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Stochastic dynamics in a two-dimensional oscillator near a saddle-node bifurcation
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We study the oscillator equations describing a particular class of nonlinear amplifier, exemplified in this
work by a two-junction superconducting quantum interference device. This class of dynamic system is de-
scribed by a potential energy function that can admit minjozeresponding to stable solutions of the dynamic
equationg, or “running states” wherein the system is biased so that the potential minima disappear and the
solutions display spontaneous oscillations. Just beyond the onset of the spontaneous oscillations, the system is
known to show significantly enhanced sensitivity to very weak magnetic signals. The global phase space
structure allows us to apply a center manifold technique to approximate analytically the oscillatory behavior
just past thegsaddle-nodebifurcation and compute the oscillation period, which obeys standard scaling laws.
In this regime, the dynamics can be represented by an “integrate-fire” model drawn from the computational
neuroscience repertoire; in fact, we obtain an “interspike interval” probability density function and an asso-
ciated power spectral densigomputed via Renewal thedrthat agree very well with the results obtained via
numerical simulations. Notably, driving the system with one or more time sinusoids produces a noise-lowering
injection locking effect and/or heterodyning.
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[. INTRODUCTION tional constraints omm,n). These interference effects were
studied as early as the turn of the twentieth century by von
The response of nonlinear dynamic systems to small pei-lelmholtz[5].
turbations, applied when the system is poisetbafust pask However, a large class of two-dimensiofi2aD) nonlinear
the onset of a bifurcation, has elicited considerable interest isystems, exemplified in this work by the two-junction or dc
recent years. The added sensitivity in this regime close to auperconducting quantum interference devisQUID), is
bifurcation can be exploited as a means of signal amplificaknown to displayspontaneousi.e., in the absence of exter-
tion [1,2] in a large class of nonlinear dynamic systems.nal driving signal¥ oscillations when the dynamical system
Conversely, the increased sensitivity can amplify environ-crosses a threshold through a bifurcatiéh The oscillations
mental fluctuations and degrade a system’s signal to noisare periodic but nonsinusoidal, approaching sinusoidal be-
ratio and its signal transducing performari8ed]. Nonlinear  havior as one goes farther past the bifurcation. The oscilla-
dynamic systems can also display a variety of interferencéon frequency is a function of the “distance” past the onset
phenomena due to competing periodic effects. Possibly thef the bifurcation, and displays a characteristic scaling be-
most widely known phenomenon is the generation of “com-havior with respect to the bias parameter that controls the
bination resonances” when two tones of frequeneigsand  bifurcation[6]. Applying an external sinusoidal signal to the
w, are “mixed” together in a nonlinear system. In this case,system in this state of spontaneous oscillation yields a fre-
the output power spectral densiiySD contains a response quency mixing(this has, in fact, been observed by us in the
at the combinationsmw, + nw,| wherem,n are positive in- dc SQUID[7]) that is quite analogous to the combination
tegers(there are selection rules depending, for instance, omesonance generation described above.
the symmetry of the potential energy function, that put addi- The above behavior becomes even richer and more com-
plex in the presence of background noise. The stochastic
resonanceSR) effect, only one of a large class of noise-
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ever-more-sophisticated shielding and Qoise-cancellatiogpi(t)>:0, (Fi(t)Fj(t’)>=525ij5(t—t'). The two natural
procedures. SQUIDELO] are the most sensitive detectors of experimental control parameters are the applied dc magnetic
magnetic fields and, with enhanced noise-tolerance, argyx &, and the dc bias currerl,, which we take to be
likely to find applications in fields as diverse as biomagnet-symmetrically applied to the loop.
ics, geophysics, communications, and assorted remote sens-|t js convenient to introduce a scaled time, applied flux
ing appplications. _ Do, =D,/D,, bias currenti=1,/(2l,), and noise strength

In this work, we consider a dc SQUID as a prototype 2D, _ %, 1~ 204 to rewrite the differential equations in terms

system that traverses a saddle-node bifurcation when a Coif the sum and difference variablgst, 16 S = (5, + 8,)/2
3 - 1 2 l

trol or bias parameter crosses a critical value. In a recen — (8, 5,)/2. Dropping the noise terms for now, we obtain
paper, the spontaneous oscillation frequency of the solutions

(in the so-called “running regime” past the critical pojint ) 2

was computedl11], and we reproduce the salient features of 6= ——=(6—md,)—cos siné,

that calculation for completeness. We then explore the ef- P

fects of locking the intrinsic oscillations to an external driv- . ) @)
ing signal; the phenomenon of background noise-suppression 2 =J-cosdsinX.

via frequency lockindfirst observed in charge density wave
experiments[12] and later quantified via a very simple
theory involving a circle map representation of the locked
dynamics[13]) is examined in some detail. As part of our
description of the system behavior in the neighborhood o
the critical point, an interesting analogy with simple
(integrate-firg¢ models of neural firing is exposed. Finally,
we study some heterodyning effe¢tenlinear production of
sum and difference frequencjearising out of the introduc-
tion of a time-sinusoidal target sign#éin addition to the
locking signal.

The paper is organized as follows. In Sec. Il we write
down the dc SQUID equations of motion and normal form
equations, and we study their oscillatory solutions in the a
sence of driving. In Sec. lll we calculate the shifted oscilla-
tion frequency and synchronization boundaries for the cas
of periodic forcing, in the absence of noise. We analytically . . _ : :
study the normal form augmented with noise in Sec. IV. Theconnections giving rise to an attractor. Near the bifurcation,

interesting phenomena of noise suppression through injeé.he enlséung oscillations have the form of relaxation oscilla-
tion locking and heterodyning are studied in Sec. V usingt'ons[ - . I . .
The resulting oscillation frequency of the circulating cur-

numerical simulations with deterministic and stochastic forc- i I hiah h I v the ti
ing. We discuss our conclusions in Sec. VI. rentls is generally very high, so that usually only the time-

averaged quantity is measured in experimenfsee, how-
ever, Ref[17], where the oscillations were actually observed
and the frequency computed in the extreme limiting case of
The dc SQUID is a superconducting loop interrupted byB8<1). Thus, the SQUID’s response to an applied fib,
two symmetrically placed “weak links"(Josephson junc- can be described via ah, vs @, transfer characteristic,
tions). Its dynamics are described by equations for the Schrofrom which the input-output gaifi.e., transfer characteristic
dinger phase differenced§ across the(assumed identical slopa or the output signal-to-noise rati&NR) at the fre-
Josephson junctiorfd4,15 quency of a weak injected signénd in the presence of a
noise floojy may be calculated as a function of the bias pa-
rameters J,P,) [9,15. The optimal responsgighest gain
or output SNR is obtained just beyond the bifurcation and
the onset of oscillations.

wherel, the circulating current induced in the loop by an A general analytical solution of the dynami¢®) is not
externally applied magnetic flux, can be written in the formavailable; however, we can derive an approximate normal
B(l/1g)=8,— 8,—2m(Do/Dy). Here, r=#/(2eR) is a  form solution close to the bifurcatiofsee Ref[11] for de-
characteristic time constanR(being the normal state resis- tails). We assume the dc bias flui, to be fixed at some
tance of the junctions B=2mLIy/®, is the nonlinearity Nonzero value; for &J—J.<1, we may Taylor expand the
parameterl. is the loop inductancé is the junction critical ~dynamics(2) (augmented with the equatiah=0), around
current, andP,=h/(2e) is the flux quantum. The indepen- the critical fixed point §y,2,J.): 6=3p+X, Z=3,+Y,
dent additive noise termB;(t) account for thermal noise with |x|, |y|<1, andJ—J.=0(2). Weeliminate s and
arising due to the junction resistances. These terms are takémfavor of x andy and then transform to a rotated coordinate
to have zero mean and to be Gaussian and delta correlatesystemu,v:

For sufficiently small bias current magnitufif, the sys-
tem is attracted to a stable fixed poind=35,, ==23),
whose position is a function of the three system parameters
p, d.,, andJ. For fixedd,, and B, there is a critical bias
currentJ. above which the stable superconducting state is
destroyed; fordJ>J;, the phase variabless(, 8,) or (4,%)
display periodic oscillation. The thresholly can be com-
puted[15], in good agreement with experiment. Just past the
bifurcation point(i.e., for J just exceedingl.), the system
encounters a “bottleneck” once each period near the point
where a stablgnode fixed point annihilated with an un-
stable(saddlg fixed point. The term “saddle-node connec-
tion” refers to the existence of orbits connecting each node
to a saddle and each saddle to the “next” node. When the
Fifurcation occurs, a running state is created in a global bi-
urcation, with the chain of(merged saddle-node-saddle

Il. BACKGROUND

| .
=5 T (~ Dl losing+F(D), =12, ()
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=43

where 6= (1/2)arctan{- 8 sin & sinZ).
It follows that u=Au+0(2),

cosfd  sin@

—sing cosﬁ) '

=§ 3

where A=-2/8

—2 c0sY,,c0sd, Which must be negative so that the system

orbits are attracted to the subspace0 on the fasteforder

one time scalex ~ . Consequently, the attracting subspace is

u=0(2). Theevolution ofv on the center manifold is given
by

v=(J—J.)cosh+ av?+0(3), (4)

where (see Ref[11] for calculational detailsa= —sin6(C
—Dsin 26)+cos#(D—Csin 24), C=3 sin&cosY, and D
=1 cos&sin,.

Ignoring terms of cubic order and higher, we may now a

integrate Eq(4) analytically, realizing that the dynami¢®r

small J—J.) is dominated by the passage through the

“bottleneck” whereuv is at its smallest. We obtain the solu-

tion
/ANF
U(t)— TIan

with Aye=(J—J.)cosd and wg=2+Ayra, corresponding to
a spontaneous oscillation period of

wot

> 5

w
\/AN;:a .

The normal form(NF) (4) corresponds to a highly over-
damped particle moving in a potential

To= (6)

o
U(U):_ANFU_§U3. (7)
Equation(6) conforms to the period scaling law that ac-
companies bifurcations of this tydé€]. Figure 1 compares
Eq. (6) with numerical simulations of the full nonlinear dy-
namics given by Eq(2). The simulations were run for a
range of system parametegsand®, (owing to a parameter
symmetry, the full range ofb,, is between 0 and 0.5; we
also note that SQUIDs are often fabricated to hgwel). In
the figure, the solid line is computed from E®), and the
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FIG. 1. Log-log plot of oscillation frequencyvs J—J. deter-
mined from direct numerical simulatioripointy and the analytic
prediction Eq.(6) (line), letting f=1/T, for various values of3,
d.,, andJ. Dimensionless units are used in all figures.

most closely sinusoidal, and the average circulating current
vanishes. We note, also, that the dc bias flyx could easily
have been used as the control paraméfi@r constant bias
currentJ) with an analogous scaling law for the spontaneous
oscillations(this simply modifies the prefactor of E¢), so

T, scales with the same exponentdin,— ® .1, Py being

the critical value ofb, for a given fixed value od). In fact,

in laboratory settings and practical applications, the signal
may be fed in either via the bias current or the applied flux,
with engineering consideration&.g., impedance matching
constraints that depend strongly on the input frequidy

ten determining which method is preferred.

Note that the solutiort5) is singular when the argument
wot/2 is an odd multiple ofr/2. However, a better-behaved
alternate NFthat agrees with Eq4) throughO(v?)] may
be written down using the Taylor series expansion oficos
throughO(v?):

data are plotted over three decades in the reduced parametglis has the solution

J—J.. In a typical SQUID, the current—J.=0.001 might
correspond to~5—10 nA, with the oscillation frequency
being in the GHz regim§9,16]. The agreement is good over
the full range shown; it is excellent for smaller values@f

v=(J—J.)cosf+2a(1—cosv). (8)
woot
v(t)y=2 arctaré Btan T) , 9

and ®.,. The agreement grows systematically worse for

larger 8 and ®,, since either one reduces the size of thewhere = A/ (Anet4a) and wooE\/AzN;:+ AANFa = wg
“bottleneck” regime. Even in the latter cases, the agreement- O(2). Thesolution(9) is bounded and well behaved.

improves in the limitJ—J., i.e., close enough to the bifur-
cation point.
We reiterate that the oscillations anet sinusoidal near

Figure 2 shows approximately two cycles of the circulat-
ing current time series derived from the full SQUID equation
(dotted ling and normal form(8) (solid line) solutions. The

the critical point, but approach sinusoidal behavior deep iragreement at this scale is excellent. In Fig. 3 we zoom in on
the running regime; whefb .= 0.5, the oscillations become one “spike” to reveal the difference between the solutions.
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FIG. 2. Approximately two cycles of the full SQUID equation
(dotted ling and normal form(solid line) circulating current time
series solutions3=1.33, ®,,=0.2, andJ—J.=0.0001.

Simple averaging arguments can be applied to the normal
form to yield the oscillation frequency when a driving signal

is present. This is done in the following section.

Ill. PERIODIC FORCING AND INJECTION LOCKING

The use of normal forms is a powerful technique for the
analysis of dynamical systems tuned near the onset of bifur-

cation[18]. Normal forms may be “augmented” with deter-

ministic and/or stochastic driving terms in an attempt to ex
tend the rigorous procedures to include these perturbin

effects[19]. Intuitively, one expects this should work for
sufficiently small perturbations, and indeed this approach h

had notable successes, for example, in explaining the noi

rise in Josephson parametric amplifig26] and the observed

shifts in bifurcation points in a quasiperiodically driven mag-
netoresistive ribbof2]. In at least one specific case the aug-
mented normal form was derived explicitly, for period dou-

bling in a bouncing ball systef@]. In general, the technique

is used as a practical if nonrigorous modelling tool. In that
spirit, we will consider deterministically augmented normal
forms in this section, with stochastic driving terms to follow

in the next section.
We begin with the modified normal form equati@8)

describing the dynamics on the center manifold. We now

include a periodic forcing in the bias current

J=J.F+A+qsinwt+0), (10

PR
prasmene

-1.5

650 660 670 680 690 700 710 720
t

FIG. 3. Close-up view of one “spike” in the full SQUID equa-
tion (dotted ling and normal form(solid line) circulating current
time series solutions. Same parameters values as Fig. 2.
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whereA;.>0 and® are constants. With this bias current, the
center manifold dynamic&) becomes
v=a—bcosv+e sin(wt+0), (11)
where a=A;cosf+b, b=2«, and where, for notational
convenience, the quantity=qcosé# has been introduced.

However, keep in mind that] is the amplitude of the ac
component of the bias current.

A. Calculation of the shifted frequency

Our first step is to replace(t) in Eqg. (11) by a “natural
angle” ¢, i.e., an angle that, in the=0 limit, evolves at the
constant ratevq, [21]. By Eqg. (9), we see that setting

1 v(t))
/—gtanT

gives us an angle with the desired property: lirgis(t)
= wogt. In terms of the natural angkg(t), Eqg.(11) becomes

Y1) =2 arctan% (12)

o= w00+(i) sifot+0)[a—bcosy], (13
oo

where, in terms of andb, wgy= \a?—b?.
9 As the driving amplitudes is increased from zero, the
SQUID’s running frequency will be pulled toward and even-

at?JaIIy (for large enoughe) locked to the driving frequency.
We now determine the SQUID’s shifted running frequency

for a weak(i.e., below the locking threshaldlriving signal.
The phase difference between the SQUID and external oscil-
lator will be defined asp=y— (wt+®). Therefore, from
Eqg. (13) we have

i) sin(wt+0)[a—b cog o+ wt+0)].
oo

(;D:(,l)oo_w+

(14
With a little trigonometry, this may be written as
) . € ) - ca
=wey— @ sin —
¢ 00 2000 ¢ ©00
><sir(wt+®)—<— sin(p+2wt+20). (15
2(000

Close to the locking threshold; evolves on a much slower
time scale than that set by and wqy. Therefore, we can
time-average the right hand side of E5), taking ¢ to be
effectively constant. Averaging E@l5) over one period of
the driving signal leads to

eb
2w

0= woo— w+ sine. (16)

00

The solution of Eq(16) is oscillatory, providedp(t) is in-
terpreted modulo 2. This frequency can be determined
through separation of variables in E4.6), yielding
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2

: 17

eb

2

w1= Woo A2_<

whereA=(w— wqg)/ wqq iS the normalized detuning. Recall-
ing that ¢(t) is the phase difference between the SQUID
oscillation phase and the external driving phase, the oscilla-
tion frequency of ¢(t) mod 27], w,, equals the difference
between the SQUID’s shifted oscillation frequenoy and

the external driving frequency. Taking proper account of
signs for the two cases of positive and negative detuning, the 1000
SQUID'’s shifted frequency is given by

1200

ws=o—SgnA)w;. (19

The two fundamental frequenciesand wg will give rise 800
to combination tones in the power spectrum of our nonlinear
system’s response at the frequencies

Frequency Bin

nlwinzws, (19) 600

wheren,, n, are integers. Figure 4 is a density plot show-
ing the power spectra, computed via numerical simulation of
the full (but noise-freg SQUID equationg2), for different
driving amplitudese; lighter shades indicate greater power.
The “normalized amplitude”qy=0q/A.=¢c/[A; cos@)] re-
fers to the driving signal’s amplitude, normalized by the am- 200
plitude A, required to just reach the bifurcation point. The

dotted lines superimposed on the density plot show the theo-

retically predicted locations of some of the lower order com-

bination toneg19), revealing an elegant pattern. Notice how

well the dotted lines track the locations of the actual peaks in

the spectra.

400

0.1 0.2 0.3 0.4
Normalized Amplitude

o ) FIG. 4. Power spectra of SQUID response as a function of driv-
B. Synchronization boundaries ing amplitude. Bin width is 6.0147%610°° rad/sec. The driving

Now we consider the case where the SQUID oscillato@mPplitudes are below the level needed to induce frequency locking;
synchronizes with the external drive. Fixed-point solutions/@ther. the SQUID oscillation frequency is “pulled” toward the

of Eq. (16) correspond to frequency locking between the_driving frequency. The shaded “density plot” uses lighter shades to

. indicate higher power and was computed via numerical simulation.
SQUID and the external drive. Hence, we have The dotted lines show the theoretical predictid®) of the loca-
&b tions of fundamental and combination tone peaks in the power spec-
w—w00=(2 )singo. (20 tra. The SQUID’s oscillation frequency in the absence of driving
@ was wg= 0.06159, corresponding to frequency bin 1024. The driv-
. . . . . ing signal’s frequencyw=0.06929 corresponds to bin 102428
Since|sing|<1, the frequency-locking boundaries are 9iVeN_1157 =133 d,=0.2, J=J.+A.+qsinet, J,=0.831258,

by andA,=0.002.

00,

(21) 4A.a cosd

Smma)
ANmin= A" coso

w— W™ + (
0o |A|=4]a]. (23

where g, represents the minimum value of amplitude

required for frequency locking. Solving far,;, reveals that

it is proportional to the absolute value of the normalizedThijs simple result tells us that, in order to lock the SQUID to

detuningA: the external drive, the ac bias current amplitdermalized
2 by A;) must be at least 4 times the detuning. The accuracy of
. =@|A| (22) this prediction is very good, as can be judged from Fig. 8,
mng T where the theoretically predicted minimum locking ampli-

tude (23) (bold line) and the same value as measured via
Using € pmin= Amin COSH=0 minA¢ COSH and w3,;=4Aacosf  numerical simulation of the fullbut noise-frep SQUID
+ (A, cosb)’>~4A.a cos, we have equationg2) (doty are compared.
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- close to the deterministic mear,, and it will have some
i S — distribution with a variance and mode that depend on the
Ry —————— e oty 2 - :
noise intensityo“. We readily obtain

B 1i 'i i — i
g 0.00% : : : ;

£ — ApiETo ApiETo

0.0001 e Vo= T T v BT 5 (26)

0.00001 | i i i —
260 280 300 320 and the model has now been mapped onto the PIF neuron

t model. We assume that after every excursion to the absorb-
FIG. 5. First passage density functions obtained from the theo!N9 barrier _the state _p_omt_ IS reset FO the initial valug
retical prediction(29) (solid line and from simulations of the CcoOrresponding to a reinjection. Effectively, we have replaced
full SQUID equations(black dot3 and the normal form equation the dynamicg4) by the PIF model
(gray doty. B=1.33, ®,=0.2, J=J.+A., J.=0.831258, A,

=0.000258 Ayr=0.000246232¢ = 0.5105,0%= 7.88697 10" 8. v="Apt F(1). (27)
IV. LANGEVIN NOISE AND ITS EFFECT ON DYNAMICS The mean “firing period” isT, (6), which incorporates the
NEAR THE CRITICAL POINT NF paramete.

) ) ) The approximation(27) should be very good near the
We now consider augmenting the Eg. (4) or (8)] with  ¢ritical point. If one draws a vertical line through, to in-
an additive noise terrf¥(t). For the time being, we assume tersect the potentialsl(v), U;(v), then the separation of
that there is no external determinisftime-sinusoidaldriv-  the potentials should be extremely small, i.éU(v,)
ing signal. The noise is taken to have zero mean and be Uy(vg)|<1. This leads to the requiremeiﬂv%/3|<1,
Gaussian and delta correlatedF(t))=0, (F(t)F(t')) and, substituting foo,, we have the condition
=g?8(t—t’). Very close to the critical poinicorresponding ' ’
to the onset of the saddle node bifurcajiowe can assume AgIF
that the dominant contribution to the oscillation perigg(6)
arises from the low-slope, approximately linear portion of
the potential7). Therefore, to model this part of the motion \yhich is well satisfied near the onset of the bifurcation and,
we can try approximating the nonlinear potentid with a j fact wherever one obtains good agreement between the
linear potentia[as in the “perfect integrate-fire(PIF) neu-  gyact and calculated oscillation periods as depicted in Fig. 1.
ron model[22,23] Hence, the PIF description can be invoked in the running
Uy(0)= —Ap (24) regime where our calculations of Sec. Il are valid.
! PIFE For the system(27) with the absorbing boundary condi-
whereAp s is a bit larger thams to improve the fit of the  tion, the first passage density function is given[B®,23
linear potential to the true cubic potential; later in this sec-

<1, (28)
o

tion we will show that Apr=1.5A\¢ provides excellent _ — (AUg—Appt) 2202t

F - F . . go(t) = ——==exp (AVo~ A : (29
agreement between theoretical predictions derived using Eq. 2ot
(24) and simulations of the full SQUID equatiofisee Figs.

5, 6). _ _ _ . where we introduce a “barrier height’ AUy=|ay—uvy)|
Under the linear potential24), the “velocity” variable = A T,. It is very instructive that only this barrier height
satisfies enters into all expressions; a knowledge of the initial point

and the barrier locatioray is not necessary. Equation
U(t):ljo‘i'Ap”:t, (25) vo 0 Y q

(29), with Ap = 1.5A\r, gives a very good prediction of the
first passage density function measured in simulations of the
full SQUID equations and the normal form. Figure 5 shows
&xcellent agreement for return times greater than or equal to
>t,he most probable timé@he time at the mode of the distribu-
tion). These relatively long times emphasize the universal
behavior that the models have in common. The disagreement
at shorter times reflects the differences in the detailed behav-
ior in the models close to a “spike.”

The good agreement seen in Fig. 5 occurs also for lower
noise levels. For higher noise levels, the noise begins to
dominate the other terms in the differential equatin
qualitatively changing the dynamics and rendering the previ-
ous analysis invalid.

FIG. 6. Power spectral densities obtained from the theoretical Note that the mode,, of the density function(29) is a
prediction (30) (thin solid line and from simulations of the full function of noisef23], in contrast to the mean value which,
SQUID equationggray point3. Same parameters as Fig. 5. to a high degree of accuracy, is simply the deterministic

with vg being preselectedso that the passage time to an
absorbing barrier located ag is exactlyT,. This description

is underpinned by the fact that the oscillations are spontan
ous; in the presence of noise the mean period will be ver

0 005 01 015 02 025
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crossing timeT,, (provided the noise is not too largee  condition can be somewhat relaxed in pract@e in conven-
reiterate that all our calculations are carried out in the osciltional stochastic resonance calculati¢g§ for example.
latory regime (> J.. for fixed ®.). On the other side of the We must now set the initial conditian,g and the absorb-
critical point (J<J;), we encounter “excitable” dynamics ing barrierays for the problem with the signal present. As
that can, close to the critical point, be represented by a pabefore, we assume the important motion to occur through the
ticle in a near-parabolic potential. This approach, which isbottleneck, ignoring the steep part of the potential. Then the
closely analogous to a “leaky integrate-fire” neuron modelrelevant part of the ODE31) can be integrated to give
(or, simply, a noise-driven Ornstein-Uhlenbeck process with
an absorbing barrigf24], has recently been quantifi¢a5s].
From the first passage density functiap(t), one may
compute the output power spectral dendiBSD), treating
the “firing” process as being renewdirue to a high degree C being an integration constant. Setting=v,s at timet
of approximation in the absence of periodic fordiagmd us- =0 determinesC. Then we set =ag at timet=Tj, the
ing the Lukes formuld23,2§ (disregarding any dc term period of the oscillations with signal present. Again, we can
find for the “barrier height”

€
U(t):C+Ap||:t_ ;COSwt, (32)

Fo(Q)? _ [1+ ¢o(Q
So(0) - °(T ! Re{l_z‘fﬂ;, (30 .
0 0 aOS—UOSEAUSIAHFTS-I—Z(l—COSa)TS). (33
where Bo(Q)=[5do(t)e'*'dt=exdAUy(Ap

— JAZ—2ic%0)/0?] is the characteristic function gf,(t) ~ Note thatAUy(e=0)=AU,, as it should. . N
and Fo(Q) is the Fourier transform of a single pulse or ~We are now faced with the PIF model with a driving
“spike.” Although this approach is strictly true for a process Signal- As described in Ref23], we can derive the escape
consisting of identical pulses separated by random quiesceR€NSItyg(t):

intervals, in the case of low noise the pulses in our system

are relatively alike and the interpulse interval is nearly qui- AUq 2

escent. Also, we do not have an analytical expression for the g9(t)= \/mexp:—z,(t)]

pulse shape or its Fourier transform. However, our very nar-

row pulses in the time domain correspond to very broad +H(t)e(tsinwt+ o coswt)P(Z, (1))
peaks in the frequency domain centered around zero fre-

guency. Therefore, we can takg({)) to be approximately xex;{ 2tH(t)(Ap|Ft_ icosm) , (34)
constant for 8 <1/(pulse width). It should be clear that 0]

moving away from the bifurcation and deep into the running
regime would result in less spiky, more rounded waveformgvhere we define
and therefore worsen the quality of this approximation.

Figure 6 shows good agreement between the theoretical AU E[Apt— (e/w)coswt] AUg
prediction (30) of the PSD and simulations of the full ~ Z:(1)= > , H(t)= 22
SQUID equations when a constant value is chosen for 7 7

Fo(Q) such that we get a good fit to the height of the Iowestemdq)C is the complementary error function.

fr.eque'nc.y peaks. Simulations of the normal form eq'uation Equation(34) has been derived under some very stringent
yield similarly good agreemerihot shown. Note that taking assumptiong23,24. These include having a signal ampli-

fide that is small compared to the diifonstantterm in Eq.
(31), and the adiabatic assumption of low signal frequency.
Accordingly, the applicability of Eq.(34) is severely re-
stricted in many practical scenarios; however, one can relax
the above constraints somewhat and still get the correct
gualitative behaviof23,24].

exceed the simulation result at high frequencies. In fact
when we numerically evaluaté,({}) using a typical pulse
generated in the simulations and then use Ey&2) in Eq.
(30), we do see better agreemétite correction is a factor of
about 0.7 a2 =0.25).

It is worth pointing out that the PSD given above contains To compute the PSD we might again consider using the
some very interesting features due to the presence of thLGU

intrinsic oscillation frequency in the dynamics. These fea- kes formula(30) applied to the “spike” sequence, with
tures have been discussed in e8], and we do not repro- T, replaced byl's andg(t) in place ofgo(t). However, since

duce them here the §igna| phase is not reset eagh time we cross the abso.rbing
We now inselrt a time-sinusoidal signal. Then the noise__barrler and have reinjection, this can Igad to some serious
augmented NF reads : Issues that revolve around the assumptlon_of renewal behav-
ior in using the Lukes formula. Not employing a phase reset

i following every “spike” means that successive spikes could

v=A;Cos0+av’+e sinwt+F(t), (3D  be correlated, so that the Lukes formula is not strictly appli-

cable. Resetting the phase of the signal following every

where we will takee <A cosé, and w as the smallest fre- ‘“spike” ensures the process being renewal; however, this is
quency in the system. Note, however that this “adiabatic’an unreasonable approximation, except in very specific
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FIG. 7. Power spectrum of SQUID circulating current. Driving
signal amplitude igj=0 (gray curve andq=0.0014(black curve.
B=2, ®o,=0.495,J=J.+A.+(qsinet, J.=0.40731,A.=0.002,
and w=0.0479225. There are two Gaussian noise sources of
strengtho®=6.3096< 10" > modeling thermal noise coming from
the two Josephson junctions in the dc SQUID. Bin width is
4.67993< 10" ° rad/sec.
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cases. In any case, one would expect B§) to yield poorer
agreement with increasing signal amplitudér the reasons
stated earlier.

Note that in the absence of a phase reset following every

“spike,” we should |ntrqduce a randonj phase. Componﬁnt FIG. 8. Low frequency3.125% of the running frequencpoise
and then averagg(t) with respect tog’s density function  oer as a function of input amplitude and detuning. An injection
W(é): signal amplitude ofj=A.=0.002 just reaches the bifurcation point;
o “normalized input amplitude” gy is measured relative to this
g(t)= g(t, ) W(p)d . (35) value. The de_tunln@ equals the injection signal frequenaymi-
0 nus the running state frequency of 0.0479225 rad/sec, measured
relative to the running frequency. The bold line marks the theoreti-
One can carry out the averaging in a variety of ways. Oneally predicted minimum amplitude required for locking in the ab-
procedure is to use a variant of the distribution already desence of noise, while the dots mark the same quantity as measured
rived by Zhouet al. [27]: via numerical simulation(again, in the absence of nojseDther
parameter values as in Fig. 7

-0.1 -0.05 0 0.05 0.1
Detuning

W(¢)= ! ex;{SAusco&ﬁ . (36 effect using a driving signal of amplitudg=0.0014 and
27l o(eAUg/0?) o? frequency equal to the running frequency. At higher driving
_ amplitudes, noise lowering occurs across the spectrum from
For the weak signal case=e/Ap <1 (for which this treat- dc to several times the running frequency. Similar effects
ment is strictly valid, we can systematically expand Eg4) appear to have been observed first in charge density wave

to O(e). When we insert the phase factagsinto the argu- ~ e€xperiment§12] and later were explained theoretically by a
ments of all the trigonometric functions, multiply by the dis- generic iterative map underlying the locking of the internal
tribution (36) and expand t®(s), we do not get any con- oscillation frequency to an external time-periodic sigria].

tribution (to this order only from W(¢). Other author$28] _ Figure 8 shows the low frequencgbout 3% of the run-
have suggested improvements on the phase-averaging prodind frequencynoise power as a function of input amplitude
dure. and detuning. Recall from Sec. Il B that the bold line and

Given the vicissitudes and caveats associated with the irfl0ts mark the minimum amplitude required for locking in the
troduction of time-inhomogenous terms into the leaky@PSence of noise, as theoretically predicted @§) and as

integrate-fire model and the fact that we will ultimately be r_neasu_red via nur_nerical simulation, respectiyely. AS. a func-
concerned with more than one external signal, we do notion Of input amplitude, the low frequency noise poweses

further utilize the integrate-fire analogy for the case wherg!Ntil the input amplitude reaches roughly the amplitude nec-
driving signals) are present. essary to cause frequency locking. Increasing the input am-

plitude above this value then begins to cause a decrease in
low frequency noise power. Eventually the noise power is
suppressed significantiyp to approximately 10 dBbelow

its value in the absence of an injection locking driving signal.

V. NUMERICAL SIMULATIONS WITH DETERMINISTIC
AND STOCHASTIC FORCING

A. Low frequency noise suppression

Applying sinusoidal driving at or near the running fre- B. Heterodyning

quency can produce an injection locking effect that tends to We have seen that injection locking can significantly sup-
suppress the noise background in the neighborhood of thgress low frequency noise. What is its effect on low fre-
running frequency as well as near dc. Figure 7 illustrates thquency sinusoidal signals? In the left panel of Fig. 9 we
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FIG. 9. Power spectrum of SQUID circulating current, derived from full SQUID equatiefispane) and normal form(right pane).
Injection locking amplitude isg=0 (white curve with gray bordg¢rand q=0.002 (black curve. The target signal amplitude i+
=0.00025. Target signal frequeney;=.0312%, and w is set equal to the running frequengy=2, ®,,=0.495,J=J.+A.+qSinwt
+Arsinwit, J;=0.40731, andA,=0.002. For the full SQUID equations there are two Gaussian noise sources of sto€rgh3096
%1078 each (one noise source for each of the two coupled equations in two varialihes power spectrum bin width is 4.67993
X 10" ° rad/sec, andv=0.0479225.e., bin 1024. For the augmented normal form case there is just one Gaussian noise source of strength
02=6.3096x 10" ®, the power spectrum bin width is 6.208720 ° rad/sec, ando=0.0635566(i.e., bin 1024.

illustrate the power spectrum of a SQUID driven by a low mented” with a noise term; however, this term was not rig-
frequency sine wave in the absence and presence of a mudously derived from the SQUID equations. For comparison
higher frequency injection locking signal. Although injection purposes, we have simply chosen to add the same strength
locking reduces the low frequency noise, it also suppressesoise term to the normal form equation as in each of the two
the low frequency signal. However, a strong heterodyningsQUID equations. This choice is supported by the fact that it
effect also occurs, resulting in the appearance of sidebandgd give excellent agreement in the case of the first passage
around the injection locking signal. The presence of a lowgensity function(Fig. 5)

frequency signal can be inferred from these sidebands, and in sirong heterodyning effects are also seen for a high fre-

practice it may be more convenient to detect the low fre-quency target signdht about 97% of the running frequency

quency signal at the higher frequency of these sidebands. i the presence of an injection locking signal at the running
In the normal form cas@ight panel of Fig. $ we do not  frequency(Fig. 10. This heterodyning effect might prove

see any low frequency noise suppression. However, we see@efyl when the target signal frequency is quite high and it

very interesting effect concerning detection of the low fre-yyoy|d be more convenient to filter, process, and detect it at a
quency target signal. Adding the injection locking signal ap-jower frequency.

pears to boost the low frequency signal considerably. Fur-
thermore, the sidebands produced have a much greater signal
strength and signal to noise ratio than the low frequency
target signal itself. This suggests that it may be much more We were led to study the dc SQUID due to its wide ap-
reliable to detect such a low frequency target signal via theplicability for magnetic sensing applicatiofB0]. Earlier ex-
high frequency sidebands in systems that are very accurateperimental and theoretical work has established that the best
described by the normal form. response to weak magnetic signdls the presence of a
Note that Fig. 9 is meant to illustrate th@alitativesimi-  background noise flopiis found just past the critical point.
larities and differences between the full SQUID equationsThe goal of the present work has been to develop a reason-
and the normal form. Recall that the normal form was “aug-ably broad understanding of the system dynamics in this re-

VI. DISCUSSION

Full Equations Normal Form
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i tion locking amplitude igg=0 (white curve with
gray bordeyandg=0.002(black curvg. The tar-
get signal amplitude i&\.;=0.00025. Target sig-
nal frequencyw;=0.9687w, andw is set equal

to the running frequency. Other parameters val-
ues as in Fig. 9.
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gime, including the effects of periodic and stochastic pertur- Under the combined influences of noise and periodic forc-
bations. ing, we have only qualitative progress, which is nonetheless
The tool we found useful was normal form analysis. Thesuggestive. We find a suppression of low frequency noise
normal form was modified in two ways, first by choosing adue to injection locking. If a secon@veak) periodic signal is
local form which simultaneously accommodated the globapresent, a strong heterodyne effect occurs, leading to surpris-
phase space topology, and second by adding forcing terms togly clean high-frequency sidebands of the fiiisfection
model periodic and random perturbations. While these stepdrive. This leads to an intriguing alternative approach for
fall outside the rigorous treatment of center manifold math-detecting either very weak low- or very high-frequency sig-
ematics, they have been successful in the past. Here agamals for which dc SQUIDs may be particularly well suited.
this approach does an excellent job, judging from compariCuriously, while the augmented normal form does not show
sons against numerical simulations of the full system. the noise suppression, it captures the heterodyning effects
In this way, we have made a good deal of quantitativequite nicely.
progress, deriving expressions near the bifurcation for the
following: the spontaneous oscillation frequency and the
spiky wave form in the absence of periodic or noisy pertur-
bations, the frequency shift and onset of frequency locking in  A.R.B., M.E.l., and V.l. acknowledge support from the
the presence of a weak periodic forcing, and the first passadeffice of Naval Researc{Physics Division. K.W. acknowl-
density function and power spectral density in the presencedges summer support at SPAWAR through ONR/ASEE and
of noise. support from ONR Grant No. N00014-99-1-0592.
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