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Multiscale analysis of complex systems
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We calculate block information versus size profiles for two-symbol strings generated by several dynamical
processes: random, periodic, regular language, and substitutive. The profiles provide a good diagnostic of the
complexity of the strings.
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Despite considerable effort, there is no consensus on aand calculate the probabilitg, of each of the possible"2
ideal measure of complexity, or even on what exactly a comblocks. With these, we compute the quantityn)=
plex system ifsee[1,2] for extensive recent reviewsCan-  —2py, logp,, Where log is understood to be basd ¢) is
didate complex systems include neural networks, finitealso known in the literature ds,, the block entropy. Itis a
alphabet strings generated by diverse computationaheasure of the available information we obtain about the
processes, cellular automata, genetic algorithms and othstructure of the string by looking at it at scaie For small
adaptive systems, living organisms, evolutive systems, aneénoughn, it increases monotonically witm, since wider
social organizationg3]. The approaches to quantifying com- windows must give at least as much information as narrower
plexity include symbolic dynamics, information and ergodic ones.
theory, thermodynamics, generalized dimensions and entro- Next, we describe the processes by which we have gen-
pies, theory of computation, logical depth and sophisticationgrated strings. We show the first 40 symbols of a typical
forecasting measures, topological exponents, and hierarchitring within each classia) Random. These are uniformly
cal scaling[2,4—6,18. All the above help us to understand a random sequences of zeros and ones, denotefd, lmener-
rich, important, and yet elusive concept. ated with a recently proposed yet well-tested random number

In this Rapid Communication we apply a multiscaling ap-generator{10]. Having good generators is of great impor-
proach to several sequences of zeros and ones generated bigace in physics simulatiorfd 1]:
variety of processes: periodic, random, deterministic finite
automata, and substitutive languages, all of interest as dyR=000110110110001010001100110100000100001 .
namical systems. By plotting Shannon information obtained (1)
with different block sizes, we obtain information-scale pro-
files that allow us to distinguish between all the above(b) Periodic. These are sequences with lowest pefibd
classes of strings. We observe a variety of functional forms=4,8,16 .. ., denoted byP4,P8, ... respectively. These
that help us integrate several of the previous approaches, inere generated by repeating subsequencebl-eflL zeros
particular topological exponents, effective measure and staand one 1. For example,
tistical complexities[5,6], and the von Mises definition of
randomnes$§7]. P4=000100010001000100010001000100010001000 .

One among the early candidate measures of complexity, (2
Shannon entropy was soon rejected because it is more a mea-
sure of randomness than of the structure inherent in comi) Regular languages. These can also be described by regu-
plexity (see Ref[8]). Simple functions of entropy have also lar expressiong§2]. They can be generated by finite-state
been proposed, and have drawn criticig®h Our contribu-  directed graphs, or deterministic finite automata. New words
tion is to measure Shannon entropy as a functioflesfgth  are generated by adding symbols at the end of allowed

or time) scales, as will be explained below. shorter words. Regular languages in many cases represent
Our approach has similarities to and differences from thechaotic processg$,12,13.
complexity profiles of Ref[1]. In that work, Bar-Yam con- We use the following three exampld31 is an eight-state

siders the entrop$(L) =log Q(L), whereQ(L) is the num- automaton that describes the symbolic dynamics of the logis-
ber of microstates of a physical system discernible at a givetic equation(with r=3.7), known to be in the same univer-
level of resolutionL, which can be space or time. In this sality class as several systems of physical inteeesgt, lasers
view, it is possible to discermore microstates in a system and fluidg. The automaton appears [ii]:
observed at small, so thatSis adecreasingunction of L.
Instead, we considesingle two-symbol experimental time D1=111110101110101111101101010111110101110 .
sequences to which one has access. We look at these se- 3
guences in increasingly wide windows of sizes 1,2, . . .,

D2 appears in Fig. 2 of Ref12] and has four states:
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FIG. 2. I(n) profile for periodic sequenceR®4 (triangles, P8

FIG. 1. I(n)/n profiles for random sequendé® (squares andP16 (open circles

D3=(101)(00+1)*(101), where+ denotes or, and can

also be produced by the ten-state automaton shown in Fig%. It is expected thaC*"Y<C{), and that eventually the
9.2 of Ref.[2]: opological exponents for a language become zero starting

with some given integek. This procedure yield€)=0 for
D3=11011011110101010111101011101011011@111 .  all periodic sequences, an@®=0 for all random se-
(5) quences. Generally, regular languages and expressions have

nonzeroC™) but zeroC?, although exceptions are known
Finally, (d) substitutions §). These are string-generation such as théd3 language introduced above. The reasons for
processes in which a substring is replaced by a longer sulthe exceptions are usually well understd@: in this par-
string, following an allowed set of rules. Unlike the previousticular case, the initial and terminal sequen¢&8l) do not
cases, the string can grow at any place, not just the end. lallow for total compression of irreducible forbidden words.
particular, we will consider Morse-Thue sequenf®4], as-  Higher-level languages such as substitutions often have
sociated with the period-doubling transition from order toC(®+0.

chaos in certain dissipative systems: Now we present results of information-size profiles ob-
tained for the processes described above. Several strings of
S$=101011110010111010111101011110101010001 . length 2° were studied for each process. Error bars are about

(6)  the size of the symbols. Depending on the case, we plot

. . _ eitherl(n) or I1(n)/n versusn.
The above processes are typical of a wide variety of be- Figure 1 showsl (n)/n profiles for theR sequence. A

haviors of dynamical systems. Random sequences help Simy, to o1y random series, according to the von Mises defini-
late noise(for example, thermal periodic sequences repre- 4, 171" would have perfectly equidistributed blocks of all
sent oscillating systems, regular sequences describe SO es and henck(n)/n=1. In this figure we observe that
chaotic processes, and substitutions provide the simplest dﬂiis is’ almost the case for<10, with subtle yet statistically
scription of the order-chaos transition in the period-doublindg;q ificant deviations for largar. Hence, multiscale analysis

route. Moreover, a paralle! W.'th computational Iar?gL.’agesprovides a useful, first-principles random number generator
classe$15] exists: the substitutive process we study is in theact

context-free class, while the others are regular languages.
Before presenting our information-block size profiles, we
discuss briefly the hierarchical definition of complexity in-
troduced by Badii and Politji2,16]. Their characterization
relies on topological entropy, defined for the setNfm)
allowed strings of lengtim, as lim,,_,..(1/m)log N(m). The 1 AAAAAAAAAAAAAAD
first exponenC™®) is the topological entropy of the set of of
allowed words. Hence, it is a measure of the cardinality of il .
the language. For higher exponents, one must find the set of - (n] o "Sapn, Emmnmm
irreducible forbidden words of the language, and the topo- - o
logical entropy of this set yield§®). An irreducible word is o
one that cannot be decomposed into subwords strictly shorter
than itself.C?) is a measure of the difficulty of approximat-
ing the original language through subshifts of finite type with
increasing memorysee[2], pp. 255-260. Next, one finds
the topological entropy of the irreducible forbidden words in
the set of irreducible forbidden words, which yields”, and FIG. 3. 1(n)/n profiles for regular expressiofsl (squaresand
so on. Each additional exponent gives a measure of the diB2 (open circles Sequencer (triangle$ is also shown for com-
ficulty of further compressing the rules in the language.  parison.

Figure 2 showd (n) profiles for threeP sequences, of
periods N=4,8,16, respectively. We see that information
saturates near=N. This is because onl) block types are
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FIG. 4. 1(n) profile for regular expressiob 3. FIG. 5. I(n)/n profile for Morse-Thue sequen&
sampled for all sizes larger thaw Clearly, | (n)/n—0 for
largen, consistent with the low cardinality of blocks, which
impliesC)=0.

Figure 3 shows$(n)/n profiles for sequencd31 andD?2,
along with R for comparison. We recall that for the€¥®)
#0 (the allowed words tend to a constant fracjioas dis-
cussed by Badii and Polifi2,16]. This is reflected in the
profiles, in whichl(n)/n tends to a constant value. As dis-
cussed by Grassbergis], and also if2], pp. 112 and 254,
this saturation indicates a finite effective complexity, which
is the average information needed to specify the-{)th
symbol, given the previous symbols. This convergence is
typical of regular languages. Note, however, that languag
D2 has a transition from the starting state to it$gtinsient,
which causes a slow convergence to the final value o

I(n)_/n. i the system across scales. Our choice of informaiborlock

Figure 4 shows thel(n_) profile for_ proc_essD3._ One entropy is one of the simplest ones possible, and is particu-
should observe asymptotically a straight line, which up 5y anpropriate for finite-alphabet strings generated by spe-
n=15(2h)as not appeared. This is consistent with the findingiic processes and obtainable through a single time series
thatC*'+0, as discussed above. measurement, as entrofilj] was found to be appropriate for

Last, Fig. 5 shows an(n)/n profile for the Morse-Thue  hysical objects. We have chosen processes in several well-
subst!tutlve .Ianguage E.iSSOCIateleIth period-doubling acclznown classes of dynamical systems, and shown that the
mulation points. For this syste@")~10/3 (see[2], p. 83, power of our profiles to distinguish processes is quite high.
and C(2)=Q. In a consistent fashion, the complexity proﬂle We conclude with three remark®) In this paper we have
shows a higher degree of structure for the valuesstidied ;e complexity profiles to characterize temporal sequences
than the other sequences, while it decays for langnsis-  generated by dynamical systems. An obvious extension
tently with _the zero val_ue for the second topological expo-yould be to consider spatio-temporal sequences from sys-
nent. The inflection point near=8 appears to be new. A tems out of equilibriun{17]. (2) Another obvious direction
second example, the Fibonacci system studief2in also  \youid be to extend the analysis from finite-alphabet strings
shows nonmonotonic behavior bfn)/n. _ ~ to time series of real-valued measuremeli.So far our

In summary, we find that information-block size profiles gpnroach is phenomenological, and similar in spirit, for ex-
capture the properties of strings generated by dynamical Prmple, to thef () description of a multifractdl18]. Ideally,
cesses of widely different degrees of complexity. While ourgne should use the results as a stepping stone to understand
profiles do not take explicitly into account computer theoret-ipe underlying dynamical mechanisms that generate the se-

ical quantities such as irreducible forbidden words, theyg,ence. In this respect, Kullback-Leibler entropy or Fisher
seem to accurately reflect the properties of at least the firghformation[19] may be appropriate tools.

two topological exponents in the hierarchy proposed by Ba-

dii and Politi[16]. The profiles also seem to adequately rec- The authors thank R. Badii, Y. Bar-Yam, and P. L'Ecuyer
ognize the existence of typical regular languages, in particufor useful discussions and Colciencias for for financial sup-
lar the convergence of the slope I§h) versusn, related to  port (Contract No. RC-45-2000

the effective measure complexity of these languages. Excep-
tional regular languages such@8 can also be discerned, as
can strings in higher language classes sucl, d®th char-
acterized by profile functions with a higher degree of struc-
ture. Finally, the profiles serve as a random number genera-
tor test, which coincides with an eighty-year-old
foundational definition of randomness, and which has iden-
tified subtle deviations from ideality in a top-quality random
number generator. Figure 1 shows that from blocks of length
n>10 then+ 1th bit starts to become slightly predictable.

In our profiles we follow the ideas of Bar-Yapi] of an
alternative to a definition of complexity, which consists not
Bf one(as in effective measure complexity or statistical com-

lexity, [5,13]), or a set of two or three numbefas in the
opological exponenjsbut rather a complete description of
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