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Multichoice minority game
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The generalization of the problem of adaptive competition, known as the minority game, to the ¢ase of
possible choices for each player, is addressed, and applied to a system of interacting perceptrons with input and
output units of a type oK-state Potts spins. An optimal solution of this minority game, as well as the dynamic
evolution of the adaptive strategies of the players, are solved analytically for a g&nanal compared with
numerical simulations.
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[. INTRODUCTION decision. In the original game, the information provided to
each player is the history vector of sik& whose compo-
Considerable progress in the theoretical understanding dgfents are the lasl minority states.
market phenomena has been achieved by the study of the The paper is organized as follows: In Sec. Il, a multilayer
minority game. This prototypical model describes a systenfieural network and the dynamic evolution of its weights are
of agents interacting through a market mechan[dm6]. introduced. For the clarity of the rest of the paper, which is
The game is based on the idea that the behavior of the ageri@mewhat technical, we briefly discuss the main findings and
is determined by the economic rule of supply and demandesults. In Sec. llI, the reference case of players with random
According to this rule, given the available optiofsmich as ~ strategies is solved analytically. In Sec. 1V, the global profit
buy or sel), an agent wins if he chooses the minority action.of the players for the network with optimal strategies
The research of this game has focused on cases in whidieights is solved analytically in the thermodynamic limit,
each agent can choose between two options, using its mogtid is shown to be superior to a random decision. The ana-
efficient strategy, where the strategies remain unchangéitical results are compared with simulations on finite sys-
throughout the gamé1—6]. However, in the real world, tems.In Sec. V, the suggested updating rules for the weights
many situations of interest involve more than two decisionare examined analytically, and are found to saturate the op-
options, as well as agents with dynamic strategies. Makindgimal global profit asymptotically. Finally, Sec. VI is devoted
decisions such as where to spend the summer vacation & @ short summary and an outlook.
which server to choose while surfing the w@b, more gen-
erally, how to distribute data traffic in computer networks Il. MODEL
[10]) are only two among many common problems with
more than two options. Therefore, it is tempting to investi- While many strategies for the multichoice minority game
gate cases with more than two possible choices provided tare conceivable, we study the following model which uses
agents with dynamic strategies. In a recent study of an exaeural networks: each one of theplayers is represented by
tension in which each agent is equipped with a neural neta perceptron of a siz®l. The weights belonging to thith
work for making his decisiof7], it was shown that a certain player are{w;;}, wherej=1, ... M. All N perceptrons have
updating rule of the strategies of the agents improves tha common input which consists oM components
efficiency of the market, which is measured by the globalx;, ... Xy, where each of the components can take one of
profit of the agents. In this paper we generalize the aforethe K integers, 1,2. .. K, with equal probability.
mentioned work to a multichoice minority game, namely, a The dynamics are defined by the following steps. In the
game with generaK decision states. first step, each of the perceptrons calculateskh@duced
The multichoice minority game consists &f players local fields. For instance, the fielt,,, induced by themth
(agent$ andK possible decisions. In each step, each one oftate on player, is defined as the summation over all
the players chooses one of thestates, aiming to choose the weights belonging to théth perceptron with input equal to
state with the smallest number of agents. For example, ax
situation may arise in which there are several possible roads
which lead from placeA to placeB, and each driver who M
wants to get fromA to B chooses one of the available roads. him= > Wij 8y m- 1)
Because drivers want to avoid traffic jams, they try to choose =1 :
the least traveled roads, assuming that all the roads are of the
same length. Similarly, one usually prefers to go to the bain the second step, each player chooses its §tg}e follow-
with the smallest number of people in it. Occurring over anding the maximal induced field
over again, the minority decisions in these and other similar
situations generate time series whose term at time, has oi={ki max hp=hy}. 2
an integer value between 1 aKdaccording to the minority m=1,...K !
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whereg; is an outputchosen stadeof ith perceptron. In the rates.(c) Regarding the optimal case, the deviation of the
third step, the occupancy of each state is calculated, minority group size fromN/K is found to be nhonmonotonic
N with K. (d) The total score is independent of the size of the
N = 2 s 3 history (M, the size of the inputavailable for the agentse)
=T All agents use the same type of dynamic strategy and gain,
on averagdover time, the same profit. Our system does not
where it is clear thak ,N,=N. The output min of the net- undergo a phase transition to a state where the symmetry

work is the minority decision among the agents is broken into losers and winhérs].
Throughout the investigation of the game we assume that the

min={p| min  Nu=N,}. (4 memory sizeM is larger than the number of playeXs(oth-
m=1...K erwise the completely symmetric Potts configuration is geo-

The game can also be represented by a feedforward nerr]etrically impossiblg However, simulations of the same
e . . ) ) ynamic for systems witM <N show even better results for

work M:N:1 (M input units,N hidden units, and one out- the global profit

put). All units (input, hidden, and outpuare represented by '

K-state Potts spins. The weightsy;} are from the input

units to the hidden units, and the weights from the hidden Ill. RANDOM CASE

units to the output are all equal te 1. The dynamics of In the case where the maximization of the global profit
hidden and output units are similar to the zero temperaturg jgentical to the maximization oN..... the quantity of
dynamics of Potts-spin systerf9], following the maximal  interest is mn

induced field. The free parameters in our game areMine
weights{w;; } from the input to the hidden units. Their values 1
will be determined by the strategy adopted by each of the (€2,)= N((Nmm—N/K)2>, (7)
players. Our local dynamic rules are based on the generali-

zation of the on-line Hebbian learning rule fide=2 [7] to a

. : where th m indi n aver ver in -
generalK-state Potts model with the updating rule ere the symbol ) indicates an average over input pat

terns, andN/K is the average number of players in each
state. Note that in our calculations the input vector presented
K&y min—1), (5) to the players at each step of the game consists of random
. componentg4,7], instead of the true history. Nevertheless,
simulations indicate that the system behavior is only slightly
o?,ffected by the randomness of the inputs, and the game prop-

n

ij
where 7 is the learning rate, and the sigh indicates the

next time step. Note that all agents use the same rule f

. . erties remain similar.
updating their strategy. . .
The score of the game is determined similarly to the Ising For random players, each weiglimong theMN weights

. L . iwi;}) is chosen from a given unbiased distribution and a
gase.wilizl;l g ?Lse %?Loen”%IEgth tgfa;né?; g‘g% plaxﬁ(rasreggm variance 1. Hence the distribution of the overldp be-
+ min - +

>Q_ . Note that in most previous work3, was chosen to tween weights belonging to any two playgrsand 4,

be 1 andQ_ was chosen to be either 0 erl. The global M
fit i h i _
profit in such cases is R"¢_121 W, W, ®)
U=Q_N+(Q;—Q-)Npin- (6)

is a Gaussian with zero mean and variandd .1l the ther-
val h imization o hich is bounded modynamic limit and foM >N, one can show that in lead-
fequwabent tobt (/e maX|m|zst|o_n hmi”'_W Ich 1S om;n Ie ing order the distribution of the overlap between each pair is
brolm a ov_eh W KH Not_e thatin t ehlsmg case earzz_l pa);]eran independent random variable. For random playerskand
elongs either to the minority or to the majority, while in the _, - finds(ez)z(Ep(Np— N/K)2/(NK))= 1/4; however,

(F;otts gase ;]he S|tuat|0|n IS g:orehcomplexa The score _rﬁ%r generalK even the derivation of a similar quantity is
epen do?]t € eXﬁCt va ?es{mi}_(t € score ecrek;clses WItN 1 ontrivial. The two cornerstones of the calculations below
N,). and hence the total profd=U(iN;}). In such a case are the probability of a microscopic configurati®{{o;}),

the maximization of the total profit may differ from the and the deaenera N 1) of a macroscobic confiauration
maximization ofN,;,, and will be discussed briefly at the N} whicr? is givg(éy%)e multinomial ch))efficien?
end of this paper. P

Before we turn to a discussion of the guidelines of the I

It is clear that the maximization of the global profit is

derivation of the results, which are more involved than for DN} = (9)
the Ising case, let us present the main ressThe score H N I
and the dynamics are formulated analytically for gen&ral o

the number of possible decisions. Exact results are obtained

for K<6 and asymptotically foK —o. Results for interme- In the largeN limit, the typical deviation of the size of each
diate values oK are obtained from simulationgo) A relax-  group fromN/K is expected to scale witi/N. Hence we
ation to the optimal score is achieved for small learningdefine
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FIG. 1. Simulations fo€2,,) as a function oK for both the
optimal caseR=—1/(N—1) (solid curve and the random case
=0 (long dashed curye Analytical results up t&K =6 and for the
large K regime are confirmed by simulations for bd&= —1/(N

150

—1) (filed circles and R=0 (triangles. Inset: Iy
=(€minr=0/(€minr=—1(n-1) as a function oK.
N,=N/K+ e, N, (10)

where it is clear thaEpep

we assumeN,in=N;<N, Vp>1. Applying the Stirling

approximation to Eq(9) yields the degeneracy as a function

of {€,}:
K

K K
DK({ep})~KN ex;{ ~5 Z ei) 5( pzl ep). (11

p=1

If the average oveR,,, which we denote byR, is O, the

agents make their choice independently and randomly, s
each microscopic configuration has the same probabilit);

Px=(1/K)N. Now the average oveerfnin can be evaluated:

O o0
f Ede, T j de,Dy({e,})P({e,})
o) p>l €1

<Eﬁ1in>R: 0 - .
fﬁxdfl ,;1;[1 L dEpDK({fp})PK({Ep})
1 (12

The quantity(eZ,)r—o Was calculated numerically foK

=3, 4, 5, and 6, and found to be equal+®.313, 0.322,
0.320, and 0.309, respectivelyee Fig. 1L Results obtained
from simulations witiN=5000 andK <6 are in an excellent

=0, and without loss of generality
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IV. OPTIMAL CASE

So far we have comparegk?,.) and (€2) for random
players, where the average overlap is zero. Without breaking
the symmetry among the players, the weights can be repre-
sented byN weight vectors which are symmetrically spread
around their center of mass. More precisely, we denote the
weight vector of theéth perceptron as/;, and assume that it
can be expressed as

W|:C+ gi y (14)

where the center of ma&s=(1/N)=;w;, and{g;} areN unit
vectors of rankVl obeying the symmetry

1
S

Ij+m' (15)

1+ !
N—1

g-9i=

Hence the total profit andl,,;, are functions of only one
parameterC. It is clear that the maximization of the total
profit or N.,,i, (as for the cas&=2) is obtained wherC
=0, which is the maximal achievable homogeneous repul-
sion amongN vectors of rankM >N. The repulsion is the
natural tendency of each player in the minority game, since
the goal is to act differently from other players. Without a
cooperation which breaks the players into subgroups, the
maximal homogeneous repulsionRs= —1/(N—1).

The two questions of interest are the following) What
are (€?) and (€2, as functions oK for the optimal solu-
tions,C=0 andR=—1/(N—-1)?(b) Is the optimal solution
achievable by local dynamic rules for each of the players?
We first examine the former question regarding the optimal
olution, and then we turn to study the dynamic behavior of

e players.

The average deviation of the number of players in each
state fromN/K at C=0 and forR=0(1/N) can be calcu-
lated analytically. The main idea is that this quantity can be
calculated similarly to Egq. (12, or via (e’)=1/
(NK)((Z)-12L18,. ,—N/K)?). The simplification of the
latter expression is such that an average over only a pair of
players has to be done. The result as a functioK gives

(16)

() L RINS1) (K- 1)K
R K2 M,

where u=[[*. (e "/2m)(1—H(h))*"2dh]?, and H(x)

agreement with Eq(12). For K>6 the reported results in =0.5 erfcf/+/2).

Fig. 1 were derived only from simulations, and are in excel-

lent agreement with the asymptotic behavior of E#j2),

Regarding the optimal score, the quantity of a particular
interest is( €2, )r—_1n—1. This quantity has to be compared

2 . . .
(€min)r=0~2 log(K)/K. Another quantity of interest is the \yith (¢2 ). 'in order to estimate the improvement in the
average deviation of the average number of players in each\erage global gain relative to the random case. Note that the

state fromN/K, (€2)=((1/K)= €2). Similarly to Eq.(12),
this quantity can be derived analytically, and gives

K-1

<62>R:O:v- (13

calculation of Eq(12) for R#0 is nontrivial sinceP({¢,})

is no longer independent of the configuratian}. However,
we can overcome this difficulty in the following way. For
R=0(1/N) one can show that in the leading ord®¢({¢,})
has the same form d3y({¢,}),
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K 0.6
PK({ep})~(1/K)Nexp( ~AR) Y, ei) 5( > ep),
p=1 p=1
(17) 2
<smin>
where the exact value &(R) is unknown. The observation 04
that bothPy ({€,}) andD({¢,}) have the same dependence =3

on {e,} [Egs. (11) and (17)] indicates that the rato ©
(€2:)1{€?) is independent oR if R=0(1/N), and, in par-

ticular, 02t
<€2>R=o <62>R=71/(N71)
2 =72 =Bk - (18) -
(€min’R=0 <fmin>R:—1/(N—1) /‘,;,——‘
This_property can be easily derived by rescalirg 0'%.00 0.25 0.50
—VA(R)€, in the integral representatidiEq. (12)] of each n

of the four terms in Eq(18). The same prefactor appearing . B . .

both in the denominator and the numerator, and the depen- ' 'C: 2: C as a function ofy for K=3. Analytical resultdsolid

d . . - line) and simulations foN=103, M =200 (long-dashed lineand
ence of8y on Rvia A(R) is canceled out. Using Eq18), N=400, M =403 (dashed ling Inset:(e2,,,) as a function ofC for
2. be obtained indirectly from a knowl-  _ ., a1 L Emin, :

(€min)R=-1/(N-1) CaN _ _ K=3. Analytical results(solid line) and simulations folN=103

edge of the other three terms, which are given by 8., ;n4m =200 (filled circles.

(13), and(16). Results for<eﬁ1m>R:,1,(N,1) are presented in

Fig. 1. In order to confirm our analytical results, we per-,aro mean and varianceC2/M [<2}V'=/TC1>:O and
fo.rmed_S|muIat|orlws for t.he optimal caBEqs.(lG) and(18)], <(E]!\/I=/§Cj)2>zc2/|(]_ One can find tha{X;C;y min) iS
with C=0. The simulations were done in two stages. In the J

first stageN normalized vectors of rankl, obeying the con- equal to

straints that the overlap among each pair is equat fid(N c K —y2p2 K_2
—1), are generated using a recursive process. The details of ~(K-1) \/:J'ﬂ e ’ i dy 20
the algorithm will be given elsewhefd 1]. In the second 2 ) on \/5 '

stage,(e2,,,) and (e?) were averaged over about *1€an-
domly chosen inputs for a system witi=400 and M Hence, for a giverK, Egs.(19) and (20) indicate a linear
=5000. An excellent agreement between simulations angelation between the fixed point value Gfand the learning
analytical results was obtaingdee Fig. 1 The improve- rate 5 with corrections ofO(1/y/N). As »—0, C—0, and
ment in the global gain can be measured by the rhiio the system approaches the optimal configuration. The inter-
= (€2 r=0/{€ninr=—1(N-1)- This ratio decreases mono- play betweerC and 5 was confirmed by simulations, where
tonically with K, such that its maximal valué,=2.7548 and finite size effects decay as the size of the system becomes

for K—o I'r—1 (inset of Fig. ). larger. This effect is depicted in Fig. 2 f&r=3. The explicit
dependence of(e2./N)s on C can be found forR
V. DYNAMICS WHICH LEAD TO THE OPTIMAL ~O(1/N) via the relation
SOLUTION

C2—[1/AN-1)]

So far we derived the properties of the optimal solution =Tz (21)
for different values oK. Now we turn to the second ques-
tion: is the optimal solution achievable by local dynamic
rules[Eq. (5)]? After averaging Eq(5) overj, and in the
limit where the number of examplesM scales with the
number of input unitd, one can find the following equation
of motion for the center of mass:

Results of simulations fo¢e?,,)r as a function ofC for N
=103 andM =200 are presented in the inset of Fig. 2. An
excellent agreement between the analytical prediction and
simulations was obtained in the regime 6f~O(1/\/N)
[corresponding te~-O(1/N)].

dc? Note that although the global gals which corresponds
da = 277K< E C;éx. ,min> +73(K—1), (199  to the Boolean case is monotonic wikh the nonmonotonic
@ ] : behavior ofe,,;, implies that for non-Boolean cases a non-

monotonic behavior o) may be obtained.
where( ) denotes an average over the random examples. For

large M, in the leading order each input vector divides each

weight vector intdK equal groups of siz®/K. The minority VI. SUMMARY AND OUTLOOK

state is the one whose group of weights gives the minimal |n this paper we introduced a generalization of the minor-
sum. Using Eq(19) andM,N—, (£;C;dy, min) is the av- ity game to the case of multichoice. The problem was ap-
erage minimal sum of a set ™/K center of mass compo- plied to a multilayer network with updating rules for the
nents{C;}. TheseM/K quantities are random variables with weights (strategies Static and dynamic properties of the
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strategies were solved analytically for varids, and were  equal probability. In the strategy of Reemtsal. [15], play-
found to be in a good agreement with simulations on finiteers who were not in the minority could switch to some other
systems. This modification of the minority game to the caseiction with a small probability in the next time step. Simi-
of multichoice opens a manifold of new questions, whichlarly, other conceivable strategies can also be generalized.
certainly deserve future research. We have chosen three Breliminary checks imply that all these modified strategies
these questions to briefly discuss here. First, as we pointegoW similar behavior compared to that of the binary-choice
out before, the function according to which the profit is 9ame, even though their theoretical treatment probably be-
awarded is not necessarily Boolean as in @), In fact, the ~ 0Mes more involved. While outcomes of these games cer-
model is more realistic when the profit of a player is relatedt@/Nly have to be measured against the reference values given

to the size of his group, as well as to the size of the othef" EQS: (12|) qnd (%i)' E iisn%t chlefar unhder what c':ircuE)-
groups[12]. Our analysis can be applied to these cases if théta}lnces rglatlon_s : ﬁ. hq ) ho | or other strategleii -
maximization of the global gain is equivalent to the maximi- nafly, problems in which SOme players have more infiluence

zation of the minority group. However, other scores may nof" ﬂ:je s_tyhstem (;h_en ot_hesrf]x)rtexf?mple,blt)us dﬂ\_/ehrs CO”&'
fulfill this required condition. In these cases, it has to bePa'€d With car drivers in the traflic problem which was de-

determined whether the optimal symmetric configuration re-S(?”bed n $ec.)|can be modeled as a three—layer network
ith nonuniform weights between the hidden units to the

mains the maximal repulsion. Second, the other strategies fof ) :

the minority game that have been studied can be generalizé?}'tpm' Further re_sea_rch Is necessary to find out how the
to multichoice situations in a straightforward manner: in the_OIOtImaI configuration is affected by such symmetry break-
original game1,2,5,6, where each player has several deci-'"9-

sion tables, each table entry is now a value between IKand

In Johnson and co-workers stochastic stratel;14], each ACKNOWLEDGMENTS

player has a probability of choosing the outcome that was I.K., W.K., and R.M. acknowledge partial support by

successful the last time, or of picking one of the others withGIF.
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