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Gradient descent learning in and out of equilibrium
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Relations between the off thermal equilibrium dynamical process of on-line learning and the thermally
equilibrated off-line learning are studied for potential gradient descent learning. The approach of Opper to
study on-line Bayesian algorithms is used for potential based or maximum likelihood learning. We look at the
on-line learning algorithm that best approximates the off-line algorithm in the sense of least Kullback-Leibler
information loss. The closest on-line algorithm works by updating the weights along the gradient of an
effective potential, which is different from the parent off-line potential. A few examples are analyzed and the
origin of the potential annealing is discussed.
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The interest in the application of statistical mechanics
the study of learning in neural networks~NN! stems partly
from the fact that the extraction of information from da
~examples! can be modeled by a dynamical process of mi
mization of an energy function, possibly in the presence
~thermal! noise. In the case where the system is allowed
equilibrate, roughly all the possible information has been
tracted from the data by the learning algorithm. In a ve
important sense learning theory is different from, e.g., m
netism. In the latter the interactions are fixed by the phys
constraints, and the equilibrium state and how it is reache
the object of study. In the former, the energy function can
chosen in order to achieve a certain property in the equ
rium state, such as the largest possible typical generaliza
or memorization capability.

Techniques originated in the study of disordered syste
such as the replica and cavity methods, TAP equations
well as Monte Carlo techniques, have been borrowed
extended, leading to several results in what has bec
known as off-line learning~OFL!. Since disordered system
may take too long to equilibrate, implying a high compu
tional cost, the search for efficient nonequilibrium learni
algorithms has been undertaken. An interesting class
methods—where essentially, examples are used one
time—is collected under the name of on-line learning~ONL!
@1#. These bring the possibility of efficient performance a
low computational cost.

Opper@2,3# has offered a new theoretical way of studyin
the relation between OFL and ONL. He applied his ideas
Bayes learning. The posterior probability distribution for t
set of weights obtained afterT examples is used as the prio
for the next example. If the full posterior is maintained, a
calculation amounts to an OFL one. But by projecting t
posterior into a restricted family of parametric distribution
huge computational gains can be achieved, transforming
process into an effective ONL one. Now only a set of para
eters and an auxiliary set of hyperparameters have to be
dated. The changes in the hyperparameters induce auto
cally an effective annealing of tensorial learning rates. In
case of continuous weights, he applied these ideas by
jecting to a Gaussian space of posteriors. Solla and Win
@4# generalized it by extending it so that information abo
e.g., the binary nature of weights, can be included in a c
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sistent way. This is simply achieved by projecting into a
other family of posteriors and again imposing that the inf
mation loss be minimized.

There is however no reason to limit these studies to
case of Bayes learning and the aim of this paper is to ext
Opper’s method to include the problem of learning by g
dient descent. From a non-Bayesian point of view, Ba
learning is anything that uses a ‘‘likelihood’’—or for tha
matter, a Gibbs term exp(2bV) for some potential based
learning method—in a Bayes theorem inversion formu
Without entering in such controversial arenas, we adopt
this paper, a more restricted position on what we mean
Bayes learning. We consider learning under the conditi
where we have a model in mind. This is structural pr
information. We choose to implement a given architectu
over others based on prior information or prejudice. No m
ter why, this imposes a model on the practitioner, who is s
at liberty to choose the potential. But if this freedom is e
ercised it is at the cost of not being able to be called
Bayesian, for there is only one choice—given thea priori
structural information—of the likelihood. There is still th
possibility, that for ~almost! any given potential, a set o
prior informations can be identified so that the likelihoo
agrees with the Gibbs exponential for that potential. B
prior information should remain so and not be identifieda
posteriori by reference to the potential. Nevertheless,
reader maybe left with the probably correct impression t
this is only a problem of labeling the method, upon whi
the results will not depend. This is not the issue we addr

The point we want to stress is the relation between
thermal equilibrium OFL and the out of equilibrium ONL
independently of whether the method is Bayesian or not. T
main result in this paper is determining the relation betwe
the potentials used in OFL and ONL. We look at the ze
temperature limit and, for a class of architectures, const
the potential, which gives the closest~in some sense to be
discussed! on-line approximation to an OFL problem with
given potential. These two potentials, unexpectedly, are
the same.

We obtain equations that describe the evolution of
weights and hyperparameters for general potentials. Then
look at some applications. We analyze the relation betw
the off equilibrium and thermal equilibrium for a speci
©2001 The American Physical Society05-1
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case, which is Bayes optimal with a nondifferentiable tra
fer function, the noiseless Boolean perceptron. The on-
algorithm is automatically annealed and we discuss how
annealing is related to a performance estimate. Finally,
apply the resulting equations to the same architecture u
Rosenblatt’s perceptron algorithm. The generalization ex
nent changes from 1/3 in the pure ONL to 1 in the minimu
information loss projection ONL.

Let yk be an example. In the case of supervised learnin
is to be thought of as an input-output pairyk5(Sk ,sk) and
we assume, based on the available prior structural infor
tion, that the data pairs are generated by a maps5 f w* (S),
which might be deterministic or stochastic so as to inclu
the possibility of noise corrupted data. For unsupervis
learning or density estimation it is an input vectoryk5Sk .
The learning set is formed bym such random examplesDm
5(y1 ,y2, . . . ,ym), drawn independently from identical dis
tributions. The purpose of learning is to make an estimatŵ
of the trueN dimensional vector of parameters or weigh
w* . To do so a cost function or potentialV@s, f w(S)#
5V(w,y) is introduced. Usually one seeks a minimum
the total energyE(w)5(k51

m V@sk , f w(Sk)#, so that learning
is stated as an optimization problem. The additive form
adequate in the case of independent~or noninteracting! ex-
amples. There is also the possibility that aside from
learning set, and the model, other information about the p
sible weight vectors is available. It might be encoded in
prior probability p0(w), that is, the probability that can b
attributed to anyw, of being the true parameter vector, bas
on information other thanDm . The information contained in
the prior and in the learning set can be taken into acco
simultaneously by using Bayes theorem and imposing
equivalence of the minimum-energy prescription and tha
maximizing the likelihood of the examples, which as sho
by Levin et al. @5#, leads to a functional equation whos
solution is the Gibbs distribution

PV~wuDm!5
1

Zm
po~w!P~Dmuw! ~1!

5
1

Zm
po~w!expF2b(

k51

m

V~w,yk!G , ~2!

whereb measures the sensibility of the likelihood, and
course, plays the role of the inverse temperature, and
partition function is given byZm5*po(w8)P(Dmuw8)dNw8.

Thus, the problem has been formulated as one of stat
cal mechanics, in this case of disordered systems due to
random nature of the data. Spin-glass behavior for this t
of system has been found in many different cases. Estima
of parameters may turn into a computationally hard proble
as suggested by the long thermalization times encount
while doing, e.g., Monte Carlo estimates. This also happ
for the prediction of the outputs to a new~statistically in-
dependent! input vector. A neural network, on the othe
hand, once it has been trained, and a reasonableŵ been
determined, permits rapid estimation ofs. The fact that the
determination ofŵ, using the full Gibbs distribution, may
06190
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itself be hard, seems to imply that there is no way out. Ho
ever, suppose a reasonable estimate has been achieved
learning setDm , then the incorporation of the informatio
carried by a new exampleym11 can be efficiently and easily
done at least in an approximate way. This is the idea beh
ONL and we now study this from the same perspective O
per has used to analyze Bayes learning. That these estim
are in general hard to do, leads to an approximation of
Gibbs distributionPV(wuDm) by Pg(wuDm). The type of
problem dictates what is a useful approximation. In ma
cases the fluctuations, at least for largem, will be Gaussian,
and so we study this case. Still the approximation can
done in many ways. To limit the loss of hard gained info
mation, as measured by the Kullback-Leibler@6# divergence,

DKL5E PV logS PV

Pg
DdNw, ~3!

we follow @2–4# and project the current version of the Gibb
distribution to a Gaussian with the same meanŵ(m) and
covarianceCi j (m). To check this, look at the variations o
DKL with respect toPg .

ONL proceeds by storing all the information in the prev
ousm examples in the vectorŵ(m). Other auxiliary quanti-
ties @in this case the covarianceCi j (m)# usually termed hy-
perparameters, will be needed and their natural appear
and evolution naturally justify the annealing of learnin
rates.

The basic idea already in Ref.@2# is to consider the Gibbs
distribution as the prior for the new, the (m11)th example.
Even when PV(wuDm) is substituted by the Gaussia
Pg(wuDm), in generalPV(wuDm11) will not be Gaussian.
Therefore it is projected into a Gaussian of meanŵ(m11)
and covarianceCi j (m11) The procedure can then be ite
ated to include the next example. Of course this update
change the covariance of the posterior, leading to a new
of equations relatingCi j (m11) andCi j (m).

The introduction of a new example, if the system is
lowed to thermalize, can be the starting point for a cav
analysis as studied by Griniasty@7#. We do not, by doing the
Gaussian approximation, allow the system to thermalize.

In order to calculate the approximate change in the
pected value ofw, start with@5#

PV~wuDm11!5
PV~wuDm!exp@2bV~w,ym11!#

E PV~w8uDm!exp@2bV~w8,ym11!#dNw8

~4!

and substitute it by

P̃V~wuDm11!5
Pg~wuDm!exp@2bV~w,ym11!#

E Pg~w8uDm!exp@2bV~w8,ym11!#dNw8

,

~5!

then projectP̃V(wuDm11) to Pg(wuDm11). Call the initial
conditions to this iteration procedureŵ(0) for the mean and
5-2
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for covarianceC(0). Wecall our current estimates of the weights and the covarianceŵ(m) andC(m), respectively. Then

ŵi~m11!5E wi Pg~wuDm11!dNw, ~6!

Ci j ~m11!5E @wi2ŵi~m11!#@wj2ŵj~m11!#Pg~wuDm11!dNw8 ~7!

Let u measure the Gaussian fluctuations ofw aroundŵ(m)

ŵi~m11!5

E wi Pg~wuDm!exp@2bV~w,ym11!#dNw

E Pg~w8uDm!exp@2bV~w8,ym11!#dNw8

5ŵi~m!1

E ui exp@2 1
2 utC21u#exp$2bV@ŵ~m!1u,ym11#%dNu

E exp@2 1
2 utC21u#exp$2bV@ŵ~m!1u,ym11#%dNu

.

Note thatui exp@2 1
2 utC21u#52Ci j ]uj

(exp@2 1
2 utC21u#), then one integration by parts leads to

ŵi~m11!5ŵi~m!1Ci j

E exp@2 1
2 utC21u#]uj

exp$2bV@ŵ~m!1u,ym11#%dNu

E exp@2 1
2 utC21u#exp$2bV@ŵ~m!1u,ym11#%dNu

,
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where a summation over repeated indices is implied. T
using

]ui
f ~ŵ1u!5] ŵi

f ~ŵ1u!, ~8!

the on-line algorithm that results is

ŵi~m11!5ŵi~m!1Ci j ~m!] j ln^exp$2bV@ŵ~m!1u#%&,
~9!

where^•••& means the average with respect to the Gaus
distribution with zero mean and covarianceCi j (m).

The next step is to determine the evolution of the cova
ance. In terms of the Gaussian distributed fluctuationsui of
zero mean and the variationDŵ5ŵi(m11)2ŵi(m), given
by Eq. ~9!

Ci j ~m11!5E ~ui2Dŵi !~uj2Dŵj !Pg~wuDm!dNw8.

~10!

Now use the identity

uiuj exp@2 1
2 utC21u#5Ci j exp@2 1

2 utC21u#

1CikCjl ]uk
]ul

~exp@2 1
2 utC21u# !,

~11!

then two integrations by parts and the use of Eq.~8! deter-
mines the prescription for the covariance update

Ci j ~m11!5Ci j ~m!1Cik~m!Cjl ~m!]k] l

3 ln^exp$2bV@ŵ~m!1u#%&. ~12!
06190
n

n

i-

On one hand, this set of equations describe a first~Gaussian!
approximation to the problem of OFL learning with the p
tentialEm5(m51

m V(w;ym). On the other hand it describes a
ONL learning prescription for the update of the weight ve
tor, and a set of hyperparameters that are useful in improv
performance.

We now consider the widely popular class of problem
where the network is a classifier into two categoriess5
61 and the dimension ofS is N. We study the case wher
the potentialV(l) is a differentiable function of the stability
l5swS/AN. How is the resulting algorithm related to th
usual ONL schemes? Lett5sŵS/AN, denote the stability of
an example previous to its presentation to the network so
l5t1suS/AN, the stability of exampleS in the network
parametrized byw. Introduce C̃i j (m)5bCi j (m) and x
5SiC̃i j Sj /N. An explicit form for ^exp(2bV)& can be ob-
tained. Introduce a 1 in the form 15*dld(l2swS/AN)
}*dl dl̂ expil̂(l2swS/AN). A pair of quadratic integra-
tions show that

^exp~2bV!&}E dl exp2bFV~l!1
~l2t !2

2x G , ~13!

thus for the estimate of the weights we have

ŵi~m11!5ŵi~m!1
1

bAN
C̃i j ~m!Sjs~m!] t ln E dl

3exp2bFV~l!1
~l2t !2

2x G , ~14!

while for the annealing equation
5-3
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C̃i j ~m11!5C̃i j ~m!1
1

bN
C̃ik~m!C̃j l ~m!SkSl] t

2 ln E dl

3exp2bFV~l!1
~l2t !2

2x G . ~15!

To compare to previous work we look at the zer
temperature limit. Thel integral can be calculated by th
saddle-point method. Letlo(t) be the minimum ofV(l)
1(l2t)2/2x, that is the solution of

F]V

]l
1

l2t

x G
l5lo

50, ~16!

then limb→`1/b ln^exp(2bV)&52@V(lo)1(lo2t)2/2x#. De-
fine what will be shown to be the effective on-line potent

Ex~ t ![V~lo!1
~lo2t !2

2x
. ~17!

Note that from Eqs.~16! and ~17! it is easy to see that

]V

]l U
l5lo

5
]Ex~ t !

]t
. ~18!

The algorithm equations can now be written as

ŵi~m11!5ŵi~m!2
1

AN
C̃i j ~m!Sjs~m!

]Ex~ t !

]t
, ~19!

C̃i j ~m11!5C̃i j ~m!2
1

N
C̃ik~m!C̃j l ~m!SkSl

]2Ex~ t !

]t2
.

~20!

The update ofŵ @Eq. ~19!# can be identified with an an
nealed~time or number of examplesm dependentC̃i j ) ten-
sorial learning rate Hebbian-like algorithm modulated
]V/]lulo

, the gradient of the original potential calculate
not at the pointt where it would be expected since it is th
pretraining stability, but at the posterior stabilitylo . How-
ever, the need to calculate the gradient at a future poinlo
would render this algorithm useless. But in its stead@see Eq.
~18!# the gradient]Ex(t)/]t of a related potential is used
The OFL potential is transmuted to the effective ONL pote
tial, and the gradient of the latter can be calculated at
accessible value oft.

Equation ~14! reminds others that have appeared in
lated but different places and a few comments are in orde
is not totally unrelated to those obtained in the cavity ana
sis of learning by Griniasty@7#. The cavity and replica meth
ods are not constructive, they are used to determine the
performance of gradient descent learning algorithms. The
rameterx plays the role of the stiffness parameter in t
cavity analysis and that ofx5 limb→` b(12q) in the replica
~symmetric! calculations. With respect to the latter, Bout
06190
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et al. have, in their analysis of OFL gradient descent lea
ing, stressed the interpretation of replica results in terms
cavity arguments.

But this effect of transmutation of potentials has be
seen before in@8,9#. These works were done in the context
the variational-optimization method. Its purpose is to det
mine a potential that leads to maximum performance
functionally extremizing a performance measure such as
generalization error with respect to the potential. For so
architectures it has been applied to both ONL and O
learning in the thermodynamic limit in order to determin
maximum possible generalization. It was found@9#, that for
the single layer perceptron, Eq.~17! gives precisely the rela
tion between the optimal generalization ONL and OFL p
tentials. The same relation holds in unsupervised learn
@10#. Up to now this relation@Eq. ~17!# seemed little more
than accidental, but now can be seen as a consequen
approximating OFL by the closest~in the sense of Kullback-
Leibler divergence! ONL learning scheme.

Equation ~20! describes the annealing of the tensor
learning rate. Several works~e.g., Refs.@1,11#! have stressed
the need for an ONL learning rate annealing. The ne
comes from the fact that once an estimate is close to a m
mum of the potential, the step size should be reduced
order not to overshoot. The analogous of an annealing ra
an OFL problem appears e.g., in Ref.@12#, where a perfor-
mance is improved by choosing a parameter of the poten
~there, the thresholdk of a relaxation algorithm! from the
knowledge of the size of the learning set. This appears a
matically in the variational optimized potentials, both ON
and OFL @13,9#. The origin of the need for annealing wa
thought to be the same. However, here, as in the work
Opper, it can be seen that even if an OFL potential is
annealed, the imposition of minimal information loss w
anneal the ONL learning rate.

To understand how the annealing is working, we analy
a smooth potentialV that is flat for large absolute values o
the stability. For negative values it saturates at a posi
value, while for positive stabilities it goes to zero. In th
transition region it decays monotonically. This kind of p
tential is quite sensible, actually the optimal one discusse
Ref. @9# for the Boolean perceptron in the presence of m
tiplicative noise, is of this type. The second derivative th
enters the annealing equation is positive if the example
correctly classified, and negative if not. This means that
system is estimating on-line its performance. If in error,
reacts by increasing the estimate of the variance of the p
terior distribution and in that manner, allowing larger corre
tions to be made to the current estimateŵ. When an example
is correctly classified, then the system will start maki
smaller weight estimate adjustments. Actually this is cons
tent with the idea, exposed, e.g., in Refs.@13,14#, that adap-
tive annealing schemes should depend on the estimate o
generalization error.

From an argument similar to Opper@3#, the covariance
annealing is governed by

lim
m→`

C21

m
5JV~w* !, ~21!
5-4
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GRADIENT DESCENT LEARNING IN AND OUT OF . . . PHYSICAL REVIEW E 63 061905
where the matrix@JV(w* )# i j 5] i] jEx(t), and the overbar in-
dicates average over the examples distribution. This is no
general Fisher’s Information matrix, but it is expected to
so for some cases. These include the additive noise cas
the perceptron with the optimal potential@15#, the unsuper-
vised learning case@10#, and the linear perceptron@16#,
where the ONL performance is asymptotically efficient. It
expected to differ in cases such as the perceptron lear
from a spherical distribution of examples in the presence
multiplicative noise, since then ONL can achieve only twi
the error of the Bayes algorithm. It is possible that furth
studies of this system of equations can shed light on
exact factor of 2.

We now apply these equations to the particularly intere
ing case of the perceptron algorithm of Rosenblatt applie
a perceptron in a noiseless student-teacher scenario.
OFL potential can be defined byVR(l)52lQ(2l), where
l5swSÕN. A possible prescription for the weights can b
obtained by simulated annealing. Let, as usual,a5P/N,
whereP is the number of examples. The interest resides
the fact that the generalization error decays asa21 in OFL,
but only asa21/3 for pure ONL without annealing. The rel
evant quantity is the effective ONL energyEx(t). The modu-
lation function,2] tEx(t) is

lim
b→`

2] t ln E dl exp2FbVR~l!1
~l2t !2

2x̃
G

5
1

A2p x̃

e2t2/(2x̃)

HS 2t

Ax̃
D , ~22!

where x̃5SiCi j Sj /N and H(x)5*2`
x exp(2z2/2)dz/A2p.

This is surprisingly close to the optimal ONL modulatio
function. Even the annealing, which affectsx̃, is similar, and
from Eqs.~9! and ~12! the ONL generalization error decay
asa21 asymptotically.

To conclude, we have studied the first approximat
ONL, which is ~Kullback-Leibler! closest to potential learn
ing OFL. Somewhat surprisingly the ONL potentialEx(t) is
d

,
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not the same as the OFLV(l). The most striking feature is
that they depend on different quantities. The former ont, the
stability prior to learning, and it could not be otherwise f
the post presentation stability is unknown. The latter, on
stability, which will tend, in equilibrium to the OFL~equi-
librium! post presentation stability. A second feature is e
pected, the energy consists of a pure energy termV associ-
ated to the new term plus another that reflects the presenc
previously presented examples.

The equations have been applied to the perceptron le
ing with Rosenblatt’s perceptron algorithm. It was show
that the minimum~KL- ! information loss induces an annea
ing, which changes the generalization learning expon
from 1/3 in pure ONL to 1 in the annealed ONL, in the sam
class as the full OFL.

We refer to this as a first approximation since a system
expansion can be implemented@17#. The infinite ~formal!
series shows that OFL equilibrium is attained by parame
and hyperparameters updates that involve only the effec
ONL potential without making reference to the OFL pote
tial. In connection to this we look at the question@19# of
what it means to learn OFL with a potential that is infini
for negative stabilities. Can gradient descent only start if
current estimate is within version space? This is the cas
the noiseless perceptron optimal potential mentioned ab
@9#. While this issue is not totally closed, a tentative answ
starts by noticing that the effective ONL potential can
used even outside version space, since it is well defined
negative prior stabilities.

A related question that arises, and which might be
tacked in the future by the techniques of dynamical repli
@18#, is If the effective ONL potential is used iteratively i
learning from a restricted learning set, what will be t
asymptotic time state? Is it obviously going to the offlin
limit @19,20#?
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