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Random bond Ising systems on a general hierarchical lattice are considered. The inequality between the
specific heat exponent of the pure system, and the crossover exponett ap,<d¢, gives rise to the
possibility of a negativer, along with a positive$, leading to random criticality in disagreement with the
Harris criterion. An explicit example where this really happens for an Ising system is presented and discussed.
In addition to that, it is shown that in the presence of full long-range correlations the crossover exponent is
larger than in the uncorrelated case.
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One of the most famous and important results in the study Consider a general HL described schematically in Fig. 1.
of systems affected by quenched disorder is the Harris critefhe shaded area shown {@) consists of a set of lattice
rion [1]. The widely accepted form of the criterion is that in points where some of the pairs are joined.(im, a typical
ferromagnetic systems with random interactions the randomshaded area is represented. The lines are bonds to be iterated
ness is irrelevant ifa;,, the specific heat exponent of the jn constructing the lattice. All bonds carry a coupliaff,

corresponding pure system, is negative, while for systemgoyemed by a distributiorP(J,) that is identical for all
with positivea, the random system exhibits different critical ponqs. The renormalized coupling is given by

behavior. Specifically¢= a,, where¢ is the crossover ex-
ponent from pure to random criticality. It is surprising, how- Fo= f{le} 1)
ever, that in spite of the long time since its proposal and 12 als

quite a number of alternative derivatiofz-10Q], a rigorous : : - -
proof of the Harris criterion is still lacking. In fact, the only wheref depends only on couplings associated with the pair

rigorous results in this fielfi11,17 yield information about  Of sites(1, 2) (the shaded area, Fig).IThis implies thatl;;

the exponents of the random systém <0 or v,>2/d, d and J,,, are not correlated if the pairgj) and (I,m) are not

being the dimension of the systemvithout relating those to  jdentical. The renormalized distributidd(J) is given by

the exponents of the pure system. Some years ago, a coun-

terexample to the Harris criterion was presented for Potts -~ -

models on a certain hierarchical latti¢elL) [13]. It was P(le)zf [T d3?P (322 o131 11333 2

shown that, for ay-state Potts model, it is possible to find a “

\(/j\{|ndow of rather largey's in which ay, is negative but the 1.0 serve to derive an infinite set of equations for the
isorder is relevant. It is unclear whether the Harris criterion .

is also violated in the Ising model, because in contrast WitHenormallzed moments. Let us denote

high-q Potts model$8] it is quite difficult to obtain negative _ i

ay's in Ising systems. Ti=((83a)"), ©
_ The above situation motivated the present work, whichyere 53 denotes the departure from the pure fixed point

ylelds_some rigorous results regarding the_ Harris criterion fO(le:J* for all . The recursion equations for the moments

the Ising model. Because on regular lattices any attempt t(r)gad

obtain some rigorous results via a renormalization group

(RG) procedure at the pure fixed point is hampered by the

generation of correlations, | chose to work on general HLs.

This produces exact results because correlations are not gen-

erated in such systems under Radte that some derivations

of the Harris criteriorf8—10] assume the same in one way or

anothej. The results | obtain here are the following.

(2) 1 define two random interactions to be fully correlated !
if both are identical in each representation of the random-
ness. | define the full correlations as long ranged if they
survive the renormalization procedure for any number of
steps. In the presence of full long-range correlations, the
crossover exponent, to be denoteddas;, is larger thang, FIG. 1. A general HL is described schematically. (), the
the crossover exponent of the uncorrelated system. shaded area consists of a set of lattice points, where some of the

(2) Explicit examples are constructed whetg is nega-  pairs are joined by bonds,g..... In (b), a typical shaded area is
tive but still the randomness is relevant. This is true for un-represented. The full lines are bonds to be iterated in constructing
correlated and the correlated systems. the lattice.

[i=G[I1.T5,...]. (4)
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FIG. 2. In(a), an example of a HL, generated using some specific generator, is given. The diffgeti=1,...,5 hergrepresent the
different random interactions attached to the bondgbJnsome of the bonds associated with that generator are taken to be fully correlated,
that is, the interactiong, attached to these bonds are taken to be identical. This must hold at all scales in order for the correlations to be
nonlocal and survive the renormalization procedurgcinpwe zoom in on one renormalization step of a possible configuration that generates
such correlations. The bonds are distributed in such a way that the initial setup of correlated bonds defined on the generatotbshown in
remains true on all scales. In this way, correlations are nonlocal on all scales and thus long ranged.

The pure ferromagnetic fixed point is assumed’at-0, so  sented in Fig. @), where as before the differedt,’s (a
that =1,...,5 hergrepresent the independent random interactions
attached to the different bonds. In Figb® some of these
r*=o. (5)  bonds are taken to be fully correlated, namely, boadsd
B are fully correlated if, sayJz;=J, so that indeed there is

In a recent paperl4], the following results were proved only one independent random variable, Say In order for
by considering the matrix&(l:i 16T;)(0,0,...). this property to sur_viv_e the r_enormalization procgdure, the

(a) The eigenvalues of the matrix, , are given by _bonds have to be distributed in such a way that this property

is true on all scalesas demonstrated in Fig(@]. In this
way, correlations are nonlocal at all scales and thus long
ranged.

Let us assume then that teebonds inside a rescaling
volume are divided inton subsets(),, with t=1,...m and
The sum is over alh bondsa of the rescaling volume asso- 1<ms=n, each containing, fully correlated bonds, so that
ciated with the pair(1, 2) (the superscript 1, 2 is omitted = n,=n. We can write
hereafter and the partial derivative is taken at the point
where all those couplings equat .

(b) All the eigenvalues are positive. f{J.=0{J}, (11
(©) Nip1<\i. (7

! . Jf
A= () where f,=—-—(J*...3%). (6
a=1 a

(6) for the \;’s to write

In\,
b2~ (8) m
1 .
A= (gy)'
and =1
m i n
br=ap, (9 :2‘1< EQ fa) 221 (fo)'=\; (uncorrelateg
= ae t a=
where a,,, the specific heat exponent of the pure system, (12
may be easily obtained by consideration of the free energy
per bond,

This is true sincef ,=0 for all «’s [14]. The inequality¢
< ¢.orr thus immediately follows and the equality sign holds
Inn only if no correlations are present. A special case of the
zm' 10 apove inequality was obtained a long time ago by Andelman
and Aharony{10]. Using the Migdal-KadanoffMK) renor-
The equality sign in(9) holds only if all the bonds in the malization scheme, they considemdimensional cubic sys-
shaded area of Fig.(4) are equivalent. tems with quenched bond disorder that are correlated along
We turn now to the case where full long-range correla-d; dimensions and showed that the crossover exponent and
tions are present in the system. In the following, | define fullthus the Harris criterion are modified, respectively,#g,,
long-range correlations for a general HL. Consider a HL,=a,+d;», and 2—(d—d,;)»,<0. Since the MK transfor-
generated using some specific generator such as the one preation performed on a regular lattice corresponds to an exact

—ap
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FIG. 3. A HL generator is shown that is capable of demonstrating examples for the Ising model for which the Harris criterion fails to
predict random criticality. It is made qf parallel branches, each of which contains a single site, connected on one side with a single bond
and on its other side witly parallel bonds. Ir(a), the p parallel branches are shown. Each of the bold bonds represents agspaiailel
bonds as explicitly drawn ib).

RG transformation performed on a diamond HI5,16], for ~ «, and¢, are next calculated according to E¢8). and(10).
which all bonds are equivalent and thag= ¢, their result  Numerical results foK*, ap, and ¢, are given in Table |
readseeo= ¢+d;v=¢. for different values ofp and . Note the cells enclosed in

In the following | present an Ising system, for whiafj is  parentheses, where the Harris criterion mistakenly indicates
negative while¢, is positive. Consider the HL generated pure criticality.
using the generator presented in Fig. 3. It is made pér- | also considered an example for the case where some of
allel branches, each of which contains a single site, conthe bonds are fully correlated. For simplicity | have chosen
nected on one side with a single bond and on its other sidghe case in which they parallel bonds of each of thp
with g parallel bonds. The rescaling volume is thes p(q branches are fully correlated. Therefore, in each branch, we
+1) and, denoting3J,=K,, the renormalized coupling is may replace the bonds of Fig. &), each carrying a cou-

given by pling J,5, with an effective coupling}J;,, so that now
. 10 coshK,+qK)
cosh K,+ = K = , a a
- 1 ’-( “ p=1 aB) Kcorrzfcorr{KayKa}zzz In coshK . —qK')
K=HKq . Kogb=5 2 In , a=1 o« AK,
241 d (16)
cosh K,— 2 Kyp
B=1
(13) and
. . ‘
whereK* is determined by )\ic°”=§|—{(tank[(q+1)K*]—tanr[(q—1)K*])'
12 cosh (q+1)K*] : .
* — _ - - - i * _ * 7\
K 2;:‘,1 ln[cosr[(q—l)K*] : (14) +q'(tanH (q+1)K* ]+ tanH (q— 1)K* ])'}.
17

Taking the first partial derivatives of E¢L3) with respect to
K, andK,gz, and using Eq(6), the following expression is While K*, A1, and thereforex,, are left unchanged,3*" and
obtained for the eigenvalues: thereforeg,,,, are now increased. Numerical results #y,,,
are also given in Table I.
p , To conclude, | wish to discuss the possible relevance of
Ni=or{(tant(q+1)K* ]—tant (q—1)K* ]) my results to regular lattices. One should note that the two
_ properties discussed here, that of bonds inside a rescaling
+q(tan (g+1)K*]+tanf (g—1)K*])'}. (15  volume not being all equivalent and that of full long-range-

TABLE I. Numerical results folK*, a;,, ¢, and ¢, for different values op andq with respect to the HL shown in Fig. 3. Note the
cells enclosed in parentheses, whetg<0< ¢ so that the Harris criterion mistakenly indicates pure criticality. Also note that alwgys

= ¢$ ¢COI’I’ .

p 2 3 4
q 1 2 3 1 2 3 4 1 2 3 4 5

K* 0.609 0.281 0.185 0.361 0.175 0.116 0.087 0.261 0.128 0.085 0.064 0.051
a, -0.676 (—0.11) 0.224| —-0.902 -0.478 (-0.090 0.117 | —1.19 0.762 —0.319 (-0.079 0.069

¢ -0.676  (0.012 0.339 | —0.902 -0.379 (0.013 0.203| —-1.19 -0.670 -—0.220 (0.006 0.138
Georr | —0.676 0.778 1.26| —0.902 0.345 0.919 1.16 —1.19 0.040 0.680 0.961 111
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correlations being present, each by itself makgs o, pos-  where on a regular lattice we may find negativg but still

sible. This may suggest, at first sight, that starting on a regurandomness is relevant must thus be such that the nonequiva-
lar lattice with a set of nonequivalent interactions, say,lence of bonds does not disappear under RG. This can hap-
nearest neighbors and next-nearest neighbors, may violaggen in principle when the interactions are algebraically long

the Harris criterion. On HLs we see, however, that it is alsoranged or when the correlations of short-range interactions
important that these properties are invariant under the RGyre long ranged.

On regular lattices, though, we expect that the detailed struc-
ture of nonequivalent bonds will disappear under RG and | wish to thank Professor Moshe Schwartz for many help-
therefore the Harris criterion is expected to hold. Cases  ful discussions.
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