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Tendency towards maximum complexity in a nonequilibrium isolated system

Xavier Calbet
Instituto de AstroBica de Canarias ‘& Lactea, s/n, E-38200 La Laguna, Tenerife, Spain

Ricardo Lgez-Rui#
Departamento de Bica Tegica Facultad de Ciencias, Edificio A, Universidad de Zaragoza, E-50009 Zaragoza, Spain
(Received 30 January 2001; published 22 May 2001

The time evolution equations of a simplified isolated ideal gas, the “tetrahedral” gas, are derived. The
dynamical behavior of the lpez-Ruiz—Mancini—Calbet complexifiR. Lopez-Ruiz, H. L. Mancini, and X.
Calbet, Phys. Lett. 209 321(1995] is studied in this system. In general, it is shown that the complexity
remains within the bounds of minimum and maximum complexity. We find that there are certain restrictions
when the isolated “tetrahedral” gas evolves towards equilibrium. In addition to the well-known increase in
entropy, the quantity called disequilibrium decreases monotonically with time. Furthermore, the trajectories of
the system in phase space approach the maximum complexity path as it evolves toward equilibrium.
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[. INTRODUCTION their evaluation in a natural way in terms of statistical me-
chanics.

Several definitions of complexity, in the general sense of The disequilibrium-based complexity is easy to calculate
the term, have been presented in the literature. These can bad shows some interesting properfi&s], but suffers from
classified according to their calculation procedure into twothe main drawback of not being very well behaved as the
broad and loosely defined groups. system size increases, or equivalently, as the distribution

One of these groups is based on computational sciendenction becomes continuodi&2]. Feldman and Crutchfield
and consists of all definitions based on algorithms or autried to solve this problem by defining another equivalent
tomata to derive the complexity. Examples are the logicaterm for disequilibrium, but ended up with a complexity that
depth [1], the e-machine complexity{2], and algorithmic ~was a trivial function of the entropy.
complexity [3]. These definitions have been shown to be Whether these definitions of complexity are useful in non-
very useful in describing symbolic dynamics of chaotic €quilibrium thermodynamics will depend on how they be-
maps, but they have the disadvantage of being very difficulpave as a function of time. There is a general _bellef that,
to calculate. although the second law of thermodynamics requires average

Another broad group consists of those complexities basefintropy (or disordey to increase, this does not in any way
on the measure of entropy or entropy rate. Among these, w rbid I(_)cal_order f_rom ar|3|n¢1_3]. The cle_arest exampl_e 1S
may cite the metric oK-S entropy ratd4,5], the thermody- seen with life, which can continue to exist and grow in an

. ; . isolated system for as long as internal resources last. In other
namic depth 6], the effective measure complexify], and . ; - i
; . 2 words, in an isolated system the entropy must increase, but it

the simple measure for complexif]. These definitions

; i : _should be possible, under certain circumstances, for the com-
have also been very useful in describing symbolic dynamm:;

: ) o Dlexity to increase.
maps, the latter having been applied to a nonequilibriu In this paper we will examine how LMC complexity

Fermi gas[9]. They suffer the disadvantage of either beingeglyes with time in an isolated system and we will show
very difficult to calculate or having a simple relation to the hat it indeed has some interesting properties. The
regular entropy. disequilibrium-based complexity defined in R¢L1] actu-
New definition types of complexity have recently beengjly tends to be maximal as the entropy increases in a Bolt-
introduced. These are based on quantities that can be calcgmann integrodifferential equation for a simplified gas.
lated directly from the distribution function describing the In Sec. Il LMC complexity definition is reviewed. We
system. One of these is based on “metastatistick)] and  proceed to calculate the distributions which maximize and
the other on the notion of “disequilibrium[11]. This latter ~ minimize the complexity and its asymptotic behavior, and
definition will be referred to hereafter as thé dez-Ruiz—  also introduce the basic concepts underlying the time evolu-
Mancini—Calbet(LMC) complexity. These definitions, to- tion of LMC complexity in Sec. lll. Later, in Sec. IV, by
gether with the simple measure for complexi8} described means of numerical computations following a restricted ver-
above, have the great advantage of allowing easy calculaion of the Boltzmann equation, we apply this to a special
tions within the context of kinetic theory and of permitting system, which we shall term “tetrahedral gas.” Finally, in
Sec. V, the results and possible future lines of investigation
are discussed, together with their possible applications. Ana-
*Present address: Area de Ciencias de la Computacion, Facultdytical and numerical demonstrations of the results of the
de Ciencias, Edificio B, Universidad de Zaragoza, E-50009 Zaranumerical calculations for the tetrahedral gas are shown in
goza, Spain. the appendixes.
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II. DEFINITION OF COMPLEXITY
The definition of LMC complexityC is

C=DH, (1)
whereD is the disequilibrium term anHl is the entropy. We
assume that the system can be in onbl pbssible accessible
stated. The probability of the system being in stateill be
given by the discrete distribution functidn. The system is
defined such that, if isolated, it will reach equilibrium, with
all the states having equal probability.

These definitions imply that all values &f are positive

fi=0, @
and that a normalizatiohmust hold such that
N
1= fi=1, €)
i=1
and the equilibrium distribution function is
1
fe:N- (4

The definition of disequilibriunD is given as a distance to
the probability in equilibriumf:

N
DE-Zl (fi—fe)?. (5)

The normalized entrop# is defined as

T
~ InN

N
> fiinf,;.

i=1

(6)

Note that since &H=<1 and 0<D=<(N-1)/N, the com-
plexity C is normalized (6=C=<1).

IIl. COMPLEXITY VERSUS TIME

A. Complexity versus entropy

PHYSICAL REVIEW E63 066116

TABLE I. Probability valued; that give a maximum of disequi-
librium D, for a givenH.

Number of states with f; Range off;
with f,
1
1 fI‘I‘IEAX N — 1
1
N—1 1- fmax 0 _)N
N—-1

evolution. This method is a key point in all this discussion.
Note that, in any case, the relationshiptbiversust will, in
general, not be a simple of&4].

B. Maximum and minimum complexity

When an isolated system evolves with time, the complex-
ity cannot have any possible value irCaversusH map, but
it must stay within certain bounds,,,,andC,,,. These are
the maximum and minimum values Gffor a givenH. Since
C=DH, finding the extrema o€ for constantH is equiva-
lent to finding the extrema db.

There are two restrictions oD: the normalization and
the fixed value of the entropi. To find these extrema un-
determined Lagrange multipliers are used. Differentiating
Egs.(3), (5), and(6) we obtain

a_szz(fj_fe), 8

al 1 9

(9_1:]'_ ’ ()

(9H_ ! Inf.+1 10
a—h——m(n jt1). (10)

Defining A1 and\, as the Lagrange multipliers, we get

2(f;=fo) + N g+ No(Infj+1)/INN=0. (11)

We are interested in an isolated system with an initial ) . )
arbitrary discrete distribution, and which evolves toward TWO new parametera and 8 which are a linear combi-
equilibrium, where it reaches an equiprobability distribution.nations of the Lagrange multipliers are defined:

To study the time evolution of the complexity, a diagram of
C versus timd can be used. But, as we know, the second law

of thermodynamics states that the entropy grows monotoni-

cally with time; that is,

dH
—=0.

i ()

This implies that an equivalent way to study the time

evolution of the complexity can be obtained by plottiGg

versusH. In this way, the entropy substitutes the time axis,

where the solutions of this equatiofy,, are the values that
minimize or maximize the disequilibrium. In the maximum
complexity case there are two solutiofhsto Eq. (12) which
are shown in Table I. One of these solutidig, is given by

1—fax
N—1

1
H=— m fmaXIn fmax+(1_ fmax)ln(
(13

since the former increases monotonically with the latter. The

conversion fromC vs H to C vs t diagrams is achieved by

and the other solution by (1f,,,)/(N—1).

stretching or shrinking the entropy axis according to its time The maximum disequilibriund ,,, for a fixedH is
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TABLE II. Probability valuesf; that give a minimum of dis- N=4
equilibrium D ,,;, for a givenH.
(Y] [ T T T T T ]
Number of states f Range off; °t
with ;2 N
s 2 -_ -7 TN -
n 0 0 g o | // \\
1 © O T TS
1 Frin 0—— Cs //‘, . ]
O o \
1 1 3 [ C \
1—f . [N 5 max \
N_ _l min _ o E —
n None1 N-n N-n-1 g Cpin —— ——— - ~. )
% can have the values Q,1.. N—2. St Conineny «----<e---- .."\‘.\\ ]
A\
1— f 2 o , ! , ! , ! . !
D max= (fmax— e)2+(N 1) N—1 _f , (19 0 0.2 0.4 0.6 0.8
H
and thus, the maximum complexity, which depends only on ] o o
H is FIG. 1. Maximum, minimum, and minimum envelope complex-
ity Crax: Cmin» @andCineny» respectively, as a function of the en-
CmalH)=Dmad H)H. (15 tropy, H, for a system witiN=4 accessible states.
Note that the behavior of _the_maximum value of complexity C. Minimum “envelope”
versus IrN has been studied in Rdf15]. o o _ o )
Equivalently, the values; that give a minimum complex- _ /AS shown in Fig. 2 the minimum disequilibrium function
ity are shown in Table II. One of the solutioffig;, is given IS piecewise defined, having several points where its deriva-
by tive is discontinuous. Each of these function pieces corre-
sponds to a different value @f (Table Il). In some circum-
1 1—fmin stances it might be helpful to work with the “envelope” of
H=— | fminIN fmint (1= Fmin) IN| G277 the minimum disequilibrium function. The functidd yineny

(16  that traverses all the discontinuous derivative points in the
D in VersusH plot is
wheren is the number of states with =0 and takes a value

in the rangen=0,1, ... N—2. D :e—HInN_i (20
The resulting minimum disequilibriur® ,;, for a givenH minenv N’
is
2 1~ finin ? 2 and is also shown in Fig. 2.
Dmin= (fmin—fe)*+(N—n—1) — —fe| +nfg.
N—n—1
17 N4
Note that in this casé;=0 is an additional hidden solution I : : , : :
that stems from the positive restriction in thevalues, Eg. L
(2). To obtain these solutions explicitly we can defiqesuch ° N Dnax
that go [ N D i
@ - N min ———— —-
2 2 1 N
N minenv "ot
Thesex; values do not have the restriction imposed by Eo i RN 1
Eq.(2) and can take a positive or negative value. If we repeat I S N
the Lagrange multiplier method with these new variables a - s -
new solution arlseS{, 0 or, equivalentlyf;= ot NN T
The resulting minimum complexity, Wh|ch again only de- | \\
pends orH is IRt N
o . 1 . ! . ! . ! L
Crin(H) =Dpin(H)H. (19 0 0.2 0.4 0.8 0.8
As an example, the maximum and minimum of complex- H
ity Crmax@andCpyn are plotted as a function of the entroply FIG. 2. Maximum, minimum, and minimum envelope disequi-
in Fig. 1 for N=4. In Fig. 2 the maximum and minimum fibrium Dy, Dmin, andD mineny: FeSpectively, as a function of the
disequilibriumD 5, and D i, VersusH are also shown. entropyH for a system withlN=4 accessible states.
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D. Asymptotic behavior of the complexity asN— o

When N tends toward infinity the probability,,, of the
dominant state has a linear dependence with the entropy

im = 1— H, (21)

N— o0

and thus the maximum disequilibrium scales as

lim D o= (1—H)2. (22
N— o
The maximum complexity tends to 3
lim Ca= H(l_H)Z- (23 . . . i,
N FIG. 3. The four possible directions of the velocities of the

tetrahedral gas in space. Positive senses are defined as emerging
The limit of the minimum disequilibrium and complexity from the center point and with integer numbers 1,2,3,4.
vanishes
joining the center of a tetrahedron with its corners. The di-
lim D inenv="0 (24)  rections can be easily viewed by recalling the directions
N—o given by a methane molecule, or equivalently, by a caltrop,
which is a device with four metal points so arranged that

and, thus, when any three are on the ground the fourth projects upward
lim C,,=0. (25) Iazlisga:gazard to the hooves of horses or to pneumatic(tiees
N-— o . .

By definition, the angle that one direction forms with any
In general, in the limiN—co, the complexity is not a trivial other is the same. It can be shown that the angles between
function of the entropy, in the sense that for a givéthere  different directionsa satisfy the relationship cas=—1/3,
exists a range of complexities between 0 &g, [Eqs.(25)  which givesa=109.47°. The plane formed by any two di-

and(23)]. rections is perpendicular to the plane formed by the remain-
In particular, in this asymptotic limit, the maximum of ing two directions.
Cmax 1S found whenH=1/3, or equivalentlyf,.,=2/3, We assume that the cross sectioris different from zero

which gives a maximum of the maximum complexity of only when the angle between the velocities of the colliding
Cmax=4/27. This was numerically calculated by Anteneodoparticles is 109.47°. It is also assumed that this collision

and Plastino in Refl15]. makes the two particles leave in the remaining two direc-
tions, thus again forming an angle of 109.47°. A conse-
IV. AN EXAMPLE: THE TETRAHEDRAL GAS quence of these restrictions is that the modulus of the veloc-

ity is always the same no matter how many collisions a
particle has undergone and they always stay within the di-
We present a simplified example of an ideal gas: the tetrections of the vertices of the tetrahedron. Furthermore, this
rahedral gas. This system is generated by a simplification df/pe of gas does not break any law of physics and is perfectly
the Boltzmann integrodifferential equation of an ideal gasyvalid, although hypothetical.
We are interested in studying the disequilibrium time evolu- We label the four directions originating from the center of
tion. the caltrop with numbers, 1,2,3(4ee Fig. 3. The velocity
The Boltzmann integrodifferential equation of an ideal components with the same direction but opposite sense, or
gas with no external forces and no spatial gradients is equivalently, directed toward the center of the caltrop, are
labeled with negative numbers1,—2,—3,—4.
af(vit) 3 ;o In order to formulate the Boltzmann equation for the tet-
ot _f d V*f dQcmo (Ve —V=V =V)|V, V] rahedral gas, and because all directions are equivalent, we
need only study the different collisions that a particle with
X[f(v s Of (v —flv, o f(vin], (26)  one fixed direction can undergo. In particular if we take a
particle with direction—1 the result of the collision with

where o represents the cross section of a collision betweenynginer particle with directior 2 are the same two particles
two particles with initial velocitiesr and v, and after the traveling in directions 3 and 4; that is

collision with velocitiesv’ and v, ; and Q.,, are all the
possible dispersion angles of the collision as seen from its (—1,—2)—(3,4).
center of mass.
In the tetrahedral gas, the particles can travel only in four With this in mind the last bracket of E426) is
directions in three-dimensional space and all have the same

absolute velocity. These directions are the ones given by fafg—f _1f 5,

A. The tetrahedral gas
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TABLE lIl. Cross sectionss for a particle in direction—1 in df,
Fig. 3 colliding with particles in the other remaining directions of W=(f,3f,4— fifo)+(f_qf _4—Fofa)+(f_of _5—"T,f,),
the tetrahedral gas.

. . df
Collision Cross section d_t3:(ffzf*A'_f3f1)+(f*lf*4_f3f2)+(fflffz_f3f4)’
ag
(-1,-2)—(3,4) 1 df,
(=1,-3)—(2,4) 1 E:(f—zf—s_f4f1)+(f—1f—3_f4f2)+(f—1f—2_f3f4)-
(—=1,-4)—(2,3) 1 (28
Other collisions 0

If we now makef,=f_; (i=1,2,3,4) initially, this prop-
erty is conserved in time. The final four equations defining
wheref; denotes the probability of finding a particle in di- the evolution of the system are
rectioni. Note that the dependence on veloaitgf the con-
tinuous velocity distribution functiof(v;t) of Eq. (26) is in
our case contained in the discrete subindex the distribu-
tion functionf;.

We can proceed in the same manner with the other re-  df,

df
¢ = (fafa=Taf2) 4 (fofa=Tufg) + (fofa—f1fa),

maining collisions o = (Fafa=fafo) + (fafa—Tafa) +(f1fs—faf),
(—1,-3)—(2,4), dfs
E:(f2f4_f3f1)+(f1f4_ fafy) +(f1fo—f3fy),
(—=1,—-4)—(2,3).

When a particle with direction-1 collides with a particle ﬂ_ _ _ _
with direction 2, they do not form an angle of 109.47°; i.e., ar -~ (Tefa=faf) +(Fafa=Tafo) +(F1Fo=T5ls).
they do not collide, they just pass by each other. This is a (29

consequence of the previous assumption for the tetrahedral )
gas, which establishes a null cross section for angles differ- Note that the ideal gas has been reduced to the tetrahedral

ent from 109.47°. The same can be said for collision9as, Which is a four-dimensional dynamical system. The ve-
(—1,3), (—1,4), and (1,1). All these results are summa- 10City distribution functionf; corresponds to the probability

rized in Table Il distribution function of Sec. Il witiN=4 accessible states.
Taking all this into account, Eq26) for direction—1 is
reduced to a discrete sum B. Evolution of the tetrahedral gas with time
df The tetrahedral galEq. (29)] reaches equilibrium when
T (faf =y f )+ (Fofa—f 4f o) fi=1/N for i=1,2,3,4 andN=4. This stationary state,
dt df;/dt=0, represents the equiprobability towards which the
F(fofa—f_if_4) 27 system evolves in time. This is consistent with the previous

definition of disequilibrium, Eq(5), in which we assumed

where all other factors have been set to unity for simplicity.'fh%t equilibrium was reached at equiprobability, whére

The seven remaining equations are =Uu. _ _
As the isolated system evolves it gets closer and closer to

df_, equilibrium. In this sense, one may intuitively think that the
dt =(fafa=T_1f o)+ (T1f4—T_of_3) disequilibrium will decrease with time. In fact, it can be
shown that, as the system approaches equilibridnends to
+(fifz—f_5f_y), zero monotonically with time:
df_, dD
at =(fofy=f af )+ (faf1—F_5f ) Ego' (30)
+(f1f—f_3f_y), The analytical demonstration of this inequality for the tetra-

hedral gas is shown in Appendix A.

There are even more restrictions on the evolution of this
system. It would be expected that the system approaches
equilibrium D=0 by following the most direct path. To

+(fifa—f_4f_3), verify this, numerical simulations for several initial condi-
df tions have been undertaken. In all of these we observe the
i _ _ _ additional restriction thaD approache® ., on its way to
ar ~(F-afamfaf) H(f ol amfufa) + (ol s=Tala) 6 " fact it appears as an exponential decayDofo-

df_4
T:(f2f3_f74f—1)+(f3fl_ f*4f*2)
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(1, 00851, (t=0)=(0.8,0.2,0.0,0.0)

(ty.85.03.1,)(t=0)=(0.5,0.5,0.0,0.0)
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AN [ \;\
ol NN (2) ol NN (b)
ol AREN T ol AREN 7] . . )
N\ \Pmax N\ \Pimax FIG. 4. Time evolution of the system in
AN NN (H,D) phase space for two different initial con-
ash N \\ . 3t AN \\ - ditons at time t=0: (@ (f;.f,.f5,f4)
AN NN =(0.8,0.2,0,0) and (b) (fy,f,,f3,f4)
N AN =(0.5,0.5,0,0). The maximum and minimum
st \\ 7 ar A\ 7 disequilibrium are shown by dashed lines.
Dm;\\ Dml::\\\\
o 1 1 1 1 1 " o 1 1 n 1 L 1 n
0 o2 04 06 08 0 02 04 06 08
H H
wards D, in @ D versusH plot. As an example, two of 1—foax .
these are shown in Fig. 4, where Figayshows a really fi= 3 1=2,34, (32

strong tendency towards,,,,. Contrary to intuition, among
all the possible paths that the system can follow toward eUivheref,., runs from 1N (equiprobability distributionto 1

librium, it chooses those closest By, in particular.
We can also observe this effect in a complex@tyersus
H plot. This is shown for the same two initial conditions as

(“crystal” distribution). The complexity of this collection of
distributions covers all possible values ©f,,y.

) > A - v o There is actually a time evolution of the tetrahedral gas,
the previous figure in Fig. 5. This additional restriction to the 5, trajectory of the system, formed by this collection of dis-

evolution of the system is better viewed by plotting the dif- i tions. Inserting Eq<32) in the evolution Eqs(29), it is
ferenceCy,q,—C versusH. In all the cases analyzddee tWo  fqyn( that all equations are compatible with each other and
in Fig. 6) the following condition is observed: the dynamical equations are reduced to the relation

d(cmax_ C) df 1
—q =0 (31) d_";ax= §(4f2max—5fmax+ 1). (33)

This has been verified numerically and is illustrated inThis trajectory is denoted as timeaximum complexity path
Fig. 7, where this time derivative, which always remains Note that the equiprobability or equilibriuf,,,=1/4 is a
negative, is shown as a function idffor a grid of uniformly  stable fixed point and the maximum disequilibrium “crys-
spaced distribution functionsf{,f,,f5,f4) satisfying the tal” distribution f, =1 is an unstable fixed point. Thus the
normalization condition Eq(3). Two system trajectories are maximum complexity path is a heteroclinic connection be-
also shown for illustrative purposes. The numerical methodween the “crystal” and equiprobability distributions.
used to plot this function is explained in Appendix B. The maximum complexity path is locally attractive. Let

us assume, for instance, the following perturbed trajectory:

C. Maximum complexity path as an attractive trajectory

f1=fmaxs
As shown in Table I, a collection of maximum complexity Loomax
distributions forN=4 can take the form 1—f
f2: max
f1=Frnaxs 3

(t,.25.85,8,)(t=0)=(0.8,0.2,0.0,0.0)

(t,85.85,1,)(t=0)=(0.5,0.5,0.0,0.0)

o o
ol me// X (a) o[ Cm// \\\ (b)
/
° /| of - \ i lution of th i
3t RO - 3t ) N \ . FIG. 5. Time evolution of the system in
v ‘oo P N \ (H,C) phase space for two different initial con-
oaF AN -F 7 NN ditons at time t=0: (@ (fi,f5,f3,f,)

st N ] st ) YA\ =(0.8,0.2,0,0) and (b) (f;,f,,f3,fy)

’ c \ / c U\ =(0.5,0.5,0,0). The maximum and minimum
er/ mim S\ ] er/ min A complexity are shown by dashed lines.
oty \\ o -I, N

[/ ] L

o j o ! 1 1 n 1 1
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(1,.1,,25,1,)(t=0)=(0.8,0.2,0.0,0.0) (1,,5,1,)(t=0)=(0.5,0.5,0.0,0.0)
8 [ 8 B 1 1 1 1 ]
: To I\
gL gL ! Voo FIG. 6. Time evolution of the system in
o © o | ' v (H,Cpnax—C) phase space for two different initial
" - / \ conditions at timet=0: (a) (f;,f,f3,f,)
Jar Jer ! L =(0.8,02,00) and (b)  (fy,fa fs.fa)
- ) b =(0.5,0.5,0,0). The valuesC.—Cnin are
8t 8t / v shown by dashed lines.
(=] (-] / \
/ \
// \
o o Rl | 1 1 L 1
0 0 02 04 06 08
H H
1—fmax Cnmin, When observed in & versusH phase space. These
fa= +9, complexity bounds have been derived
3 plexity bounds have been derived.
For the isolated tetrahedral gas two constraints on its dy-
1—f namics are found. The first, which is analytically demon-
fu= 3 S, (34  strated, is that the disequilibriuid decreases monotonically

with time until it reaches the value =0 for the equilibrium
state. The second is that the maximum complexity paths
Cmax are attractive in phase space. In other words, the com-
plexity of the system tends to equilibrium always approach-
ing those paths. We verify this numerically; that is, the time
' (39 derivative of the difference betwedy,,, andC is negative.

Figure 8 summarizes the dynamical behavior of the tetra-
showing the attractive nature of these trajectories. hedral gas. The different trajectories starting with arbitrary
initial conditions, which represent systems out of equilib-
rium, evolve towards equilibrium approaching the maximum
complexity path.

The time evolution of the LMC complexitf has been Observe that the time evolution of complexity could be
studied for a simplified model of an isolated ideal gas: thecalculated for other definitions of complexity. However, in
tetrahedral gas. In general, the dynamical behavior of thigieneral this will not be an easy task since they are either very
quantity is bounded between two extremum cur@gg,and  difficult to calculate, such as, for example, the algorithmic
complexity[3], or have a simple relation to the regular en-

whose evolution according to E(R9) gives the exponential
decay of the perturbatios:

dé

dt

Af a2
3

V. CONCLUSION

et e T tropy, such as the simple measure for complej@y
2 [ttt )(t=0)= ' ' ' ' ' ' '
o T0 (0.8,0.2,0,0) . .
o Maximum complexity path
~ I
O - [ ol -
Pt ]
" (0.5,0.5,0,0)" ] I - o~
g L . J L - RN C
3 ﬁ [ e . h o _ / " (08,0200 ™ — max
g ! \. ] - / (0.6,0.5,0,0) AN i
[ . © =(t, 8851 )(=0) N
o [ . ] \\_
P s Coin ™~
1 1 1 %L ~ N
0 0.2 0.4 0.6 0.8 1
H o 1 1 1 |
0 0.2 0.4 0.6 0.8 1
FIG. 7. Numerical verification ofl(C,a—C)/dt<0. This time H
derivative is shown as a function bf. A grid of uniformly spaced,
Af;=0.5, distribution functions, f(,f,,f3,f,), satisfying the nor- FIG. 8. Summary of this paper. The time evolution of the sys-

malization condition Eq(3), have been used. Two system trajecto- tem for three different initial conditionst=0, (fq,f,,f3,f4)

ries for initial conditionst=0, (f{,f,,f3,f4)=(0.8,0.2,0,0) and =(0.8,0.2,0,0), {,,f»,f5,f4)=(0.5,0.5,0,0), and the maximum
(fq.f,,f5,f4)=(0.5,0.5,0,0) are also shown for illustrative pur- complexity path are shown. The minimum complexity is shown by
poses. It can be seen how the above-mentioned time derivativéashed lines. It can be seen how the system tends to approach the
always remains negative. maximum complexity path as it evolves in time toward equilibrium.

066116-7



XAVIER CALBET AND RICARDO LOPEZ-RUIZ PHYSICAL REVIEW E63 066116

Whether these properties are useful in real physical sysfhen
tems will depend on further work on this subject. More can
be said about the macroscopical nature of the disequilibrium
when this work is extended to more general systems, such as . . .
to the ideal gas following the complete Boltzmann integrod-tha':lo\}fethf;f a;p;n};firr?nsﬁmngqﬁmgalt;uenC;'t?lg‘:’ Il;] thc?h:\inisrf
ifferential equation. Another feature, which could prove use-(]c f5.f5.f2) by (Fa.f4.f1.1,), respectively. To Xove thgt 9
ful, would be to approximate the evolution of a real physicaIGl<’02’th3’ f“” MANERED 1t;l 2 ’h pec yf. pd'
system trajectory to its maximum complexity path. Note that~ >’ € following variable change Is performed:

in general, for a real system, the calculation of the maximum

F=G+K. (A8)

fi=vyq,
complexity path will not be an easy task. 1=
fo=y,,
APPENDIX A: PROOF OF THE MONOTONIC DECREASE
IN DISEQUILIBRIUM WITH TIME f3=y3+y4,
We now present the analytical proof of the inequalit
P ytical p quatty f4=ys—Vya. (A9)

shown in Eq.(30) from Sec. IV B,

dD
—=0.

dt (A1)

The time derivative of the disequilibriu® for the iso-
lated tetrahedral gas is explicitly given by

dD d df; df;
dt dt 2.: (fi=Tfe) 2.: ol dt E.: 2fedt'
(A2)
Using the normalization Eq3) we find that
g A3
TR (A3)
and we are left with
dD df;
E‘ZZ figr: (A4)

If we substitute Boltzmann Ed29) in the previous one, we
obtain

1dD

F=35 gy = *fifafa- f2f 4 fof f,— F2f g+ fof— 11,

iofgfy— Fofa+f fofy—fofo+f fofg—faf,+f faf,
— 2, fofgfy— o f5+ f fofg— F5F 4+ F fof ,— Fof2
+fyfafy— fof2+fofof ,— 12, (A5)

where the new variablE has been defined.
We now split this functior into two different terms:

G=—f2f,—f3f,—f3f, — f5f,— faf, — faf,+ ff4f,
+2f,f,f o+ 2F 1 Fof 4+ Fof5f 4 (AB)
and
K=—faf,— fafa— fafy— f2f,— f2f 53— f2f ,+ f o5

+2f faf 4+ 2 5fof 4+ F4Fof 4. (A7)

The positivity of the distributions functions, E(R), im-
plies that,y;=0 andy,=0.
The functionG in the new variables reads

G=—yiyo—y3y1— ygyl_ 3y3y1— y%)’z_ 3y3Yo+4y1YaYs.
(A10)

Regrouping terms( can be expressed as

G=—Ya(y1—Y3)?—Y1(Yoa—Y3)?—3y3y1—3Y3y>.
(A11)

Sincey,; andy, are both positive and the squared quan-
tities are also positive, we conclude that

G=0. (A12)

The same inequality can be demonstrated Kodue to its
symmetry with G, thus proving the assumption from Eg.
(AL).

APPENDIX B: METHOD OF CALCULATING THE TIME
DERIVATIVE OF THE MAXIMUM COMPLEXITY
MINUS THE COMPLEXITY

To calculate the quantity

d(cmax_ C)

at (B1)

from some given values of the distribution functions
(fq.f5,f3,f4) we derive the expression of maximum com-
plexity, Eq.(15), minus the definition of complexity, Eql),
obtaining

dH dDH b
magr o dt

dH
W.
(B2)

d(Cmax_ C) _ dDmax
dt  dt

Let us now examine each of these terms beginning from
the end. The time derivative of the entropy is calculated by
differentiating its definition, Eq(6):

dH 1 df;
P {a ®3)

|f+cIfi
ni E
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But recalling Eq.(A3) we can simplify this to fmax- After this, the expression defining the maximum dis-
equilibrium, Eq.(14), can be used.
d_H:_i 2 %Inf- (B4) Finally the time derivative of the maximum disequilib-
dt InN < | dt H rium is calculated as follows:
This last term can be easily calculated using the evolution dD dD.. df . dH
Egs. (29)_ max max ¥ ' max (BS)

The termsD andH can be readily calculated using their dt dfmax dH dt-

definitions from Eqgs(5) and(6). The time derivative of the

disequilibrium has already been expressed in Appendix AThe first two derivatives on the right-hand side can be cal-

with Eq. (A5). culated analytically with Eq914) and (13). The numerical
The maximum disequilibrium is calculated with the pre- value can be found using the previously calculated value of

vious found value oH by inverting Eq.(13) and obtaining  fax-
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