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Multiscale analysis of complex systems
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We calculate block information versus size profiles for two-symbol strings generated by several dynamical
processes: random, periodic, regular language, and substitutive. The profiles provide a good diagnostic of the
complexity of the strings.

DOI: 10.1103/PhysRevE.63.065203 PACS number~s!: 05.45.2a, 05.10.2a, 89.75.2k, 89.70.1c
m

ite
n
th
an
-
ic
tr
on
rc
a

p
d
it
d
e
o
ve
m
s,
st
f

xit
m
om
o

th

ve
is

e

the

wer

en-
cal
y

ber
r-

egu-
te
rds
ed
sent

gis-
r-

on
Despite considerable effort, there is no consensus on
ideal measure of complexity, or even on what exactly a co
plex system is~see@1,2# for extensive recent reviews!. Can-
didate complex systems include neural networks, fin
alphabet strings generated by diverse computatio
processes, cellular automata, genetic algorithms and o
adaptive systems, living organisms, evolutive systems,
social organizations@3#. The approaches to quantifying com
plexity include symbolic dynamics, information and ergod
theory, thermodynamics, generalized dimensions and en
pies, theory of computation, logical depth and sophisticati
forecasting measures, topological exponents, and hiera
cal scaling@2,4–6,16#. All the above help us to understand
rich, important, and yet elusive concept.

In this Rapid Communication we apply a multiscaling a
proach to several sequences of zeros and ones generate
variety of processes: periodic, random, deterministic fin
automata, and substitutive languages, all of interest as
namical systems. By plotting Shannon information obtain
with different block sizes, we obtain information-scale pr
files that allow us to distinguish between all the abo
classes of strings. We observe a variety of functional for
that help us integrate several of the previous approache
particular topological exponents, effective measure and
tistical complexities@5,6#, and the von Mises definition o
randomness@7#.

One among the early candidate measures of comple
Shannon entropy was soon rejected because it is more a
sure of randomness than of the structure inherent in c
plexity ~see Ref.@8#!. Simple functions of entropy have als
been proposed, and have drawn criticism@9#. Our contribu-
tion is to measure Shannon entropy as a function of~length
or time! scales, as will be explained below.

Our approach has similarities to and differences from
complexity profiles of Ref.@1#. In that work, Bar-Yam con-
siders the entropyS(L)5 logV(L), whereV(L) is the num-
ber of microstates of a physical system discernible at a gi
level of resolutionL, which can be space or time. In th
view, it is possible to discernmore microstates in a system
observed at smallL, so thatS is a decreasingfunction of L.
Instead, we considersingle two-symbol experimental time
sequences to which one has access. We look at thes
quences in increasingly wide windows of sizesn51,2, . . . ,
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and calculate the probabilitypb of each of the possible 2n

blocks. With these, we compute the quantityI (n)5
2(pb log pb , where log is understood to be base 2.I (n) is
also known in the literature asHn , the block entropy. It is a
measure of the available information we obtain about
structure of the string by looking at it at scalen. For small
enoughn, it increases monotonically withn, since wider
windows must give at least as much information as narro
ones.

Next, we describe the processes by which we have g
erated strings. We show the first 40 symbols of a typi
string within each class.~a! Random. These are uniforml
random sequences of zeros and ones, denoted byR, gener-
ated with a recently proposed yet well-tested random num
generator@10#. Having good generators is of great impo
tance in physics simulations@11#:

R50001101101100010100011001101000001000010 . . . .
~1!

~b! Periodic. These are sequences with lowest periodN
54,8,16, . . . , denoted byP4,P8, . . . respectively. These
were generated by repeating subsequences ofN21 zeros
and one 1. For example,

P450001000100010001000100010001000100010001 . . . .
~2!

~c! Regular languages. These can also be described by r
lar expressions@2#. They can be generated by finite-sta
directed graphs, or deterministic finite automata. New wo
are generated by adding symbols at the end of allow
shorter words. Regular languages in many cases repre
chaotic processes@6,12,13#.

We use the following three examples.D1 is an eight-state
automaton that describes the symbolic dynamics of the lo
tic equation~with r 53.7), known to be in the same unive
sality class as several systems of physical interest~e.g., lasers
and fluids!. The automaton appears in@6#:

D151111101011101011111011010101111101011101 . . . .
~3!

D2 appears in Fig. 2 of Ref.@12# and has four states:

D25111110111111011110101011110111101010111 . . . .
~4!
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D35(101)(0011)* (101), where1 denotes or, and can
also be produced by the ten-state automaton shown in
9.2 of Ref.@2#:

D351101101111010101011110101110101101101111 . . . .
~5!

Finally, ~d! substitutions (S). These are string-generatio
processes in which a substring is replaced by a longer
string, following an allowed set of rules. Unlike the previo
cases, the string can grow at any place, not just the end
particular, we will consider Morse-Thue sequences@14#, as-
sociated with the period-doubling transition from order
chaos in certain dissipative systems:

S51010111100101110101111010111101010110010 . . . .
~6!

The above processes are typical of a wide variety of
haviors of dynamical systems. Random sequences help s
late noise~for example, thermal!, periodic sequences repre
sent oscillating systems, regular sequences describe s
chaotic processes, and substitutions provide the simples
scription of the order-chaos transition in the period-doubl
route. Moreover, a parallel with computational languag
classes@15# exists: the substitutive process we study is in
context-free class, while the others are regular language

Before presenting our information-block size profiles, w
discuss briefly the hierarchical definition of complexity i
troduced by Badii and Politi@2,16#. Their characterization
relies on topological entropy, defined for the set ofN(m)
allowed strings of lengthm, as limm→`(1/m)logN(m). The
first exponentC(1) is the topological entropy of the set of o
allowed words. Hence, it is a measure of the cardinality
the language. For higher exponents, one must find the s
irreducible forbidden words of the language, and the to
logical entropy of this set yieldsC(2). An irreducible word is
one that cannot be decomposed into subwords strictly sho
than itself.C(2) is a measure of the difficulty of approxima
ing the original language through subshifts of finite type w
increasing memory~see@2#, pp. 255-260!. Next, one finds
the topological entropy of the irreducible forbidden words
the set of irreducible forbidden words, which yieldsC(3), and
so on. Each additional exponent gives a measure of the
ficulty of further compressing the rules in the language.

FIG. 1. I (n)/n profiles for random sequenceR.
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It is expected thatC(k11)<C(k), and that eventually the
topological exponents for a language become zero star
with some given integerk. This procedure yieldsC(1)50 for
all periodic sequences, andC(2)50 for all random se-
quences. Generally, regular languages and expressions
nonzeroC(1) but zeroC(2), although exceptions are know
such as theD3 language introduced above. The reasons
the exceptions are usually well understood@2#: in this par-
ticular case, the initial and terminal sequences~101! do not
allow for total compression of irreducible forbidden word
Higher-level languages such as substitutions often h
C(2)Þ0.

Now we present results of information-size profiles o
tained for the processes described above. Several string
length 215 were studied for each process. Error bars are ab
the size of the symbols. Depending on the case, we
either I (n) or I (n)/n versusn.

Figure 1 showsI (n)/n profiles for theR sequence. A
perfectly random series, according to the von Mises defi
tion @7#, would have perfectly equidistributed blocks of a
sizes, and henceI (n)/n51. In this figure we observe tha
this is almost the case forn<10, with subtle yet statistically
significant deviations for largern. Hence, multiscale analysi
provides a useful, first-principles random number genera
test.

Figure 2 showsI (n) profiles for threeP sequences, of
periods N54,8,16, respectively. We see that informatio
saturates nearn5N. This is because onlyN block types are

FIG. 2. I (n) profile for periodic sequencesP4 ~triangles!, P8
~squares!, andP16 ~open circles!.

FIG. 3. I (n)/n profiles for regular expressionsD1 ~squares! and
D2 ~open circles!. SequenceR ~triangles! is also shown for com-
parison.
3-2
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sampled for all sizes larger thanN. Clearly, I (n)/n→0 for
largen, consistent with the low cardinality of blocks, whic
implies C(1)50.

Figure 3 showsI (n)/n profiles for sequencesD1 andD2,
along with R for comparison. We recall that for theseC(1)

Þ0 ~the allowed words tend to a constant fraction!, as dis-
cussed by Badii and Politi@2,16#. This is reflected in the
profiles, in whichI (n)/n tends to a constant value. As dis
cussed by Grassberger@5#, and also in@2#, pp. 112 and 254,
this saturation indicates a finite effective complexity, whi
is the average information needed to specify the (n11)th
symbol, given the previousn symbols. This convergence i
typical of regular languages. Note, however, that langu
D2 has a transition from the starting state to itself~transient!,
which causes a slow convergence to the final value
I (n)/n.

Figure 4 shows theI (n) profile for processD3. One
should observe asymptotically a straight line, which up
n515 has not appeared. This is consistent with the find
that C(2)Þ0, as discussed above.

Last, Fig. 5 shows anI (n)/n profile for the Morse-Thue
substitutive language associated with period-doubling ac
mulation points. For this systemC(1);10/3 ~see@2#, p. 83!,
andC(2)50. In a consistent fashion, the complexity profi
shows a higher degree of structure for the values ofn studied
than the other sequences, while it decays for longn consis-
tently with the zero value for the second topological exp
nent. The inflection point nearn58 appears to be new. A
second example, the Fibonacci system studied in@2#, also
shows nonmonotonic behavior ofI (n)/n.

In summary, we find that information-block size profile
capture the properties of strings generated by dynamical
cesses of widely different degrees of complexity. While o
profiles do not take explicitly into account computer theor
ical quantities such as irreducible forbidden words, th
seem to accurately reflect the properties of at least the
two topological exponents in the hierarchy proposed by B
dii and Politi @16#. The profiles also seem to adequately re
ognize the existence of typical regular languages, in part
lar the convergence of the slope ofI (n) versusn, related to

FIG. 4. I (n) profile for regular expressionD3.
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the effective measure complexity of these languages. Ex
tional regular languages such asD3 can also be discerned, a
can strings in higher language classes such asS, both char-
acterized by profile functions with a higher degree of stru
ture. Finally, the profiles serve as a random number gen
tor test, which coincides with an eighty-year-o
foundational definition of randomness, and which has id
tified subtle deviations from ideality in a top-quality rando
number generator. Figure 1 shows that from blocks of len
n.10 then11th bit starts to become slightly predictable

In our profiles we follow the ideas of Bar-Yam@1# of an
alternative to a definition of complexity, which consists n
of one~as in effective measure complexity or statistical co
plexity, @5,13#!, or a set of two or three numbers~as in the
topological exponents!, but rather a complete description o
the system across scales. Our choice of information~or block
entropy! is one of the simplest ones possible, and is parti
larly appropriate for finite-alphabet strings generated by s
cific processes and obtainable through a single time se
measurement, as entropy@1# was found to be appropriate fo
physical objects. We have chosen processes in several
known classes of dynamical systems, and shown that
power of our profiles to distinguish processes is quite hig

We conclude with three remarks~1! In this paper we have
used complexity profiles to characterize temporal sequen
generated by dynamical systems. An obvious extens
would be to consider spatio-temporal sequences from
tems out of equilibrium@17#. ~2! Another obvious direction
would be to extend the analysis from finite-alphabet strin
to time series of real-valued measurements.~3! So far our
approach is phenomenological, and similar in spirit, for e
ample, to thef (a) description of a multifractal@18#. Ideally,
one should use the results as a stepping stone to under
the underlying dynamical mechanisms that generate the
quence. In this respect, Kullback-Leibler entropy or Fish
information @19# may be appropriate tools.

The authors thank R. Badii, Y. Bar-Yam, and P. L’Ecuy
for useful discussions and Colciencias for for financial su
port ~Contract No. RC-45-2000!.

FIG. 5. I (n)/n profile for Morse-Thue sequenceS.
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