)<1]. The

creation term considers the probability that a node vkth A 1 17 2

links is healthy] 1—p\(t)] and gets the infection via a con- 1/

nected node. The probability of this last event is proportional

to the infection ratex, the number of connectioris and the FIG. 7. Persistencg as a function of I for BA networks of

probability © (p(t)) that any given link points to an infected different sizes:N=10° (+), N=5x10 (O), N=1C (x), N
node. Here we neglect the connectivity corrections, i.e., we=5x 10 (O), andN=8.5x1C (¢ ). The linear behavior on the
consider that the probability that a link points to an infectedsemilogarithmic scale proves the stretched exponential behavior
node does not depend on the connectivity of the enanatingredicted for the persistence. The full line is a fit to the fosm
node and is only a function of the total density of infected~exp(=C/\).

nodes pointed by the lin26). In the steadyendemig state, In order to find the behavior of the density of infected nodes

p is just a function of\. Thus, the probability® becomes we have to solve Eq10), that reads as
also an implicit function of the spreading rate, and by impos- -

ing stationarity[ d;p\(t) =0], we obtain ) w1 k
p=2m A@()\)f — . (13
~ knO(N) ® mk3 1+KNO(N)
Pm1y KNO(N) By substituting the obtained expression f8(\) and solv-

ing the integral we find at the lowest ordern
This set of equations show that the higher the node connec-g g

tivity, the higher the probability to be in an infected state. p~e Um (14
This inhomogeneity must be taken into account in the com-_ . . .
putation of® (\). Indeed, the probability that a link points to This result shgyvs the. surprising abse.nce of any epidemic
a node withs links is proportional tas P(s). In other words, thre_sho_lq or critical point in the r_nc_JdeI, .8.c=0. This can

a randomly chosen link is more likely to be connected to arPe intuitively understood by noticing that for usual lattices

infected node with high connectivity, yielding the relation and MF. models,.the _higher the node’s connecivity, the
g .y g smaller is the epidemic threshold. In the BA network the

kP(K) py unbounded fluctuations in the number of links emanating
CIONEDS SSP(s)” (9)  from each node(k?)=o) plays the role of an infinite con-

K 2sSH nectivity, annulling thus the threshold. This implies that in-
fections can pervade a BA network, whatever the infection
rate they have.

The numerical simulations performed on the BA network
confirm the picture extracted from the analytic treatment. We
consider the SIS model on BA networks of size ranging from
N=10° to N=8.5x 10°. In Fig. 1 we have plotted the epi-
pzz P(K)py, (10 demic persistence as a function ol in a linear scale. The

K functionp approaches smoothly the valNe= 0 with vanish-

ing slope. Figure 7, in fact, shows that the infection preva-
" lence in the steady state decays wikhas p~exp(—C/\),
where C is a constant. The numerical value obtair@d*
=2.5is also in good agreement with the theoretical predic-
tion C"'=m=3. In order to rule out the presence of finite
size effect hiding an abrupt transitigthe so-called smooth-
ing out of critical pointd16]), we have inspected the behav-
ior of the stationary persistence for network sizes varying
over three orders of magnitude. The total absence of scaling

Since py is on its turn a function of®(\), we obtain a
self-consistency equation that allows to fiG{\) and an
explicit form for Eq.(8). Finally, we can evaluate the order
parametelpersistencep using the relation

In order to perform an explicit calculation for the BA model
we use a continuouls approximation that allows the practi-
cal substitution of series with integrdl$4]. The full connec-
tivity distribution is given byP(k)=2m?/k™ 2, wherem is
the minimum number of connection at each node. By notic
ing that the average connectivity {&)= [, kP(k)dk=2m,
Eq. (9) gives

w1 k2

- - - of p and the perfect agreement for any size with the analyti-
o0 m)\®()\)fm k3 1+KAO(N)’ @ cally predicted exponential behavior allows us to definitely
confirm the absence of any finite epidemic threshold. In Fig.
which yields the solution 8, we also provide an illustration of the behavior of the prob-
U ability P t.hat a node with given connecti\{iﬂy is infected.
O\ = (1—e 1my-1, (12 Also in this case we foun_d a behav[or wikhin complete
Am agreement with the analytical prediction of E§).
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FIG. 10. Surviving probabilityP(t) as a function of time in
subcritical spreading experiments in the BA network. Spreading
rate \=0.065. Network sizes ranging frold=6.25x10° to N
=5X10° (bottom to top.

FIG. 8. The densityp,, defined as the fraction of nodes with
connectivity k that are infected, in a BA network of sizH
=5x10° and spreading rates=0.1, 0.08, and 0.06%bottom to
top). The plot recovers the form predicted in E§).

cal results pointing out the existence of a different epidemio-

. Our numerical StUdy.Of the spre_adir_lg dynamical pmp_er'logical framework for SF networks. The absence of an epi-
ties on the BA network is reported in Figs. 9 and 10. In F'g'demic threshold, a central element in the theory of

9 we plot the growth of the epidemics starting from a Slngleepidemics, opens a different scenario and rationalization for

infected node. We observe that the spreading groth in tim idemic events in these networks. The dangerous absence
has_ an algebraic _form, as _opposed to the expp_nentlal IrOWEk the epidemic threshold, that leaves SF networks com-
typical of mean-field continuous phase transitions close t(bletely disarmed with respect to epidemic outbreaks, is for-

the critical point[16], and the behavior of the SIS model in - :

. L h tunately balanced from a corresponding exponentially low
the W.S graph(see Fig. 3 The surviving probablllty_l S(t.) prevalence at small spreading rates. In addition, the absence
for a fixed value of\ and networks of different siz8l is

d.in Fia 10. In thi 'a?f a critical threshold, and the associated diverging response
reported in Fig 10. In this case, we recover an exponentl unction, makes the increase of the endemic prevalence with
behavior in time, that has its origin in the finite size of thet

o . 2= the spreading rate very slow. This new perspective seems to
network. In fact, for any finite system, the epidemic will P g y hersp

. ; L o e particularly relevant in the rationalization of epidemic
eventually die out because there is a finite probability that al ata from computer virus infectiofi@7].
individuals cure the infection at the same time. This prob-
ability is decreasing with the system size and the lifetime is
infinite only in the thermodynamic limiN—-c. However,
the lifetime becomes Virtually |nf|n|téthe metastable state Recent]y there has been a burst of acti\/ity in the mode”ng
has a lifetime too long for our observation penofbr  of SF complex network. The recipe of Baraband Albert
enough large sizes that depend upon the spreading\rate [14] has been followed by several variations and generaliza-
This is a well-known feature of the survival probability in tjons [28—31] and the revamping of previous mathematical
finite size absorbing-state systems poised above the critic@}orks[32]. All these studies propose methods to generate SF
point. In our case, this picture is confirmed by numericalnetworks with variable exponent The analytical treatment
simulations that shows that the average lifetime of the Surpresented in the previous section for the SIS model can be
vival probability is increasing with the network size for all easily generalized to SF networks with connectivity distribu-

the values of\. Given the intrinsic dynamical nature of tion with ')’>O Consider a genera”zed SF network with a
scale-free networks, this result could possibly have severajormalized connectivity distribution given by

practical implications in the study of epidemic spreading in

real growing networks. P(K)=(1+y)mtT7k 277, (15
The numerical analysis supports and confirms the analyti-

where we are approximating the connectivitgs a continu-

ous variable and assuming the minimum connectivity of

any node. The average connectivity is thus

V. GENERALIZED SCALE-FREE NETWORKS

<k)=J:kP(k)dk=1;7ym. (16

For any connectivity distribution, the relative density of in-
fected nodegp, is given by Eq.(8). Applying then Eq(9) to
compute self-consistently the probabili®, we obtain

FIG. 9. Density of infected nodgs(t) as a function of time in ON)=FL,y,1+ 7y, —[mMAO(N)] D), 17
supercritical spreading experiments in the BA network. Network
size N=10°.Spreading rates range from=0.05 to 0.065bottom  WhereF is the Gauss hypergeometric functif88]. On the
to top). other hand, the expression for the dengifyEq. (10), yields
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p=F@1,1+y,2+y,—[mAO\)] D). (18 That is, we obtain a power-law behavior with expongnt
=1/(y—1)>1, but now we observe the presence of a non-
In order to solve Eqs(17) and (18) in the limit p—0 zero threshold
(which obviously corresponds also @—0, we must per-

form a Taylor expansion of the hypergeometric function. The o= y—1 27
expansion for Eq(17) has the forn{33] C my
F(Ly,1+y,—[mxOMN)]™Y) In this case, a critical threshold reappears in the model. How-
o N ever, the epidemic threshold is approached smoothly without
T y _ n(m)\®) any sign of the singular behavior associated with critical
= — (MAO)7+ 5>, (—1) , :
Sin(yr) A=1 n—vy point.
(19 (iii) y>2: The relevant terms in th® expansion are now
whereI'(x) is the standard gamma function. An analogous O(\)= 14 mA® — ’ (M\©®)2, (29)
expression holds for E¢18). The expansiofil9) is valid for -1 y—2
any y#1,2,3 ... .Integer values ofy must be analyzed in . .
a case by case basi3he particular valuey=1 was consid- and the relevant expression fér is
ered in the previous sectigrizor all values ofy, the leading o 1 1
behavior of Eq(18) is the same, O(N)= Y ()\_ L4 ) (29)
Y—1N°m my
1+y
p=—"M\O. (20 which yields the behavior fop
The leading behavior in the rhs of E¢L9), on the other P~A—Ac (30)

hand, depends on the particular valueyof

(i) 0<y<1: In this case, one has with the same thresholdl; as in Eq.(27) and an exponent

B=1. In other words, we recover the usual critical frame-

ym work in networks with connectivity distribution that decays
O(N)= SNy ) (m\O)”, (21)  faster thank to the fourth power. Obviously, an exponen-
Y tially bounded network is included in this last case, recover-
from which we obtain ing the results obtained with the homogeneous approxima-
tion of Sec. lll. It is worth remarking that the above results
ymr YA 1 are obtained by neglecting connectivity correlations in the
OMN=|gin 777)} (ma) 7). (22)  network, i.e., the probability that a link points to an infected
node is considered independent of the connectivity of the
Combining this with Eq(20), we obtain node from which the link is emanatddee Eq.(7)]. This
Y1) approximation appears to be irrelevant in the BA network. In
p~ N (23)  different SF networks with more complex topological prop-

Here we have again the total absence of any epidemic thres portant role and modify the analytic forms obtained in this

old and the associated criticz?\l behavior, as we have alrea ection, Eqs(23) and (26). On the other hand, conclusions
shown for the ca_sefz_l. In this case, howe\_/er, the relation concerning the epidemic threshold absence for connectivity
betweenp a*.’d" is given by a power law with exponeyft distributions decaying more slowly than a cubic power can
- 1/..(1_ 7). |.e.,,8>1_. . T be considered of general validity. Indeed, for connectivities
_ (i) 1<y<2: In this case, to obtain a nontrivial informa-  ye aving faster than the cubic power, the connectivity fluc-
tion for ®, we must keep the first two most relevant terms iy, aions are bounded, and one would expect to obtain the
Eq. (19), same qualitative behavior as in exponential distribution.
y In summary, for all SF networks with<Qy<1, we re-
(M\O®)"+ ——m\O. (24)  cover the absence of an epidemic threshold and critical be-
=1 havior, i.e.,p=0 only if \=0, andp has a vanishing slope
when\—0. In the interval XK y<2, an epidemic threshold
reappears d—0 if N\—\.), but it is also approached with
U(y-1) vanishing slope, i.e., no singular behavior. Eventually, for
(25)  y>2 the usual MF critical behavior is recovered and the SF
network is indistinguishable from an exponential network.

CE;ties, however, connectivity correlations could play a more

')/'77'
ON=Ginym)

From here we get

O\)=

—sin(ym) m ( _'y—l)
m(y=1) (m\)? my

The expression fop is finally

y— 1) U(y-1)

=

VI. CONCLUSIONS

~ (A=A YO, (26) The emerging _picture for disease spregding_ in c_omplex
¢ networks emphasizes the role of topology in epidemic mod-
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eling. In particular, the absence of epidemic threshold andvorks also open the path to many other questions concerning
critical behavior in a wide range of SF networks provides arthe effect of immunity and other modifications of epidemic
unexpected result that changes radically many standard comodels. As well, the critical properties of many nonequilib-
clusions on epidemic spreading. Our results indicate that inium systems could be affected by the topology of SF net-
fections can proliferate on these networks whatever spreadvorks. Given the wide context in which SF networks appear,
ing rates they may have. This very bad news is, howeverthe results obtained here could have intriguing implications
balanced by the exponentially small prevalence for a widen many biological and social systems.

range of spreading rates. €1). This point appears to be
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