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Gradient descent learning in and out of equilibrium
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Relations between the off thermal equilibrium dynamical process of on-line learning and the thermally
equilibrated off-line learning are studied for potential gradient descent learning. The approach of Opper to
study on-line Bayesian algorithms is used for potential based or maximum likelihood learning. We look at the
on-line learning algorithm that best approximates the off-line algorithm in the sense of least Kullback-Leibler
information loss. The closest on-line algorithm works by updating the weights along the gradient of an
effective potential, which is different from the parent off-line potential. A few examples are analyzed and the
origin of the potential annealing is discussed.
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The interest in the application of statistical mechanics tosistent way. This is simply achieved by projecting into an-
the study of learning in neural networksIN) stems partly  other family of posteriors and again imposing that the infor-
from the fact that the extraction of information from data mation loss be minimized.

(exampleg can be modeled by a dynamical process of mini- There is however no reason to limit these studies to the
mization of an energy function, possibly in the presence oftase of Bayes learning and the aim of this paper is to extend
(therma) noise. In the case where the system is allowed tdOpper's method to include the problem of learning by gra-
equilibrate, roughly all the possible information has been exdient descent. From a non-Bayesian point of view, Bayes
tracted from the data by the learning algorithm. In a verylearning is anything that uses a “likelihood”—or for that
important sense learning theory is different from, e.g., magmatter, a Gibbs term exp(8V) for some potential based
netism. In the latter the interactions are fixed by the physicalearning method—in a Bayes theorem inversion formula.
constraints, and the equilibrium state and how it is reached i$Vithout entering in such controversial arenas, we adopt, in
the object of study. In the former, the energy function can behis paper, a more restricted position on what we mean by
chosen in order to achieve a certain property in the equilibBayes learning. We consider learning under the conditions
rium state, such as the largest possible typical generalizationhere we have a model in mind. This is structural prior
or memorization capability. information. We choose to implement a given architecture

Techniques originated in the study of disordered systemsyver others based on prior information or prejudice. No mat-
such as the replica and cavity methods, TAP equations, d@sr why, this imposes a model on the practitioner, who is still
well as Monte Carlo techniques, have been borrowed andt liberty to choose the potential. But if this freedom is ex-
extended, leading to several results in what has becomercised it is at the cost of not being able to be called a
known as off-line learningOFL). Since disordered systems Bayesian, for there is only one choice—given theriori
may take too long to equilibrate, implying a high computa-structural information—of the likelihood. There is still the
tional cost, the search for efficient nonequilibrium learningpossibility, that for(almos} any given potential, a set of
algorithms has been undertaken. An interesting class gfrior informations can be identified so that the likelihood
methods—where essentially, examples are used one atagrees with the Gibbs exponential for that potential. But
time—is collected under the name of on-line learn{@iNL) prior information should remain so and not be identifeed
[1]. These bring the possibility of efficient performance andposteriori by reference to the potential. Nevertheless, the
low computational cost. reader maybe left with the probably correct impression that

Opper[2,3] has offered a new theoretical way of studying this is only a problem of labeling the method, upon which
the relation between OFL and ONL. He applied his ideas tdhe results will not depend. This is not the issue we address.
Bayes learning. The posterior probability distribution for the  The point we want to stress is the relation between the
set of weights obtained aftdrexamples is used as the prior thermal equilibrium OFL and the out of equilibrium ONL,
for the next example. If the full posterior is maintained, anyindependently of whether the method is Bayesian or not. The
calculation amounts to an OFL one. But by projecting themain result in this paper is determining the relation between
posterior into a restricted family of parametric distributions,the potentials used in OFL and ONL. We look at the zero-
huge computational gains can be achieved, transforming themperature limit and, for a class of architectures, construct
process into an effective ONL one. Now only a set of paramthe potential, which gives the close$h some sense to be
eters and an auxiliary set of hyperparameters have to be upgliscussegon-line approximation to an OFL problem with a
dated. The changes in the hyperparameters induce automagiven potential. These two potentials, unexpectedly, are not
cally an effective annealing of tensorial learning rates. In thehe same.
case of continuous weights, he applied these ideas by pro- We obtain equations that describe the evolution of the
jecting to a Gaussian space of posteriors. Solla and Winthereights and hyperparameters for general potentials. Then we
[4] generalized it by extending it so that information about,look at some applications. We analyze the relation between
e.g., the binary nature of weights, can be included in a conthe off equilibrium and thermal equilibrium for a special
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case, which is Bayes optimal with a nondifferentiable transditself be hard, seems to imply that there is no way out. How-
fer function, the noiseless Boolean perceptron. The on-lin@ver, suppose a reasonable estimate has been achieved for a
algorithm is automatically annealed and we discuss how théearning setD ,, then the incorporation of the information
annealing is related to a performance estimate. Finally, wearried by a new example, . ; can be efficiently and easily
apply the resulting equations to the same architecture usindone at least in an approximate way. This is the idea behind
Rosenblatt's perceptron algorithm. The generalization expo©ONL and we now study this from the same perspective Op-
nent changes from 1/3 in the pure ONL to 1 in the minimumper has used to analyze Bayes learning. That these estimates
information loss projection ONL. are in general hard to do, leads to an approximation of the
Lety, be an example. In the case of supervised learning iGibbs distributionP\(w|D,) by P4(w|D,). The type of
is to be thought of as an input-output pgir=(S,,o,) and  problem dictates what is a useful approximation. In many
we assume, based on the available prior structural informaeases the fluctuations, at least for laggewill be Gaussian,
tion, that the data pairs are generated by a mapf,«(S), and so we study this case. Still the approximation can be
which might be deterministic or stochastic so as to includedone in many ways. To limit the loss of hard gained infor-
the possibility of noise corrupted data. For unsupervisednation, as measured by the Kullback-Leillét divergence,
learning or density estimation it is an input vecig=S;.
The learning set is formed by such random examplds,, D :J' = Iog(—v
=(Y1.Y2, - - - y,), drawn independently from identical dis- KL v Py
tributions. The purpose of learning is to make an estimate . . .
of the trueN diFr)neﬁsional vector %f parameters or WeightsWe follow [2—4] and project the current verS|onAof the Gibbs
w*. To do so a cost function or potentid[o,f,(S)] distribution to a Gaussian with the same meafu) and
=V(w,y) is introduced. Usually one seeks a minimum of covarianceCij(u). To check this, look at the variations of
the total energyE(w) =3 V[ o, (S ], so that learning DL With respect toPg. _ o _
is stated as an optimization problem. The additive form is ONL proceeds by storing all the information in the previ-
adequate in the case of independéat noninteractingex-  ousu examples in the vector(w). Other auxiliary quanti-
amples. There is also the possibility that aside from thdies[in this case the covariandg;(u)] usually termed hy-
learning set, and the model, other information about the poserparameters, will be needed and their natural appearance
sible weight vectors is available. It might be encoded in theand evolution naturally justify the annealing of learning
prior probability po(w), that is, the probability that can be rates.
attributed to anw, of being the true parameter vector, based The basic idea already in R¢2] is to consider the Gibbs
on information other tha® , . The information contained in distribution as the prior for the new, the.(-1)th example.
the prior and in the learning set can be taken into accourEven when Py(w|D,) is substituted by the Gaussian
simultaneously by using Bayes theorem and imposing thd?g(w|D#), in generaIPV(W|DM+1) will not be Gaussian.
equivalence of the minimum-energy prescription and that Ofrherefore itis projected into a Gaussian of mé\dm-r 1)
malelZlng the likelihood of the examples, which as ShOWnand Covariancé:ij(ﬂ+ 1) The procedure can then be iter-
by Levin etal. [5], leads to a functional equation whose ated to include the next example. Of course this update will

dVw, (3

solution is the Gibbs distribution change the covariance of the posterior, leading to a new set
1 of equations relatin@€;;(x+1) andCj;(u).
PV(WlD,u): —po(W)P(D,JW) (1) The mtroducthn of a new example_, if the_\ system is a_ll-
Z, lowed to thermalize, can be the starting point for a cavity

analysis as studied by Griniadty]. We do not, by doing the
1 - Gaussian approximation, allow the system to thermalize.
=7 Po(W)ex _Bgl V(WY |, 2 In order to calculate the approximate change in the ex-
a pected value ofv, start with[5]

where B8 measures the sensibility of the likelihood, and of

course, plays the role of the inverse temperature, and the, W|D, 1)~ Py(w|D)exd —BV(W,Y, 1 1)]

partition function is given by, = [po(w')P(D ,|w’)d"w’. v ptl , , .
Thus, the problem has been formulated as one of statisti- f Py(w'[D,)exd —BV(W'.y, 1) ]d W

cal mechanics, in this case of disordered systems due to the (4)

random nature of the data. Spin-glass behavior for this type

of system has been found in many different cases. Estimatiodnd substitute it by
of parameters may turn into a computationally hard problem,

as suggested by the long thermalization times encounteresg

while doing, e.g., Monte Carlo estimates. This also happen v(W[D 1) =
for the prediction of the output to a new(statistically in- f Py(W'[D,)exd — BV(W',y, . 1) ]d"w’
dependent input vector. A neural network, on the other (5)
hand, once it has been trained, and a reasonableeen 5

determined, permits rapid estimation @f The fact that the then projectPy(w|D ) to P4(w|D ). Call the initial

determination ofw, using the full Gibbs distribution, may conditions to this iteration proceduvg(0) for the mean and

Pg(W| D#)exn: - EV(Wiy,u+l)]
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for covarianceC(0). We call our current estimates of the weights and the covariév(qe) andC(uw), respectively. Then

Wi+ 1)= f WiPg(w|D,, . )dMw, (6)

Cij(u+ 1)=f [w; = Wi+ 1)][wj = Wj(+1)]Pg(W|D,, 1) d"w’ (7)
Let u measure the Gaussian fluctuationsaofiroundw( u.)

f w;Py(W|D ) exd — BV(W,y,, 1) Jd"w f u; expf — zu'Ctuexp{— BV[W(u) +u,y, 1]t

=Wi(p) +

wi(u+1)= - .
f Po(W'[D,)exd —BV(W',y, . 1) 1d"w’ f exd — 3u'C™ tulexp{— BV[W(u) +U,y, . 1]}d"u

Note thatu; exf — u'C ™ tu]=— Cij auj(exr[ —1u'C 1u]), then one integration by parts leads to

| exit-tuic u1a, expt— pVTi + uy, . ThdMy

Wi+ 1) =wi(p)+C;;
| exit—tuic rulexst - pVEi) +uy, iy

where a summation over repeated indices is implied. The®n one hand, this set of equations describe a ([@siussian
using approximation to the problem of OFL learning with the po-
. A tentialE, =%/ _,V(w;y,). On the other hand it describes an
dy f(w+u)=4; f(w+u), (8)  ONL learning prescription for the update of the weight vec-
' ' tor, and a set of hyperparameters that are useful in improving
the on-line algorithm that results is performance.
We now consider the widely popular class of problems
wi(u+ 1)2\7Vi(ﬂ)+cij(,u)ﬁj In(exp[—,BV[\7v(,u)+u]}>, where the net_work _is a cl_assifier into two categories
9) +1 and the dlme.nsmn. dbis N We study the case whgre
the potentiaM(\) is a differentiable function of the stability
where(- - -) means the average with respect to the Gaussian=owS/\/N. How is the resulting algorithm related to the
distribution with zero mean and covarianCg (). _usual ONL schemes? Let owS/ /N, denote the stability of
The next step is to determine the evolution of the covari-y, example previous to its presentation to the network so that
ance. In terms of the Gaussian distributed fluctuatignef A=t+ouS/YN, the stability of exampleS in the network

zero mean and the variatickw=w;(u+1)—w;(u), given parametrized byw. Introduce Eij(ﬂ):ﬁcij(ﬂ) and x
by Eq.(9) =Si§iij/N. An explicit form for (exp(—BV)) can be ob-
i i tained. Introduce a 1 in the form=4fd\ S(\ — owS/YN)
Cij(u+ 1)=f (Ui— Aw;) (u;— Aw;)Pg(w|D ,)d"w'. « [d\ dX expin(A—owSN). A pair of quadratic integra-
(100  tions show that

(A—1)?
(exﬁ—ﬂV))de)\exp—ﬁ[V()\)Jr o } (13

Now use the identity

uu; exd — 3u'C tu]=C;; exd —3u'C ™ 'u]
+ CikCji 9,y (exH — Lyt tu]), thus for the estimate of the weights we have

11 . . 1 -
W+ ) =)+ =B (S o (i [ ax
then two integrations by parts and the use of &j.deter- B\/N

mines the prescription for the covariance update

Xexp—B|V(N)+ (14

2X

(x—t)z}
Cij(p+1)=Cyj(1)+ Ci ) Cji (1) 4y ’

X In{exp{— BV[W(u)+ul}). (120  while for the annealing equation
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~ ~ 1 . _ et al. have, in their analysis of OFL gradient descent learn-
Cij(u+1)=Cj;(pn)+ ﬁ—NCik(M)Cu(M)SkSw?tz In j da ing, stressed the interpretation of replica results in terms of
cavity arguments.
(A—1)? But this effect of transmutation of potentials has been
xexp=BIVIM+ — } (15  seen before ifi8,9]. These works were done in the context of

the variational-optimization method. Its purpose is to deter-
To compare to previous work we look at the zero-mi”e,a potential thgt leads to maximum performance by
temperature limit. Then integral can be calculated by the funct|on.ally. extremizing a performance measure such as the
saddle-point method. Lex,(t) be the minimum ofV(\) genqrahzaﬂon.error with respec_t to the potential. For some
+(N—1)%/2x, that is the solution of architectures it has been applied to both ONL and OFL
learning in the thermodynamic limit in order to determine
maximum possible generalization. It was four®d, that for
=0, (16)  the single layer perceptron, E@.7) gives precisely the rela-
tion between the optimal generalization ONL and OFL po-
tentials. The same relation holds in unsupervised learning
then IimﬁﬂwllﬁIn(exp(—,[i’\/))=—[V()\o)+()\o—t)2/2x]. De- [10]. Up to now this relatiofEq. (17)] seemed little more
fine what will be shown to be the effective on-line potential than accidental, but now can be seen as a consequence of
approximating OFL by the closeéh the sense of Kullback-
(No—1)? Leibler divergenceONL learning scheme.
Tox (17) Equation (20) describes the annealing of the tensorial
learning rate. Several worke.g., Refs[1,11]) have stressed
the need for an ONL learning rate annealing. The need
comes from the fact that once an estimate is close to a mini-
mum of the potential, the step size should be reduced in

N At
N X

A=),

E(D)=V(Ao) +

Note that from Eqs(16) and(17) it is easy to see that

N = agx(t). (18  order not to overshoot. The analogous of an annealing rate in
) N an OFL problem appears e.g., in REf2], where a perfor-
mance is improved by choosing a parameter of the potential
The a|gorithm equations can now be written as (thel’e, the threshola of a relaxation algorithmfrom the
knowledge of the size of the learning set. This appears auto-
A A 1. (t) matically in the variational optimized potentials, both ONL
wi(u+1)=wi(u)— _Cij(l‘)sjo'(ﬂ);, (190 and OFL[13,9]. The origin of the need for annealing was
\/N Jt thought to be the same. However, here, as in the work of
Opper, it can be seen that even if an OFL potential is not
5 _ 1. 5 PPE(L) annealed, the imposition of minimal information loss will
Cij(u+1)=Cjj(p)— NCik(M)CjI(M)SkSI pra anneal the ONL learning rate.

To understand how the annealing is working, we analyze

(20 a smooth potentiaV/ that is flat for large absolute values of
- the stability. For negative values it saturates at a positive
The update ofw [Eqg. (19)] can be identified with an an- value, while for positive stabilities it goes to zero. In the
nealed(time or number of exampleg dependenf:ij) ten-  transition region it decays monotonically. This kind of po-
sorial learning rate Hebbian-like algorithm modulated bytential is quite sensible, actually the optimal one discussed in
‘Nkao' the gradient of the original potential calculated, Ref. [9] for the Boolean perceptron in the presence of mul-
not at the point where it would be expected since it is the tiplicative noise, is of this type. The second derivative that
pretraining stability, but at the posterior stability,. How- ~ enters the annealing equation is positive if the example is
ever, the need to calculate the gradient at a future pojnt correctly classified, and negative if not. This means that the
would render this algorithm useless. But in its stesee Eq.  SyStem IS estimating on-line its performance. If in error, it
(18)] the gradients&,(t)/dt of a related potential is used. €acts by increasing the estimate of the variance of the pos-
The OFL potential is transmuted to the effective ONL poten-térior distribution and in that manner,AaIIowmg larger correc-
tial, and the gradient of the latter can be calculated at th&ions to be made to the current estimateWhen an example
accessible value df is correctly classified, then the system will start making

Equation(14) reminds others that have appeared in re-smaller weight estimate adjustments. Actually this is consis-
lated but different places and a few comments are in order. lent with the idea, exposed, e.g., in Rdfs3,14, that adap-
is not totally unrelated to those obtained in the cavity analydive annealing schemes should depend on the estimate of the
sis of learning by Griniast{/7]. The cavity and replica meth- generalization error.
ods are not constructive, they are used to determine the OFL From an argument similar to OppégB], the covariance
performance of gradient descent learning algorithms. The pannealing is governed by

rameterx plays the role of the stiffness parameter in the c1
cavity analysis and that of=lim,_,.. 8(1—q) in the replica lim —— = Jy(w*), (21)
(symmetrig calculations. With respect to the latter, Bouten .
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where the matrix Jy(W*)];;= 4,d;E(t), and the overbar in- not the same as the OR{()\). The most striking feature is
dicates average over the examples distribution. This is not ithat they depend on different quantities. The formet,dhe
general Fisher’s Information matrix, but it is expected to bestability prior to learning, and it could not be otherwise for
so for some cases. These include the additive noise case ftite post presentation stability is unknown. The latter, on the
the perceptron with the optimal potent{dl5], the unsuper- stability, which will tend, in equilibrium to the OFl(equi-
vised learning cas¢l10], and the linear perceptrofl6], librium) post presentation stability. A second feature is ex-
where the ONL performance is asymptotically efficient. It ispected, the energy consists of a pure energy térassoci-
expected to differ in cases such as the perceptron learnirgted to the new term plus another that reflects the presence of
from a spherical distribution of examples in the presence opreviously presented examples.
multiplicative noise, since then ONL can achieve only twice The equations have been applied to the perceptron learn-
the error of the Bayes algorithm. It is possible that furthering with Rosenblatt's perceptron algorithm. It was shown
studies of this system of equations can shed light on thishat the minimum(KL-) information loss induces an anneal-
exact factor of 2. ing, which changes the generalization learning exponent
We now apply these equations to the particularly interestfrom 1/3 in pure ONL to 1 in the annealed ONL, in the same
ing case of the perceptron algorithm of Rosenblatt applied tglass as the full OFL.
a perceptron in a noiseless student-teacher scenario. The We refer to this as a first approximation since a systematic
OFL potential can be defined Bfg(N)=—AO(—\), where  expansion can be implement¢d7]. The infinite (formal)
A=owS/N. A possible prescription for the weights can be series shows that OFL equilibrium is attained by parameters
obtained by simulated annealing. Let, as usuak P/N, and hyperparameters updates that involve only the effective
whereP is the number of examples. The interest resides iIrONL potential without making reference to the OFL poten-
the fact that the generalization error decaysras in OFL,  tial. In connection to this we look at the questipt9] of
but only asa ™% for pure ONL without annealing. The rel- what it means to learn OFL with a potential that is infinite
evant quantity is the effective ONL energy(t). The modu- for negative stabilities. Can gradient descent only start if the
lation function, — ;&,(t) is current estimate is within version space? This is the case of
the noiseless perceptron optimal potential mentioned above
[9]. While this issue is not totally closed, a tentative answer
()\—t)zl starts by noticing that the effective ONL potential can be

BVr(N)+ used even outside version space, since it is well defined for

negative prior stabilities.

lim —d;In f d\ exp—

B—*

2X

1 —12/(2%) A related question that arises, and which might be at-
_ € 22) tacked in the future by the techniques of dynamical replicas
— —t\ [18], is If the effective ONL potential is used iteratively in
ul — learning from a restricted learning set, what will be the
\/i asymptotic time state? Is it obviously going to the offline
limit [19,20/?
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