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Modified Donnan potentials for ion transport through biological ion channels
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In the classical study of ion transport through charged membranes, Donnan potentials are used to approxi-
mate the difference between the applied electrostatic potential and the potential at the liquid/membrane inter-
face. For very thin membranés.g., biological lipid bilayers this discontinuous approximation of the poten-
tial is not sufficient. Here we derive a modification to the classic Donnan potential for ion transport through a
biological ion channel embedded in a lipid bilayer. We also show how to derive the classic Donnan potential
without the usual assumptions and estimate the amount of space charge at the liquid/membrane interface.
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[. INTRODUCTION scales involved amplify any mistakes in the potential and the
concentrations; different potentials and concentrations at the

In the classical study of liquid/membrane interfaces,edges of the channel give qualitatively different answers
membranes acquire selectivity because they are chargdwth theoreticallyf5] and experimentally6].

[1-4]. Such charged membranes allow the movement of These differences in total current and length of current
counter ions(with charge opposite that of the membrane Path between the two cases reqqire different gnalyses _for the
and impede the movement of co-ions of the same charge 4§finement of the Donnan potentials we consider. In this pa-
the membrane. The Donnan potential is the electrical poterR€r We Will mainly consider channel transpécase 2 with

tial difference between the voltage applied to the system angome discussion of how to apply the results to membrane
that at the interface. This nonzero potential also changes tH&ansport in generalcase 1 at the end. Because of this, our
concentrations of ions near the membrane away from thei@nalysis will focus on the area around and inside the “chan-
values in bulk solution. Classically, the Donnan potential and€l” through the membrane; we call it a channel whether or
the associated change in the ion concentrations are generalMpt it is a biological ion channel.

used as boundary conditions for the drift-diffusi@dernst-
Planck equations that model the transport through the mem-
brane. In this paper we reexamine these boundary conditions
with the goal of improving them for modeling ion transport  lon channels are cylindrical, hollow proteins that regulate
through biological ion channels. the movement of iongmainly Na", K*, c&", and CI)

In general, there are two major kinds of ion transportacross nearly all biological membranes. Since these mem-
through membrane(l) leaky transport through the entire branes are otherwise impermeable to charged particles, the
membrane and2) channel transport through a specialized only way ions can cross is through the pore that runs down
structure embedded in an otherwise impermeable membrarie long axis of a channel. This property has been exploited
(a single biological ionic channel in a bilayer membrane, forby evolution to produce many varied phenomena necessary
examplée. The total current flow is much less through a chan-for life: channels are responsible for the initiation and con-
nel than through a membrane even if the specific conductinuation of the electrical signals in the nervous system; in
tance of both structures is the same since the channel has #® kidneys, lungs, and intestines, channels coordinate
much less area available for current flow. Furthermore, memehanges in ionic concentration gradients that result in the
branes that allow transport through their whole area usuallabsorption or release of water; in muscle cells, a group of
are quite thick in practical applicatiorisay micrometer in channels is responsible for the timely delivery of the’Ca
thicknes$ while impermeable lipid bilayers are typically ions that initiate a contraction. Clinically, malfunctioning
only 2-nm thick. Such differences in length scales fundamenehannels cause cystic fibrosis, cholera, and many other dis-
tally change the need for accurate boundary conditions. Fagases and have recently been implicated in schizophrenia and
all charge transport problems it is important to correctly de-bipolar disorders. Furthermore, a large number of diuys
termine the local electrostatic potential and carrier conceneluding valium and phencyclidineact directly or indirectly
trations since they are nonlinearly coupled. For very shorbn channels.
membranes this is even more important because the length To produce such varied and complicated phenomena,

channels act in groups, opening and closing at the same time

and letting only specific ion types througfor example, se-
*Email address: dirkg@chroma.med.miami.edu lectively passing far more Naions than K ions). Despite
"Email address: beisenbe@rush.edu such complex final results, it is possible to remove a single

A. Biological ion channels
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channel from the biological system and study it as an iso- (2) Charge neutrality holds everywhere:=Q;z;c;(x)

lated physical system(This is rarely possible to do with +q(x) for all x.

other objects in biology and still have interesting resyite. ] )

do this, an individual channel is placed in a phospholipid Then the Ne_rnst-PIanck equations for each species can be
membrane that separates two baths of known ionic concef?tégrated to give

tration. A voltage is applied to the system by electrodes in _ ex _

the baths that are far away from the channel and the amount Ci(x)=cj(L)expAu)exp( =z W),
of current passed by the chann@h the form of iong is
measured. It is this experimental setup that we consider her

)

where A ™ is the difference in the excess chemical poten-
fials of species$ in the liquid and within the membrane. With
the charge neutrality condition, the Donnan potential can be
shown to be the solution to the polynomial

In classical membrane transport, the Donnan potential is
derived by using the drift-diffusiofNernst-Planckequation

B. Classical Donnan potentials

.
L7 o:; zjcj(L)exp Au®)Y, J+qy, ®
B dc; e do¢ 1 duj™ whereY, =expeWV, /kT)] andqg, =q(x,). Similar formulas

Ji==Djl Gx T4%T ax TOIkT Tax @ hold for the right side of the membrane. With these poten-

to describe the flux density for ion specieg; ¢ is the local
electrostatic potentiaD;, ¢;, andz; are the diffusion coef-
ficient, local concentration, and valence of spegjagspec-
tively, andk, T, ande are the Boltzmann constant, absolute
temperature, and elementary charge, respectiygfyis the

tials, the concentrations just inside the membrane follow
from Eq. (7).

This approximation for the potentials at the edge of the
membrane works well for thick membranes, when the
change in the potential in the liquid to that in the membrane
can be well approximated by a discontinuity. However, when

excess chemical potential of specjesrhich we take to be a the membrane is very thin, the part of the membrane where
step function that has one constant value in the liquid angharge neutrality does not hold may be of significant size
another constant value in the membrane. The Nernst-Plandglative to the width of the membrane, and one of the as-
equation can also be written as the derivative of the totapumptions for deriving the Donnan potential is violated. One

chemical potentialy; exf(ze/kT)¢], where the activitya;
=v;c; with the activity coefficient defined asy;
=exp(;’7kT). The Nernst-Planck equations for all species
is coupled with the Poisson equation to describe the electri

field:
d¢é

€—

)

)zez zic;+eq(x),
]

whereq is the charge inherent to the membrdge=0 in the
liquid). The boundary conditions for this system are

Ci(—)=cj(L), cj()=c|(R), ©)
P(—0)=V, ¢d(*)=Vg, (4)
V=V, —Vg. 5

V is the voltage applied to the system agjdL) andc;(R)
are the left and right bulk concentration of ion spegieSor

example of such a situation is the modeling of ion transport
through biological membranéspecifically through open ion
channel where the membrane is only tens ohdstroms
wide [11]. In such a case, the charge-neutrality condition
used above does not hold and thus the Donnan potentials do
not give a good approximation to the potentials at the edges
of the membrane(This is easily verified with numerical so-
lutions to the Poisson-Nernst-Planck system.

In this paper we derive new formulas for the potentials
and concentrations at the interface of a liquid and a thin
membrane. Furthermore, we employ neither of the two as-
sumptions normally used.

Il. THEORY

We consider a more general model than Eds.and (2)
which we write in nondimensional units:

these equations it is not difficult to prove that both the po-

tential ¢ and the activities; are continuous ifufx andq(x)
have jump discontinuities.

Assuming that the membrane is represented by the inte
val [x_ ,Xg], the left and right Donnan potentials are

Wi =o(x )V, WYg=¢(Xg)—Vg. (6)

To derive values for these quantities, two approximations ar
usually madg10,1,7:

(1) Each species is in equilibrium with the liquid;=0.

06190

d d dA/d d
g2 d—x( €(x) d—f(x)) " —A(X)X €(x) d—‘f(x)
=Zj zjc;(x) +q(x) (9)
r- Jj

de
" D;(0A(X)  dx

de do,
() +2i¢;(X) 5 () +216;0) 5 (),
(10
gvhere

2 €scak T

= . 11
Cscaléazd2 ( )
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First introduced if12], A is an area functiofalthough not parts where the function is rapidly changiftpe so-called
necessarily a cross-sectional grekesigned to model the boundary layers and parts where the function behaves
bath/channel interface because the entire membrane nmicely” (the so-called outer solutionsSince we are inter-
longer conducts iongWe are only considering a small chan- ested in the areas near the edge of the membrane where both
nel attached to a large electrolyte baths explained if11], the concentrations and the potential are changing rapidly, we
A(X) is the area of the equipotential surface in the full three-will focus mainly on the boundary layers there.

dimensional problem and is assumed to be equal to the cross- We start by stating the assumptions we use throughout:

sectional area inside the channel. An explicit formula for . . . L
A(x) is not known, but our results do not require such a (1) The diffusion coefficient for each ion species in the

formula. If A(x) is taken to be constant, the usual PoissonJiduid and the membrane are different but constant in each
' gion.

Nernst-Planck equations are obtained with the exception thaf ) , o

J; is a flux instead of a flux density. The expressions involv- (2) We require that the concentrations and potential in the

ing A(x) used here are derived ja1]. The excess chemical aths are constant except in the immediate vicinity of the
channel. This is the condition thdtisually) excludes the

potentialsu™ are rewritten ag.;"=z;6; . Equationg(9) and , .
(10) are nondimensional where the electrostatic potential haI aky membranécase(l)]_ since in that case the concentra
lons generally change linearly in the baths. In the case of

been scaled witlkT/e, the excess chemical potentials with channels, this condition is usually true because the baths are
KT, the concentrations/diffusion coefficients/dielectric with counled c,)nl throuah a small ho?/e that cannot sustain much
the largest concentrations/diffusion coefficients/dielectric in P y 9 e - .

flow. Furthermore, the diffusion coefficients of all ions are
the system Cqcaid Dscaid €scaid, @nd the length of the system

d (which includes the membrane and enough of the liquid t significantly smaller inside the channel than in bulk solution
. 9 1quId G, e cause of the higher friction produced by geometrical con-
reach bulk concentrationbas been scaled to 1. For simplic-

ity we assume that the dielectric coefficient is continuous;f’tralnts and special chemical and physical conqmons inside
everywhere. he narrow channe{for example, waters are oriented and

For the rest of the paper we will show the work on the left'O"S diffuse in predomlr)antly one directiprThis condition
gnsures that concentrations do not vary much across the elec-

side of the channel and merely state the results for the rlgr1ro|yte solutions surrounding a membrane containing just one

side; the proofs are similar. To denote the liquid we use the hannel: this is mathematically proven[id] and can easil
subscript 0 and to denote the channel we use the subscript% ’ yp y

To approximate the piecewise constant excess chemicQf verified with numerical solutions of the equations.
potentials, we first consider them as continuous functions Next we break the analysis into two intervals: X,
that change rapidly at the interface. Later we take the Iimit:XL) for the liquid and &, ,x,) for the membrane whene,
that the derivative becomes infinite. In this way delta func-js |gcated somewhere within the membrane. We consider
tions are avoided. Put mathematically, our assumption aboach section separately and use the indéx indicate the

the excess chemical potentials| &3, 14): segment being considereid= 0 is the liquid and =1 is the
ex « —x channel. In each segment we assume each solution has the
Hij0 L™ i :
0 o(X) = z-_]+ ej’()( ) ’ (12) following form:
i.0 €
XL_X i
j (X)) = Z 51 R (13 (17

X=X
&

where the membrane runs fraxp to xg, 0 denotes the bath,

1 denotes the channel. f100=1F10u(X) +Fy

) (f=¢,c;;F=9,C)),

18
uii=const (i=0,1), (14) _ _ 19
where the capital letters are for boundary layerkich we
and expect at the membrane edge because of the change in
) . charge frony=0 in the liquid toq, =q, in the membrane
;lm 0;i()=0 (i=0,. (15  Becauses is small (it is related to the Debye lengththe

arguments of; become large very quickly and therefore are
good for modeling rapidly changing functions. The boundary
layer functions are assumed to go to zero rapjdle(27)]
so they only describe a thin layer. Substituting these into
®,(0)=~0, (*)=0. (16)  Egs.(9) and(10) and multiplying out all the sums, for both
' ’ i=0,1 we define the outer solutions to satisfy the original
We are interested in the valuggx ) andc;(x,). To find  equations buhot the boundary conditions

approximate values we analyze the system of equations with

When we take the limit of the derivative becoming infinite
(which is after all the analysis is compléete

singular perturbatiofSP theory[13,14,11. SP is a well- 2 i(ed‘z’i,out) dA/dxed‘f’iyout 22 2:Ci 1 ouct Ol
proven approximation technique used for problems that have dx dx A dx T SIFhLout Tl
a small parameter and involves breaking up the solution into (19
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d¢i,out

Jjdg i out
= ZiCiioul gy

DA dx

(20

(Note that the excess chemical potential terms for the outer
solutions drop out because they are assumed to be constant
inside the channel except at edges of the channel; thus th
will be included in the boundary layer equationShe
boundary layers satisfy the remaining terms of this multipli-

cation:

d | do dA/dZ dd.

— | — ’él_l>+’é| = g_l :E chj,il (21)
dz\ d¢ A d¢ i

o_olcj,i c de, c do; de;;
BT T A T T

_(d®; de;; -

+ZjCj,i Y‘f‘d—g, ( )

where/=(—1)"*(x—x,) /e and

Q=i+ (=D (f=e o). (23
For these functionsd?i /dZ=0(e) where we use the Bi@
order notation 14].

Next, all of the functions are expanded in powerspf

foul¥) =)+t D)+ (f=di,c0), (29
F(O=FO(O+eF P+ (F=0;,Cy),

(25

J=30 eV (26)

J

These functions will be solved to satisfy

lim F®() = lim (dFR/d¢)(¢)=0

{—® {—°

(F:q)i !Cj,i :k=0)
(27)

as described before E(L9). The outer solutions and bound-
ary layers together will need to satisfy the following bound-

ary conditions on the intervals Q,) and (x, ,X,):

36 (x) + PG (0)= p(x,) =By, (283
$5)(x)+PF(0)=0  (k=1), (28b)
0593(xL>+c;?g<0>:Xn\TLcj,o<x>zﬂj,o,
(280
c9x)+CK0)=0 (k=1), (280)
B17(x) + PL(0) = p(x,) =By, (289
P (x)+P(0)=0 (k=1), (28f)

PHYSICAL REVIEW E3 061902

ci%(x ) +C{9(0)= lim ¢;1(x)=8;1
XN XL
(289

i =Cli0=0 (1. ean

T this way the leading-order terms on each segment take the

values of the unapproximated functions at the p&jnwhile

the lower-order terms contribute nothing to the series, at

We make a distinction between the limit with<<x_

[Iimx/xL Cj o(Xx)] and the limit withx<x_ [Iimx\XL Cja(X)]

because if the excess chemical potential is discontinuous, so

is the concentratiofalthough the activity is continuouand

so we must consider the limits in each interval separately.
The goal of the paper is to find approximations gy and

Bj 1, the values of potential and concentration, respectively,

just inside the channel.

A. Outer solutions

Substituting Eqs(24) and (26) into Egs.(19) and (20) at
leading orders gives

0=2> zc{9+aq;, (29)
]
(0) (0) (0)
_ J] = dcl" Z. (0) dd)' (30)
Dj'iA dx =il dx

Since we are only interested in the transition regi@hat is,
the boundary layejsve do not explore the solutions to these
equations. The following results depend only on the charge
neutrality result(29) of the leading-order terms of the con-
centrations. Note that Eq29) is not a physical assumption
like in the usual Donnan potential derivation, but a math-
ematical construction(The outer solutions and boundary
layers are only mathematical functions; they do not physi-
cally exist, but, as the solution of the transport equations,
their sumdoes)

The assumption about the bath concentrations stated
above can now be put mathematically:

clP(x)~c{B(0)=c;(L), (31)
ci2(xp)~c{%(1)=c;(R), (32)
6 (x)= 5" (0)=V, (33)
P2 (xR)~ 17 (1)=Vg. (34)

B. Boundary layers

As with the outer solutions, we get a hierarchy of equa-
tions for the boundary layers after substituting E2p) into
Egs.(21) and(22), multiplying the series, and equating like
powers ofe. At leading order the equations are

d?p”
_E(XL)_dglz :; 7Cj7, (39

061902-4
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dclo

= ' o
0 az +zC

]!

do®  do;;
L 995,

d¢  d¢
do® dej,i)

az +_d§ (36)

0
+z]-cj('i)(x,_)(

This last equation is a linear, first-order ordinary differential

equation forC{% that is solved by
CiY =cil(x){exd —z(®P+6;)]-1} (37

where the constant of integration was found using @4).
Evaluating this at=0 gives

Bii=ciS (xpexd —z (B4~ bV (x))]
where we have used Eq®8) and (16).

(39

Ill. RESULTS

Theorem 1 The outer solutions just inside the membrane
interface{”(x.) and d%(x,) are the usual Donnan poten-

tial and concentrations

P2 (x) =V, +In(Y), (39
C @ (XL) Cj (U)equuj 0 M, DY (40)

where Y satisfies
0= E Zic(L)expufo—ufDY A+aL. (4D

Note thatEgs. (40) and (41) are the same agqgs.(7) and

(8).
Proof. Let
Aj,i: i (XL)eXF(M ). (42)
Since the activities are continuous, we have
Bj0€XP u0) = Bj1exp(ui)=a; . (43
Using Eq.(38) we get
Al = o = ATA] (44)
and thus
R
Ajx Ak

for anyj andk. Dividing Eq. (38) for the left and right sides
of x_, we get

Dx) (49

O PN o~ 2t 2 B
Aj,o ] ¢

2+ 2){By— oL (X}

j,1

(47)

PHYSICAL REVIEW B3 061902

Thus
A OAk 1/(—Zk+Zj)
expl 41" (x0) — 6§ (x)]= ( Aa ) (48)
j,1 7k,0
Equation(45) gives
Aj 0) l/Zj (Al 0) 1/zy
—| =\ =Y 49
(Aj,l A1,1 49
for all j. Solving forA; ; we get
Aja=aj0Y " (50)

Putting this back in terms of concentrations, we get

o] (x0) =c{ P (x ) expl ufo— uD)Y (5)
Next we sum Eq(51) overj and apply the electroneutrality

of outer solutiong29)

0=2 z;cQ(x) +ay (52)

:; ZJCO(XL Jexpuio— i)Y A+
(53

Therefore theY needed to flnd:( 7(x,) is the solution to this
polynomial. Then Eq(53) is the same as Ed7) with Y
=Y, after using approximatio31). Lastly, by substituting
Eq. (45) into Eq. (48) and using Eq(33) we have
PP (x) = (x) FIn(Y)=V +In(Y) (54

and the last result follows. |

This result is not surprising; this part of the singular per-
turbation expansion is a more mathematical way to do the
derivation of the Donnan potential. Note, however, that we
did not use the assumptions normally used to derive the Don-
nan potential.

Next we concentrate on the corrections to the Donnan
potential and concentrations that are new results. By &g).
and Theorem 1 we already have

Bj1=cj(L)exp uio— ufexd —zj(Bs— V)]

so the only thing missing is a formula fgr, that is given in
the next result.
Theorem 2 B, is given by the implicit formulation

(59

qL<ﬂ¢—vL>+$ ci(L[1—exp(ufs—u®)]
xexd —z(Bs— V)]

—qL‘PL+EC(L [ 1—expulo—uiDexp—z¥ )],

(56)
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where ¥, = ¢{”)(x,) =V, ~In(Y) is the usual, but nondi- The result follows sincaV =In(Y) by Theorem 1. ]
mensionalized, Donnan potential on the left side of the mem- Lastly, we describe the amount of space charge that is
brane. When there is no difference in the excess chemicgontained in the boundary layers; that is, how far the areas
potentials between the liquid and the membrane for all spefust inside and just outside of the channel are away from
cies(that is u; o= ;1 for all j), then this formula is explicit ~ charge neutrality.

Theorem 3 The amount of space charge in the bath is

ﬁ(ﬁ_VL:\I’L“"\II,, (57)
Where _Sgr(qL)SA(XL) V26(XL)
1/2
L1 x| > ci(L){exd —z(By—V,)]-1
vi=o S oUll-ew-zv)] 69 = GO 7(Be= VI
(63)
is the correction to the usual Donnan potenti#tl . In this
case Overall the system is charge neutral so that the space charge
just inside the channel is equal in size and opposite in sign to

Bio=Bja=cj(L)exd —z (¥ +¥{)]. 59 that in the bath
Proof. The amount of charge contained in both boundary

Proof. Multiplying Eq. (35) by d®(%/d¢, substituting in layers is given by

Eq. (37), integrating from 0 toe, and using Eq(27) gives

(0) 2 X
—@ﬂ(@ ol [ e
S 2,690 f exp[ 2(0(9+6,))] ~ J A(x)E z{c{P(x) +CiP({)}dx
X d¢—q;®{?(0). (60) + f PA0S [24el900+COU 0+, Jdx
XL ]

It is at this stage that we need the fact that the excess chemi-
cal potentials we are approximating are step functions. In

that case the excess chemical potentials of all species change
much more rapidly than the electrostatic potential and wel he first integral on the right-hand side is the charge con-

(64)

may appro)qmate the |ntegra|5 above by tained in the boundary Iayer in the bath jUSt outside the chan-
nel and the second is the charge just inside the channel.
do(® o Since the outer solutions are charge neutral by(E9), this
f az ——exfd —z(®{”+6;)]d¢ leaves
O A0S {zc d
~exp{ Zj jl( )] exp( ZJ i )dg 0 (X) j {ZJCJ(X)+Q(X)} X
1 0 XL 0)
= _lexp{—z®{°(0)} 1. (61) ~ A(x); 7CQ()dx
i

This expression is exact if there is no difference in the excess %2 (0)

chemical potentials in the liquid and the membrane; that is, if + LL A(X); {zjc; 1 (}dx (65
the activity coefficients for permeating ions are the same in

the bulk solution and the channel. Setting th@d{>/

dg)(p)]2 equ_al to[(d@&?)/dg)(O)]z becausep must have a %sA(xL)( jwz sz}f’o)(g)dg
continuous first derivative gives 0 j

S o (L)expt ufs— uSDext 2By~ VL)) o3 Zicfvofmdf)’ (66
J

= cLrexo u— u)Y "4 — —V, —In(Y where we have used the approximation that the boundary
E‘ i(L)exPujio— 1y 1) AlBy=Vi=In(Y)] layers change more rapidly than the area functioran as-
sumption that we have already made in order to derive Eq.
= c(exd —z(B8.-VH1= c(L). 62 (35). A(x,) is then the area of the left side of the channel. By
; i(bexit=z(B,= Vo) ; it (62 the Poisson equation for the boundary lay@s),

061902-6
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- = 2 o 1
JO 2 7 Cjde=~e(x) Jo —agz 4= etx) —(0). S I
(67) 301

Sinced®/dx is continuous and by the two different defini- 7

tions of ¢ for the bath and the channel given after E2R),
we have @(®{/d¢)(0)=—(d®{?/d)(0). Therefore,
sincee is assumed to be continuous, the total charge in both
layers is O(that is, overall the system is charge neyteaid 5]
in order to find the amount of charge separated it suffices to
find (dP{®/d)(0). In Egs. (60) and (61) we found
[(dd{P/d{)(0)]? and so only the sign remains to be deter- - . . ,
mined. Because we are considering the uncompensated 00 05 . nglar) 13 20

charge in the bath, it must be the counter ions going into the
channel. Thus the sign must be opposite to that of the fixed FIG. 1. Plot of the potentialin millivolt) at the liquid/
[ | membrane interface as function of bath concentratigim molan

201
15 1

Classic Donnan Potential
—— Modified Donnan Potential
—=— Numerical Solution

Potential (mV)

—
(=
1

charge inside the channg] .
with q;=—1.0M, z,=2, ¢c,(L)=0.1M, c,(R)=0.1M, Ay,
IV. DISCUSSION =37mV, Djpay=3X 10 ° e/ sec, Dy n=1.5X 10" emP/sec,
23:1, C3(L):C, C3(R):01 M, A/L3:80 mV, D3,bath:2

We have derived a formula for the electrostatic potentialx 10-° cn?/sec, Dj=2%10 cnf/sec, z,=-1, cy(L)=c
at the edge of a channéhat is, at the interface between the +0.2M, c,(R)=0.3M, Au;=0mV, D,p.=10°cné/sec,
channel and the surrounding ionic solutiprimsed on the D, =10 *cm?/sec. The channel was given a radius of 3.5 A and
Poisson-Nernst-Planck model of charge transport. In fullyA was given a constant value of the channel’s cross-sectional area.

dimensional units this potenti#,, is given by The diffusion coefficients are those used in the numerical solutions,
but are not necessary for the theoretical treatment.

A,u,jex
1- exy{ KT

The amount of space charge in the bath has magnitude

kT
q(Bs—V)+ Y 2 Cj lig

zZie Zje 1/2
Xexr{_kj__r(ﬁd)_v)} A(ZkTG; Cj,liq ex4_ﬁ(ﬁ¢_V)]_l ) (73)
T A,ufx z; and has the sign opposite of thatgpfinside the channel, the
=q¥+— 2 Ciigl 1—€xp - /&xp — 7Y/ space charge has the same magnitude, but has the sign the
same as that afl. (A and e are the cross-sectional area and

(68) dielectric coefficient, respectively, at the liquid/membrane
where ¥ is the usual Donnan potential on the side of theinten‘_ace) The result.s of. this analysis for a case of three ion
membrane being studied Species are sh.o'wn.m Fig. 1. . .

' These modifications to the Donnan potential are valid
A= 1 i 4. mem (69) when the channel is long enou_gh to have the inner part of the
’ ’ channel charge-neutral; that is, the mobile and permanent

is the difference in excess chemical potential of spegies charge are equal in that region. If there is no such part of the
between the bulk liquid and within the membraogy, is the ~ channel, then there are no distinct boundary layers on the
bulk liquid concentration of specigsandq andV are, re- €dge of the channel and outer solution in the middle and the
spectively, the membrane charge concentration and the volfathematical assumptions about the structures of the solu-

age applied on the side of the membrane being studied. TH&ONs (17), (18), and(27) are no longer true. For biological
concentrationg; ymemjust inside the membrane are given by ion channels, this generally means a channel of length 20 A
or more. For shorter channels, however, the edge potentials

A,ufx zje given here should still be better than classical Donnan poten-
Bj.men=C.iiq &XA 7~ exp[ - ﬁ(ﬁqf;_v)}- (70 tials that have been used in the pEE).
A surprising result of our analysis is its confirmation of
In the case Whemﬂfxzo for all Specieq we have derived the validity of the usual simple treatment of the Donnan
potential. When our assumptions are satisfied, the usual

a simple correction to the usual Donnan poteriifal
treatment gives the correct current/voltage relation even
By—V=V+T', (71)  though its internal images of the potential and concentration
profiles at the membrane edges have serious errors. This is
because the classical Donnan potential is the extrapolation of
the potential profile across the channel from the charge-
1—e ;{_E\P”_ (72) neutral center to the channel edge; that is, it ignores the
KT boundary layers. The inclusion in the calculations of the

where
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boundary layers does not change the potential or concentra- Last, in the case of leaky membrar{esse 1}, the results
tion profiles in the middle of the channel, but only at the of this study are still valid when one of the following two
edges(assuming the channel has a change-neutral region igonditions is satisfied.

the middlg. Since the current in this one-dimensional model

must be constant, the current calculated in the middle of th? o o
channelaway from the boundary layeris the same regard- ions are known and do_ not vary 5|gn|f!cantly with distance
less of whether the boundary layers are included or notf_rom the channel. Experimental precautions are usually taken

When dealing with ultrashort channéls20 A) this analysis to ensure th'_s 5|t_uat|on forK_ Na’, anéjécr channels. Such
is no longer true; using the usual Donnan potentials and th%1 simplification is not po§S|bIe f(.)r. channels becﬁuse
newly derived potentials would give different current/voltaget ey normally operate with negligible €a concentration

relations because the center of the channel is never chargs L #M [3]) on one side.

neutral. In this case while the newly derived potentials ar (2) Tlhe hbath conrz]:entratlons near thehmelcrjnl;rane are
not exactly correct since the underlying mathematical as<"oWn.- In that case these concentrations should be put into

sumptions are not true, their use must give more accurattbhe equations for the modifications of the Donnan potentials

results than the application of the usual Donnan potentialélnd concentrationts8) and (70).
since for such channels the new boundary conditions will
recover the potential and concentration profiles better. For all
types of membranes, the modifications become important D.G. was supported by NIH Grant No. T32NS07044.
when one is interested in the actual shapes of the potenti®.S.E. was supported by DARPA/SPO Grant No. MDA972-

(1) The experiment is set up so that the bath concentra-
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