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Time decay of the remanent magnetization in thexJ spin glass model afT =0
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Using the zero-temperature Metropolis dynamics, the time decay of the remanent magnetizatior: in the
Edward-Anderson spin glass model with a uniform random distribution of ferromagnetic and antiferromagnetic
interactions has been investigated. Starting from the saturation, the magnetization parrep@als a slow
decrease with time, which can be approximated by a power taft) = m.,+ (t/ay)?t, a;<<0. Moreover, its
relaxation does not lead it into one of the ground states, and therefore the system is trapped in metastable
isoenergetic microstates remaining magnetized. Such behavior is discussed in terms of a random walk that the
system performs on its available configuration space.
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[. INTRODUCTION waiting time at which the sample is kept at constant tempera-
ture before the external field is chand@d. According to the
Spin glasses are systems that, at temperatures below tdecay of both the remanent magnetization and the energy,
so-called glass-transition temperatdig, find themselves in  the experimental results depend on the observation times af-
states with frozen disorder, i.e., no long-range patternlikger the field is switched off in all measurements. The above
order typical for ordered magnets is present. Their propertiesonstationary dynamics has been described by a fair variety
are determined by competing ferromagnetic and antiferroef functions. The most important ones include power law,
magnetic exchange interactions that are randomly distributeldgarithmic, stretched exponential, and others, and the ques-
in the system. Both the competition among the different in-tion of judging which is the most universal is still far from
teractions between the magnetic moments and their randoffecided[3-5]. Additionally, as some experiments indicate,
distribution all over a given system are likely to contribute the remanent magnetization decays so slowly with time that
significantly to such unusual glassy behavior. From the thesome nonzero remanence is still observed over macroscopic
oretical point of view, they can be discussed in terms of thdime scales, particularly at very low temperatuf@k Relax-
coarse-grained free energy. Namely, due to accidental degeation time measurements in CeNCuy, below the spin
eracy present in such systems, bel@y their free-energy glass temperater6 K show that the decay time increases
landscape becomes extremely rough, with many locaflrastically with a distinct tendency to a state with nonzero
minima corresponding to the same macroscopically observeshagnetization, which is higher the lower the temperature is
properties but with entirely different microscopic states in[7]. The theoretical background of such a property is rather
the system phase space. The mini(walleys are separated unclear[6].
from each other by some energy barriers, and once a system One of the simplest theoretical models of spin glasses is
finds itself in one of them, it might take a lot of time on the Edwards-AndersofiEA) model. Ising spins are located at
laboratory time scales to transit to the others. Thus, the obeach site of a lattice with randomly distributed ferromagnetic
served properties of spin glasses may only correspond tend antiferromagnetic interactions between the nearest
those of one single valley in which the system happens to bajeighbors. Such a model reveals most of the crucial features
and as a result, ergodicity is practically broKér?]. In other  typical of real spin glasses including relaxation phenomena.
words, spin glasses can be seen as systems whose dynanmiBgh the early paperg3,9] and the newer onefdl0,11] on
at low temperatures is extremely slow and whose propertievo- (2D) and three-dimension&BD) models with a Gauss-
measured in real experiments always correspond to situatioan distribution of bonds confirm that in a wide range of
out of equilibrium. Very good evidence for this nonstation- temperatures, a remanent magnetization occurs that decays
ary dynamics is the response of the system ac susceptibilityery slowly with timet according to a power lawn(t)
to an oscillating field, i.e., its dependence both on time and-t™“ with «(T)~T. It is also known that in case the cou-
frequency. Another example is the slow decay of remanenplings among spins may take only discrete valtes mod-
magnetizations with timgl,2]. The thermoremanent magne- els) at sufficiently low temperatures, relaxation properties of
tization (TRM) is measured by cooling the sample in a non-such glasses are entirely different because of the existence of
zero magnetic fieldd from above the glass-transition tem- energy gaps in their energy spectid,12. As a result, for
peratureT, to a temperaturd below it and then switching models with bimodal distribution of interactions at tempera-
off the field. The isothermal remanent magnetizatitM)  tures well belowT,, a simple linear dependence afon
is measured by zero-field cooling of the sample in the samé&émperaturel is not satisfied, and the functional form of the
way as before, then turning on the field, and subsequentlyemanent magnetization decay is still rather far from being
turning it off. In addition, in both cases the experimentalestablished. It has been mentioned that the functi¢m)
results show that for small fields applied to the sample, thenight go to zero faster than linear at low temperatife.
remanent magnetization is strongly affected by the so-callett has also been suggested that at finite small temperatures,
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m(t) should coincide withm(t) at zero temperature for some
region of time, and that the relaxation causes such a system 4
to remain trapped in one metastable state with a finite rem-
anent magnetization.

In this paper, we revisit the remanent magnetization decay
of 2D =J EA spin glass because we are interested in its
extremely low-temperature relaxation properties where the
power law witha(T) ~T breaks down. We consider the lim-
iting case of zero-temperature behavior in order to find out
whether the remanence phenomena observed at such condi-
tions could reflect the low-temperature properties of discrete
systems at least qualitatively. We would also like to check

w

E(t) + 2 (in units of IJiiI)
N

f—

out whether or not results obtainedTt 0 could be treated g e
as continuous extrapolations of those at low but finite tem- *H*H.Hu_‘_“i_ﬂ_‘“*“‘
peratures, which, according to similar research done on the 0 . 2'0 : 6'0 20

SK model[13], seems rather unlikely. Actually, i3] it is
shown that even the zero-temperature dynamics provides a
decay of the magnetization that can be fitted by a power law FIG. 1. Energy per spifE (in units of |J;;|) versus timet (in

with a constant exponent. We carry out simulations using units of Monte Carlo steps per spiaveraged over 30 independent
the zero-temperature dynamics, which has been successfullyns in a frustratedi=70x 70 system(circles and in an unfrus-
applied to various spin lattices including the persistencdrated one of the same size with solely antiferromagnetic interac-
probability in the weakly disordered Ising moddi], hys-  tions (triangles. The dotted horizontal line represents the exact
teresis in the random-field Ising model on the Bethe latticeground-state energy of the former. Energy axis is shifted by adding
[15], the question of avalanches in spin systdh6], and aterm 2.

others[17]. We investigate the system relaxation process to-

wards low-energy states by plotting both energy and magne- (i) Consider a sample in its saturation sté# spins up.
tization versus the zero-temperature Monte Carlo steps (ii) Pick a spin at random.

(MCS) per spin, which are treated as “time unitsd’ We (iii) Flip it only if this process does not increase the en-
discuss the influence of frustration on the nonequilibriumergy.

time properties by comparing them with corresponding prop- (iv) Repeat step6i) and(iii) N times. So, one time unit is
erties for an unfrustrated system with pure antiferromagneticlefined as one MC step per spin.

interactions. Finally, we discuss the obtained results in terms (v) Record magnetization and energy as functions of these

40
t (MCS/spin)

of the system random walk on its configuration space. time units.
(vi) Start again with stefii) to find results for the follow-
Il. MODEL AND SIMULATION ing time step.

] ) Thus, the above algorithm determines the system random
We use the Edward-Anderson spin glass model with &yalk on the configuration space in the direction of dropping
random and uniform distribution of discrete interactidis  energy. It should be mentioned that a different algorithm
=*1 between the nearest neighbors all over a 2D squargased on the Glauber dynamics is also used in the literature,
lattice with N sites and with periodic boundary conditions. cf. [14,18,19. Then for T=0, step (iii) of the above-
The Hamilton function of such a system in an external magmentioned procedure is replaced by the following one: Flip it
netic fieldB is if this process decreases the energy and flip it with the prob-
ability 3 if this process does not change the energy.
H=-2 3;S8-BX S, @
Ill. RESULTS
whereS;, §;=*1 (up/down are Ising spins, and the sum in . _ .
the first term on the right-hand side runs over the nearest- FIrSt We consider a special system of the sfte 70
neighboring lattice sites. The samples are prepared in such>§1?0’ for which the exact grqund—state energy 1S calculated
way that the fraction of antiferromagnetic bondspis 0.5. using a branch-and-cut F_"Igo_”thm by De Simateal. [20]. .
We study how the remanent magnetization decays with timdS €nergy and magnetization decays are compared with

in zero magnetic field starting from the system saturationtho_Se of an unfrus_trated one of the same size with soI_er
state. The magnetization per spin is given by antiferromagnetic interactions between the nearest neigh-

bors. No qualitative differences in the energy relaxation can
m(t)=[N,(t)—N_(t)]/N, 2) be seen, except for the fact that the ground-state energies of
both systems are differefifig. 1). On the other hand, with
whereN, , N_ denote the number of spins up and down,respect to the remanent magnetization decay, both systems
respectively. The system relaxation process is simulated bgre entirely different and the influence of randomness and
applying a version of the zero-temperature Metropolis algofrustration on the phenomena can be observed. While the
rithm given by the following steps, cf15,17. unfrustrated system moves extremely fast to the low-energy
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The first termm,, corresponds to the average remanent mag-

1 netization of the system trapped in a subspace of low-lying
isoenergetic states after a long time of decay, whereas the
08 second term corresponds to the nonstationary dynamics. The
parameters found arem,=0.059, a;=0.23, and a;=
06 1 —0.83. The inset of Fig. 3 shows[m(t)—m,] versus In()
with m,, taken from the power-law fit3). The observed
go4 1 dispersion of the computed points for large values of tinse
" due to their small fluctuations arourd.,. We have also
0.2 : tested some other functions with four free parameters to ad-
i just the data. Among them, the stretched exponential law
0 i b d bt o odt e e ke e ek bk ok m(t) =m, +ay exd —(t/a;)®] (for t=0), with m,.=0.060,
a7,=0.94, a;,=0.43, anda,=0.35, has proved reasonably
02 close to it, however a bit worse than the power-law one.

0 20 40 60 80
t (MCS/spin)

o . . ) ) IV. SUMMARY
FIG. 2. Magnetization per spim versus timet (in units of

Monte Carlo steps per spimveraged over 30 independent runs for ~ We have investigated the remanent magnetization decay
the same systems as in Fig. 1. of a 2D = J EA spin glass model at zero temperature. All the
samples were initially at their saturation states and then al-
unmagnetized states, the frustrated one relaxes more slowigwed to relax towards states with lower energy using the
and the isoenergetic states it finally explores still posses&ero-temperature Metropolis algorithm. The observed rema-
nonzero magnetizatiofFig. 2). In that area, the remanent Nent magnetization decay in the frustrated system was much
magnetization fluctuates around a constant value, which reslower than in the unfrustrated one, whose remanent magne-
fers to simply flipping idle spins. tization decreased rapidly to zero. After a number of MC
In order to describe the system dynamics more quantitaSteps, the walk of the random system on its configuration
tively, we have considered 10 samples of the dize50  Space practically became limited to subspaces of magnetized
x 50 with different distribution of bonds. Typically, we have isoenergetic states. At that region, on the average, the rema-
performed around 2000 MC relaxation steps. In Fig. 3, wehent magnetization fluctuated without further decrease. Our
show the remanent magnetization(t) averaged over the Ccalculations suggest that the time decay of the remanent
samples and over 30 independent runs for each. The best fitagnetization can be very well represented by a simple

obtained by croscopic point of view, the nonexponential relaxation phe-

nomena in spin glasses can be discussed in terms of random
diffusion on the available configuration space. It is suggested
3) by simulations that stretched exponential relaxation behavior
in glassy systems appears with the exporengoing to 3
when approaching a percolation transition in the configura-
04 i . i i tion space, which is a multidimensional hyperciyB&—23.
The same form of the magnetization decay in a 2D ferromag-
netic Ising model has been reported and some dependence of
the relaxation phenomena on the system dimension has been
found as well[24-26. In the so-called trap model, the sys-
\ tem evolves among various traps with random “trapping
_ times.” The traps are separated from each other by energy
g 02 M el PP barriers that can be crossed by thermal excitati@®%2§|.
This kind of approach has been successfully used to study
low-temperature aging of a system consisting of configura-
tions with random energig®9]. However, since the dynam-
ics of ours is athermal, there is no such barrier crossing in it
and a purely entropic interpretation might be adapted instead
, . . . [28,30. Although for simulations at finite temperatures a
0 40 ??MCS/SP}%O 160 200 mixture of “energetic” and “entropic” barriers is likely to
contribute to the phenomena of slow dynamics, one of the
FIG. 3. Magnetization per spim versus timet (in units of  €ffects vanishes with respect to the zero temperature simula-
Monte Carlo steps per spimveraged over 10 samples of the size tions. The observed slowing down of the system relaxation
N=50%50 and over 30 runs for each. The continuous line reprecould be qualitatively understood with the help of so-called
sents the fit according to the power la{8). The inset shows entropic traps themselves. While the point in the configura-
In[m(t)—m,.] versus Int). tion space randomly searches for available paths leading to

ag

t
=m.,+
m(t)=m,, a

in{m{t)-m ]
rd
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states with lower energy, their number decreases rapidly witiyo to zero with dropping temperature seems to be in direct
time. As a result, we find that the lower the energy of thecontradiction to the remanent magnetization decay at exactly
states is that the system has reached the longer is the tinTfe=0, for which « is finite. This also seems to indicate that
period needed to leave them. This phenomenon is also veithe violations of the power law at very low temperatures
consistent with the Markov theof82,33. It says that every might be due to the characteristic timedivergence[11]
finite Markov chain contains at least one absorbing set irrather than to the functiom(T) going to zero faster than
which the system remains forever after falling in@ good linear. Moreover, we think that another explanation could be
example of an absorbing set is the closure of one of theuggested as well. Namely, it has been experimentally found
ground states Moreover, the theory states that the probabil-that the remanent magnetization, decreases with increas-
ity of passing to one of them with “time” going to infinity ing temperatur6,7]. Below a certain value of temperature
tends to 1. That is, after a large number of MC steps, thd, the discrete structure of the system energy spectrum is
available configuration space of the system becomes one (ikely to affect its properties significantly anah.,, may be-
the absorbing sets, where the energy is kept constant and teeme relevant. That means that at very low temperatures it
magnetization fluctuates. A finite value of remanent magneshould be contained in the relaxation law, and a plot
tization m., indicates that the absorbing set contains excitedn[m(t)—m,] versus In{) (instead of Iim(t)] versus In())
states rather than ground states. This is consistent with recepbuld still remain linear.
results on magnetic hysteresis at zero temperdfitg All
metastable states connected by one-spin flips without raising
energy form a local ensemble of metastable states. When all
these states belong to a relatively large valuenpthe one- Support from Graduiertenkolleg “Struktur- und Korrela-
spin interconnection with the local ensemble of ground statetionseffekte in Festkpern” is gratefully acknowledged. We
can be prohibited. thank D. Stauffer, J. Wei3barth, and M. Nogala for helpful
Moreover, our simulations confirm that the observed tendiscussions, and the authors of Rgf0] for allowing us to
dency of the exponenk(T) [in the formulam(t)~t~“]to  use their computer data.
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