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Effect of the anisotropy of the cells on the topological properties
of two- and three-dimensional froths
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We study the effect of the anisotropy of the cells on the topological properties of monodisperse two- and
three-dimensional3D) froths. These froths are built by Vorontassellation of actual assemblies of monosize
disks (2D) and of many numerical packings of monosize di§kB) and sphere$3D). We show that some
topological properties of these froths can be simply related to the anisotropy of the cells.
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The physics of disordered froths is of great interest beis in a stable position, i.e., in contact with three particles
cause of their importance in metallurggrain aggregates  already placed. The second one is Powell’'s algorifii,
biology (cells), geology (fracture patterns etc. Such struc-  which is very similar to the previous one. It consists in add-
tures can be represented in a simplified way by convex polying spheres, at the lowest position, in contact with three ran-
hedra filling spacéthree-dimension&BD) froths] or by con-  domly chosen spheres already placed.
vex polygons covering the plar@D froths, and it is well (i) Cooperative algorithms. We use the Jullien algorithm
known that the statistical properties of the cells verify SOME 4], which is based on the Jodrey-Tory constructiad. It
“universal” empirical laws, namely Aboav’'s, Lewis's, or consists of slowly reducing overlaps of packing of growing
Lemaitre’s lawq1-3]. soft spheres.

More recently, it appeared that unconsolidated granular (iii) Dynamic algorithms. The last algorithm we use is a

media may be modeled in a first step by packings of equ ; ) . . . )
hard sphereft,5] or disks[3] and that the local environment aﬁlr?jesrl;:?llg]ard sphere molecular-dynamics algorifement

is well described with the help of their Voronoi tessellation. A ding to th lqorith build i f
It has been shown that these artificial froths behave, from a ceording lo these algorithms, we can bulld packings o
topological and a metric point of view, like natural froff. any _packmg fracﬂo_n(:, between 0 and O.7<lf_cc packing
These assemblies, therefore, may be used as investigatifi@ction- The packings are made of approximately 16 000
tools for more general purposes. In this paper, we preserPheres. _ . .
results on the correlation between the anisotropy of the cells For the packings of disks, we use 2D versions of the
and the topo|ogica| properties of monodisperse 2D and 3[§1lgor|thms mentioned above. The paCkIngS of disks can then
froths issued from monosize packings of disks and spheredlave any packing fraction between 0 and 0.9@iangular
Packings of spheres are built numerically using five algodattice). The numerical packings contain approximately
rithms that have already been described in previous paper$0 000 disks. We also use actual packings of disks built on
as mentioned later. Here we just recall briefly their principlesan air tableg[13]. Such packings are then studied by numeri-
in three dimensions. They can be divided into three classesal image analysis. The statistics are made on approximately
(i) Sequential algorithms. For these algorithms, the par3000 disks.
ticles are placed one at a time. The simplest algorithm of this Now, we build our froths and for that purpose we focus
class is the random sequential adsorptiRSA) [6,7]. on the Voronoitessellation of packings of monosize disks
Spheres are deposited at random positions; if the last depoand of packings of monosize spheres. We recall that a
ited particle overlaps any of those already present, it is reVoronoicell is defined as the ensemble of points closer to a
moved, otherwise it is permanently fixed. We also use thegiven spherdor disk than to any other and is characteristic
modified random sequential adsorption algorithf8]  of the local environment around this particle. We have rep-
(MRSA). This algorithm, based on the RSA, allows particlesresented in Fig. 1 an example of a Voronessellation of a
overlapping one or several particles already present to makgacking of disks.
small displacements to eliminate these overlaps. In 2D, the topological properties of a cell are linked to its
The next two sequential algorithms build packings undemumber of edges. Due to Euler’s relation, the mean value
the influence of a directional force such as the gravity. Theof edges per cell{n), is a constant equal to 6. Thus, the
first one, the Visscher and Bolsterli algorithi8i, consists in  topological energy of a 2D froth can be defined as the vari-
launching randomly particles at the top of the box that con-ance ofn: u,(n)={n?)—(n)2. Metric characteristics of such
tains the packing. A particle is definitively deposited when it2D froths are the mean ar€a), the mean perimeter of the
cells(l), and any higher moments of these quantities.
For 3D froths, things are a little more complicated. As the
*Electronic address: luc.oger@univ-rennesl.fr mean number of faced) is not a constanf5], we have to
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FIG. 1. Example of a 2D Voronaessellation. Each cell is a gl (&) @ Jullien
convex polygon. The set of cells fills the plane. % e;?v'v‘:l'ld"v‘*“
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consider both this mean number and the variancef, of = ®
wo(f)=(f2y—(f)2. As for 2D froths, we can compute the 4|
mean volumgV), area(A), and perimetefL) of the cells Py
and any higher moment of these quantities. 2t (b) &Aﬁ ]
We have plotted in Fig. 2 the evolution ¢f) versus the L IV'N
packing fraction for the different algorithms used. We ob- 0 : : .
0.55 0.60 0.65 0.70 0.75

serve that this quantity depends not only on the packing frac- > 3
tion but also on the algorithm used, i.e., on the history of the Ko = 36n<V>/<4'>
packing. So the packing fraction is clearly not a good quan-
1t‘lct))r/ :: tc))(;?tirr tg;gﬁg{gﬁ t\k;vees(t:ztr(]a toufrg ];:)mtu,earne?avt\;gnn(t))\(/avt\l/\?gé}iariance of the num_ber of facéls) versus the sphericity coefficient
. . “Kgpn for all the algorithms used.
(f) and the anisotropy of the cells. This can be done quali-
tatively by looking at Fig. 2. First, we can compare the dif- . ] o o
ferent algorithms for a given packing fraction. Second, for alfopic cells since the direction of the gravity is favored. The
given algorithm(for which we can modify the packing frac- last (_axample is the event-driven algonthm: for high packing
tion), we observe a decrease(d} when the packing fraction fractions (C>0.545), the system crystalliz¢s2]; the cells
increases; actually, it may be checked that cells become mo@f€ then more isotropic than those of disordered packings at
isotropic with this increase. the same packing fraction. We observe in Fig. 2 that the
For example, due to its principle of construction, the higher the anisotropy, the higher the valug bf. This result
MRSA algorithm provides very distorted cells. The is in agreement with a theory developed by Rivied], who
Visscher-Bolsterli and Powell algorithms also give aniso-

FIG. 3. Evolution of the mean number of fac&s and of the
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FIG. 4. Evolution of the variance of the number of edges of the

FIG. 2. Evolution of the mean number of faces versus the packeells versus the coefficiett,., for froths generated from 2D disk
ing fraction, C, for different algorithms. packings.
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has shown that fluctuations in the average curvature imparted/e have reported in Fig. 4 the evolution af(n) for all
by each vertex of a cell lead to an increase Df. packings of disks used versus the coefficigpj.. All the

In order to describe more quantitatively the anisotropy ofpoints seem to be in the same curve. As in 3D, the different
the cells, we have computed for each packing a sphericitjfoths give similar results for a given anisotropy. We can

coefficient of the cells, which we define by also notice that this curve is linear except on a very short
range of packing fraction, where the packings of disks are
K spri= 36m(V2)/(A3). (1)  crystallized €>0.89) andu,(n)~0.

In conclusion, in this Brief Report we have reported stud-
For a sphere, this coefficient is equal to 1. For a convejes on the effect of the anisotropy of cells of disordered 2D
polyhedron, the more anisotropic the polyhedron, the loweand 3D froths on their topological properties. In order to
is Kgon. We have reported in Fig.(8 the variation of(f) build our froths, we use the Vorontessellation of packings
versus this coefficient. In agreement with Rivier’'s theory andof monosize particles built by numerical simulation. For the
with our previous qualitative study, we find that the higher2D froths, we also use actual packings built on an air table.
the anisotropy, the higher {$). Furthermore, surprisingly, it For 3D froths, we have shown, in agreement with Rivier's
seems that all points are positioned on a unique curve. Wteory, that the mean number of fa¢é$ increases when the
have also represented, in Fighg the evolution of the vari- ~anisotropy of the cells increases. A more careful study shows
ance off, u,(f), with the sphericity coefficient, and we find that this quantity and the variance of the number of faces
once more a unique curve for all the algorithms used. Sow2(f) seem to depend universally on this anisotropy. A simi-
unlike the packing fractiorisee Fig. 2, the sphericity coef- ar result exists in 2D. _ -
ficient seems to be a good parameter in order to describe the It remains to check whether that universality is verified by

3D froths: all the algorithms used give similar results for anatural froths such as, for example, polycrystals. The answer
given anisotropy. is difficult because it is not easy to measure the mean quan-

Then, we checked whether a similar law can be found fotities in the expression d. The next step of this work is
2D froths. We first define the 2D equivalent of the sphericityt0 study the link between the anisotropy of the 3D froths and

coefficient for 2D froths, the anisotropy of their cutesee[15] for a preliminary work
on cuts of 3D froths We expect to find information on the
Keire=4m(a)/(1%). (2) 3D structure from the cuts.
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