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Harris criterion on hierarchical lattices: Rigorous inequalities
and counterexamples in Ising systems
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Random bond Ising systems on a general hierarchical lattice are considered. The inequality between the
specific heat exponent of the pure system,ap , and the crossover exponentf, ap<f, gives rise to the
possibility of a negativeap along with a positivef, leading to random criticality in disagreement with the
Harris criterion. An explicit example where this really happens for an Ising system is presented and discussed.
In addition to that, it is shown that in the presence of full long-range correlations the crossover exponent is
larger than in the uncorrelated case.
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One of the most famous and important results in the st
of systems affected by quenched disorder is the Harris c
rion @1#. The widely accepted form of the criterion is that
ferromagnetic systems with random interactions the rand
ness is irrelevant ifap , the specific heat exponent of th
corresponding pure system, is negative, while for syste
with positiveap the random system exhibits different critic
behavior. Specifically,f5ap , wheref is the crossover ex
ponent from pure to random criticality. It is surprising, how
ever, that in spite of the long time since its proposal a
quite a number of alternative derivations@2–10#, a rigorous
proof of the Harris criterion is still lacking. In fact, the onl
rigorous results in this field@11,12# yield information about
the exponents of the random system~a r,0 or n r.2/d, d
being the dimension of the system! without relating those to
the exponents of the pure system. Some years ago, a c
terexample to the Harris criterion was presented for P
models on a certain hierarchical lattice~HL! @13#. It was
shown that, for aq-state Potts model, it is possible to find
window of rather largeq’s in which ap is negative but the
disorder is relevant. It is unclear whether the Harris criter
is also violated in the Ising model, because in contrast w
high-q Potts models@8# it is quite difficult to obtain negative
ap’s in Ising systems.

The above situation motivated the present work, wh
yields some rigorous results regarding the Harris criterion
the Ising model. Because on regular lattices any attemp
obtain some rigorous results via a renormalization gro
~RG! procedure at the pure fixed point is hampered by
generation of correlations, I chose to work on general H
This produces exact results because correlations are not
erated in such systems under RG~note that some derivation
of the Harris criterion@8–10# assume the same in one way
another!. The results I obtain here are the following.

~1! I define two random interactions to be fully correlat
if both are identical in each representation of the rando
ness. I define the full correlations as long ranged if th
survive the renormalization procedure for any number
steps. In the presence of full long-range correlations,
crossover exponent, to be denoted asfcorr, is larger thanf,
the crossover exponent of the uncorrelated system.

~2! Explicit examples are constructed whereap is nega-
tive but still the randomness is relevant. This is true for u
correlated and the correlated systems.
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Consider a general HL described schematically in Fig
The shaded area shown in~a! consists of a set of lattice
points where some of the pairs are joined. In~b!, a typical
shaded area is represented. The lines are bonds to be ite
in constructing the lattice. All bonds carry a couplingJa

12,
governed by a distributionP(Ja) that is identical for all
bonds. The renormalized coupling is given by

J̃125 f $Ja
12%, ~1!

wheref depends only on couplings associated with the p
of sites~1, 2! ~the shaded area, Fig. 1!. This implies thatJ̃i j

and J̃lm are not correlated if the pairs~i,j! and ~l,m! are not
identical. The renormalized distributionP̃( J̃) is given by

P̃~ J̃12!5E )
a

dJa
12P~Ja

12!d@ J̃122 f $Jb
12%# ~2!

and may serve to derive an infinite set of equations for
renormalized moments. Let us denote

G i5^~dJa! i&, ~3!

wheredJa denotes the departure from the pure fixed po
Ja

125J* for all a. The recursion equations for the momen
read

G̃ i5Gi@G1 ,G2 ,...#. ~4!

FIG. 1. A general HL is described schematically. In~a!, the
shaded area consists of a set of lattice points, where some o
pairs are joined by bondsa,b,... . In ~b!, a typical shaded area i
represented. The full lines are bonds to be iterated in construc
the lattice.
©2001 The American Physical Society12-1
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FIG. 2. In ~a!, an example of a HL, generated using some specific generator, is given. The differentJa’s ~a51,...,5 here! represent the
different random interactions attached to the bonds. In~b!, some of the bonds associated with that generator are taken to be fully corre
that is, the interactionsJa attached to these bonds are taken to be identical. This must hold at all scales in order for the correlatio
nonlocal and survive the renormalization procedure. In~c!, we zoom in on one renormalization step of a possible configuration that gene
such correlations. The bonds are distributed in such a way that the initial setup of correlated bonds defined on the generator sh~b!
remains true on all scales. In this way, correlations are nonlocal on all scales and thus long ranged.
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The pure ferromagnetic fixed point is assumed atJ* .0, so
that

G i* 50. ~5!

In a recent paper@14#, the following results were proved

by considering the matrix (]G̃ i /]G j )(0,0,...).
~a! The eigenvalues of the matrix,l i , are given by

l i5 (
a51

n

~ f a! i where f a[
] f

]Ja
~J* ,...,J* !. ~6!

The sum is over alln bondsa of the rescaling volume asso
ciated with the pair~1, 2! ~the superscript 1, 2 is omitte
hereafter! and the partial derivative is taken at the po
where all those couplings equalJ* .

~b! All the eigenvalues are positive.
~c! l i 11,l i . ~7!

As a consequence of~c!, the leading crossover exponent i

f25
ln l2

ln l1
~8!

and

f2>ap , ~9!

where ap , the specific heat exponent of the pure syste
may be easily obtained by consideration of the free ene
per bond,

22ap5
ln n

ln l1
. ~10!

The equality sign in~9! holds only if all the bonds in the
shaded area of Fig. 1~a! are equivalent.

We turn now to the case where full long-range corre
tions are present in the system. In the following, I define f
long-range correlations for a general HL. Consider a H
generated using some specific generator such as the one
06611
,
y

-
l
,
re-

sented in Fig. 2~a!, where as before the differentJa’s ~a
51,...,5 here! represent the independent random interactio
attached to the different bonds. In Fig. 2~b!, some of these
bonds are taken to be fully correlated, namely, bondsa and
b are fully correlated if, say,Jb5Ja so that indeed there is
only one independent random variable, sayJa . In order for
this property to survive the renormalization procedure,
bonds have to be distributed in such a way that this prop
is true on all scales@as demonstrated in Fig. 2~c!#. In this
way, correlations are nonlocal at all scales and thus lo
ranged.

Let us assume then that then bonds inside a rescaling
volume are divided intom subsetsV t , with t51,...,m and
1<m<n, each containingnt fully correlated bonds, so tha
( t51

m nt5n. We can write

f $Ja%5g$Jt%, ~11!

because all the couplings inV t equalJt . Finally, we use Eq.
~6! for the l i ’s to write

l i
corr5(

t51

m

~gt!
i

5(
t51

m S (
aPV t

f aD i

> (
a51

n

~ f a! i5l i ~uncorrelated!.

~12!

This is true sincef a>0 for all a’s @14#. The inequalityf
<fcorr thus immediately follows and the equality sign hol
only if no correlations are present. A special case of
above inequality was obtained a long time ago by Andelm
and Aharony@10#. Using the Migdal-Kadanoff~MK ! renor-
malization scheme, they consideredd-dimensional cubic sys-
tems with quenched bond disorder that are correlated a
d1 dimensions and showed that the crossover exponent
thus the Harris criterion are modified, respectively, tofcorr
5ap1d1np and 22(d2d1)np,0. Since the MK transfor-
mation performed on a regular lattice corresponds to an e
2-2
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FIG. 3. A HL generator is shown that is capable of demonstrating examples for the Ising model for which the Harris criterion
predict random criticality. It is made ofp parallel branches, each of which contains a single site, connected on one side with a singl
and on its other side withq parallel bonds. In~a!, thep parallel branches are shown. Each of the bold bonds represents a set ofq parallel
bonds as explicitly drawn in~b!.
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RG transformation performed on a diamond HL@15,16#, for
which all bonds are equivalent and thusap5f, their result
readsfcorr5f1d1n>f.

In the following I present an Ising system, for whichap is
negative whilef2 is positive. Consider the HL generate
using the generator presented in Fig. 3. It is made ofp par-
allel branches, each of which contains a single site, c
nected on one side with a single bond and on its other
with q parallel bonds. The rescaling volume is thenn5p(q
11) and, denotingbJa[Ka , the renormalized coupling is
given by

K̃5 f $Ka ,Kab%5
1

2 (
a51

p

lnF coshS Ka1 (
b51

q

KabD
coshS Ka2 (

b51

q

KabD G ,

~13!

whereK* is determined by

K* 5
1

2 (
a51

p

lnH cosh@~q11!K* #

cosh@~q21!K* #J . ~14!

Taking the first partial derivatives of Eq.~13! with respect to
Ka andKab , and using Eq.~6!, the following expression is
obtained for the eigenvalues:

l i5
p

2i $„tanh@~q11!K* #2tanh@~q21!K* #…i

1q„tanh@~q11!K* #1tanh@~q21!K* #…i%. ~15!
06611
-
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ap andf2 are next calculated according to Eqs.~8! and~10!.
Numerical results forK* , ap , andf2 are given in Table I
for different values ofp and q. Note the cells enclosed in
parentheses, where the Harris criterion mistakenly indica
pure criticality.

I also considered an example for the case where som
the bonds are fully correlated. For simplicity I have chos
the case in which theq parallel bonds of each of thep
branches are fully correlated. Therefore, in each branch,
may replace theq bonds of Fig. 3~b!, each carrying a cou-
pling Jab , with an effective couplingqJa8 , so that now

K̃corr5 f corr$Ka ,Ka8 %5
1

2 (
a51

p

lnFcosh~Ka1qKa8 !

cosh~Ka2qKa8 !G
~16!

and

l i
corr5

p

2i $„tanh@~q11!K* #2tanh@~q21!K* #…i

1qi
„tanh@~q11!K* #1tanh@~q21!K* #…i%.

~17!

While K* , l1 , and thereforeap are left unchanged,l2
corr and

thereforefcorr are now increased. Numerical results forfcorr
are also given in Table I.

To conclude, I wish to discuss the possible relevance
my results to regular lattices. One should note that the
properties discussed here, that of bonds inside a resca
volume not being all equivalent and that of full long-rang
e

.051
TABLE I. Numerical results forK* , ap , f, andfcorr for different values ofp andq with respect to the HL shown in Fig. 3. Note th
cells enclosed in parentheses, whereap,0,f so that the Harris criterion mistakenly indicates pure criticality. Also note that alwaysap

<f<fcorr .

p 2 3 4
q 1 2 3 1 2 3 4 1 2 3 4 5

K* 0.609 0.281 0.185 0.361 0.175 0.116 0.087 0.261 0.128 0.085 0.064 0
ap 20.676 ~20.111! 0.224 20.902 20.478 ~20.090! 0.117 21.19 0.762 20.319 ~20.077! 0.069
f 20.676 ~0.012! 0.339 20.902 20.379 ~0.013! 0.203 21.19 20.670 20.220 ~0.006! 0.138

fcorr 20.676 0.778 1.26 20.902 0.345 0.919 1.16 21.19 0.040 0.680 0.961 1.11
2-3
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correlations being present, each by itself makesf2.ap pos-
sible. This may suggest, at first sight, that starting on a re
lar lattice with a set of nonequivalent interactions, s
nearest neighbors and next-nearest neighbors, may vio
the Harris criterion. On HLs we see, however, that it is a
important that these properties are invariant under the
On regular lattices, though, we expect that the detailed st
ture of nonequivalent bonds will disappear under RG a
therefore the Harris criterion is expected to hold. Cases
a

06611
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where on a regular lattice we may find negativeap but still
randomness is relevant must thus be such that the noneq
lence of bonds does not disappear under RG. This can
pen in principle when the interactions are algebraically lo
ranged or when the correlations of short-range interacti
are long ranged.

I wish to thank Professor Moshe Schwartz for many he
ful discussions.
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