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Transport tensors in perfectly aligned low-density fluids: Self-diffusion and thermal conductivity
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The modified Taxman equation for the kinetic theory of low-density fluids composed of rigid aspherical
molecules possessing internal degrees of freedom is generalized to obtain the transport tensors in a fluid of
aligned molecules. The theory takes care of the shape of the particles exactly but the solution has been obtained
only for the case of perfectly aligned hard spheroids within the framework of the first Sonine polynomial
approximation. The expressions for the thermal-conductivity components have been obtained for the first time
whereas the self-diffusion components obtained here turn out to be exactly the same as those derived by Kumar
and Masters@Mol. Phys.81, 491 ~1994!# through the solution of the Lorentz-Boltzmann equation. All our
expressions yield correct results in the hard-sphere limit.
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I. INTRODUCTION

The hard uniaxial-ellipsoidal molecules serve as the m
commonly employed model for the study of structural, sta
and dynamic properties of the fluids that undergo isotrop
nematic phase transition. The degree of orientation in s
model fluids is characterized by the Maier-Saupe@1# order
parameterS5 1

2^3(ĉ•n̂)21&, whereĉ is a unit vector along
the molecular symmetry axis,n̂ is the director in the nematic
phase, and the angular bracket represents averaging
single-particle orientational distribution function. The val
of S lies in the range 0<S<1; the isotropic phase of th
fluid is described byS50 whereasS51 defines perfect
alignment of spheroidal nematogens. The self-diffusion
efficient tensorDJ s and shear-viscosity tensorhJ in S.0
phase have been calculated by various theoretical as we
simulation methods but the thermal-conductivity tensorlJ

has been studied so far only by the latter approach.
simulations have yielded results@2,3# for the components
Dzz andlzz of DJ s andlJ parallel to the director as well as th
transverse componentsDxx5Dyy andlxx5lyy .

The affine transformation~AT! and the modified affine
transformation~MAT ! theories developed by Hess and c
workers@4# give predictions forDxx as well asDzz, respec-
tively, for perfectly and partially aligned fluids of hard sph
roids. These quantities have also been obtained in Ref@5#
through the solution of the modified version of the Loren
Boltzmann~LB! kinetic equation@6#. In LB theory the cal-
culation has been carried out only to the first Sonin
polynomial approximation but the shape dependence of
friction and the mobility tensors has been treated exactly.
comparing the numerical values with the uncorrelated tim
correlation function~TCF! theory of Tang and Evans@7#, it
has been concluded in Ref.@5# that the approximations mad
in @7# in treating the shape dependence of the friction ten
are judicious and their predictions of components ofDJ s dif-
fer at most by 4% from the corresponding exact LB theo
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results. However, it was found in@5# that AT theory values
for the diffusion components differ from the LB kineti
theory predictions by up to 40% and the genesis for this
be traced back to the mathematical fact that the affine tra
formation maps a hard spheroid onto a hard sphere~HS! with
the same volume but with a different surface area. Since
expressions for the transport-coefficient tensors involve v
ous integrations over the surface element of the exclu
volume, the volume-conserving transformation cannot be
pected to relate simply the transport results for the spher
and hard spheres. Furthermore, the aligned spheroids
angular velocities that affect the dynamics of collision b
the corresponding contributions do not appear in the affi
transformed smooth HS fluids. Nevertheless, the affi
transformed approaches provide some reasonable result
and the deficiencies as well as the qualities of AT and M
theories have been thoroughly discussed in Ref.@5#.

The AT and MAT have also been applied to predict t
viscosities, respectively, of perfectly@8# and partially @9#
aligned hard spheroids and compared with the correspon
nonequilibrium molecular dynamics~NEMD! simulations
@10# and the experimental data@11#. The viscosities have
recently been calculated@12# by the TCF method also an
the results have been found to track the experimental d
@13# and the NEMD simulations@3# as well as the predic-
tions of MAT @9#. However, the AT, MAT or TCF theory
has not focused attention so far on the calculation oflI in S
.0 phase and the LB theory has not been applied for
predictions of the viscosities or the thermal conductivity c
responding to any value of the parameterS, i.e., either in the
isotropic or the nematic phase.

The ordinary diffusions~self as well as mutual!, thermal
diffusion, viscosities~shear as well as bulk!, and thermal
conductivity of fluids composed of uniaxial or biaxial ellip
soids have been studied@14–18# in isotropic phase through
the modified@14# Taxman~MT! kinetic approach@19#. The
historical perspective leading to the modified version@14# of
the Taxman equation has recently been summarized b
@20# wherein we have extended the MT theory to discuss
kinetic theory of dense fluids composed of rigid biaxial mo
ecules. The formulas for the shear viscosity of fluids of pu
spheroids derived through the low-density MT as well as

n-
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G. S. SINGH AND B. KUMAR PHYSICAL REVIEW E63 061707
uncorrelated TCF@21,22# theories are found to be identica
but the thermal conductivity expressions are different due
the approximation made in the TCF approach, as expoun
in Ref. @14#. Moreover, result for the bulk viscosity has be
obtained through the MT theory but not through the TC
method. Also, it is somewhat surprising that the above t
theories, although based on uncorrelated collisions, are
cessful in describing the physics even at liquid densit
Because of all these successes of the MT theory and ou
pragmatism, we feel encouraged to generalize the theory
the nematics and to find out explicit expressions forDJ s andlI

in a perfectly aligned nematic environment.
Section II considers the generalization of the MT theo

for application in the nematic phase. Section III derives
pressions for the components ofDJ s of a pure fluid of per-
fectly aligned hard spheroids and the results turn out to
exactly the same as obtained in Ref.@5# by the application of
the LB kinetic theory. This perfect agreement between
results obtained from the two independent approaches cle
indicates that the generalized Taxman theory is the r
choice for the derivation of the expressions for other tra
port tensors as well. Hence Sec. IV is devoted to obtain
formulas for the components oflI of the perfectly aligned
nematogens. Finally, Sec. V provides the concluding
marks wherein it is shown thatDJ s result reduces in the limi
of low-density HS fluid to the Enskog self-diffusion coeffi
cient formula@23#. Similarly, the lI result retrieves, in the
limiting case, respectively, the Enskog thermal conductiv
or the modified Eucken formula@23# for the HS fluids pro-
vided one neglects or retains the contributions from the
tational energy of HS molecules. This section also outlin
the scope as well as necessity for our low-density theor
the study of transport phenomena for the spheroidal-nem
liquid crystals.

II. GENERALIZED TAXMAN THEORY

Consider any hard convex-body low-density pure fluid
which each molecule of massm has translational as well a
rotational degrees of freedom and, thereby, possesses p
pal moment of inertia tensorIJ. Consider that a tagged mo
ecule, designated as 1, undergoes binary collision with
other molecule designated as 2. Themth molecule (m
51, 2) has at space-time point (rW,t) postcollisional peculiar
velocity @23# VW m , angular velocityvW m , and their precolli-
sional counterparts asVW m8 and vW m8 . The transport propertie
of the fluid can be calculated from the knowledge of t
single-particle distribution function that in turn is obtaine
from the solution of an appropriate integro-differential k
netic equation. The collision term in such an equation
conveniently described in terms of the unit surface-norm
k̂[ k̂252 k̂1 at the point of contact, i.e., the point where
pair of hard convex molecules are momentarily in cont
during collision, and the postcollisional relative velocity

gW 215 (
m51

2

~21!m@VW m1vW m3rW m# ~1!
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with rW m as the vector joining particle’s mass-center to th
point. We now define the dimensionless quantities@18,24#

vW 5
1

&
~vW 22vW 1!5S m

4kBTD 1/2

~VW 22VW 1!,

gW 5S m

4kBTD 1/2

gW 21 ~2!

and

VW m5S 1

2kBTD 1/2S ââ

AI a

1
b̂b̂

AI b

1
ĉĉ

AI c
D 1/2

• IJ•vW m , ~3!

where (I a ,I b ,I c) are the components ofIJ along the princi-
pal axes (â,b̂,ĉ), andT5T(rW,t) is the local temperature.

The solution of the MT equation provides informa
tion regarding single-particle distribution functio
fm(vW m ,VW m ,rW,t) in S50 phase. However, the nematic pha
of the spheroidal fluid can be described in terms of a funct
Fm(jm ,rW,t) that incorporates orientational order withjm rep-
resenting a set of variables (vW m ,VW m ,ĉm ,n̂). We consider the
ansatz that

Fm~jm ,rW,t !54p f ~ ĉm•n̂!fm~vW m ,VW m ,rW,t !, ~4!

with f ( ĉm•n̂) taken as equilibrium value of the normalize
single-particle orientational distribution function, satisfi
the equation

S ]

]t
1vW 1•

]

]rW
1aW 1•

]

]vW 1
DF1~j1,rW,t !

5S kBT

4p2mD 1/2E E E E E ~F28F182F2F1!

3 k̂•gW zex~ k̂,ĉ1 ,ĉ2!dk̂ dvW 2 dVW 2 dĉ2 . ~5!

HereaW 1 is the acceleration of the particle andzex( k̂,ĉ1 ,ĉ2) is
the excluded-volume surface element per unit solid angl
the point of contact. Also,Fm8 [Fm8 (vW m8 ,VW m8 ,ĉm ,n̂,rW,t) is the
precollisional counterpart ofFm .

In a real nematic, interparticle interaction alone is resp
sible for creating orientational order. However, if we co
sider that a hypothetical external potentialVext( ĉm•n̂) given
by

Vext~ ĉm•n̂!52
a

b F3

2
~ ĉm•n̂!22

1

2G , ~6!

with b51/kBT and 0<a,`, creates such an order, one c
approximatef ( ĉm•n̂) for uniaxial ellipsoidal nematogens a
@1,5#

f ~ ĉm•n̂!5
exp@2bVext~ ĉm•n̂!#

E exp@2bVext~ ĉm•n̂!#dĉm

. ~7!
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TRANSPORT TENSORS IN PERFECTLY ALIGNED LOW- . . . PHYSICAL REVIEW E 63 061707
It is now straightforward to see that Eq.~5! is a generali-
zation of the MT equation since the former reduces to
latter one in the isotropic phase whena50 provided the
former is further averaged overĉ1 . Moreover, by adopting
the method for the evaluation offm by successive approxi
mations, as in the isotropic case@23#, Fm can be determined
to any degree of accuracy. The first and second approxi
tions toFm for spheroidal fluids are given byFm

(0) andFm
(0)

1Fm
(1) , where

Fm
~0!~jm ,rW,t !54p f ~ ĉm•n̂!fm

~0!~vm ,Vm ,rW,t ! ~8!

with @25#

fm
~0!~vm ,Vm ,rW,t !5p25/2n~rW,t !exp@2~vm

2 1Vm
2 !# ~9!

andn(rW,t) as the number density of a pure fluid at the po
(rW,t). The form forFm

(1) depends on the consideration of a
particular transport process and we will consider the app
priate forms in Secs. III and IV.

Also, for spheroids, one has@5,7#

zex~ k̂,ĉ1 ,ĉ2!5a6F a2ec
2

h1
3h2

3 @ k̂•~ ĉ13 ĉ2!#2

1~11ec!S 1

h1
1

1

h2
D S 1

h1
3 1

1

h2
3D G , ~10!

where

hm5a~11eczm
2 !1/2, ~11!

is the support function formth spheroid withz152 k̂• ĉ1 and
z25 k̂• ĉ2 . The anisotropy parameterec is defined asec
5(c/a)221 with ‘‘c’’ and ‘‘a’’ as the semiaxes, respec
tively, parallel and perpendicular to the symmetry axis.

We consider now onwards the perfectly aligned limit, i.
the situation whenĉ15 ĉ25n̂, and so there is no possibilit
of occurrence of the chattering collisions@26#, which is a
process wherein a pair of hard convex molecules collide
or more times without any intervening collisions with oth
molecules.

III. SELF-DIFFUSION TENSOR

To determineDJ s , we imagine that the given pure fluid i
a binary mixture in which the spheroids belonging to tw
different sets are of the same mass and obey the same la
interaction at collision so that they are mechanically sim
@23#. The definition ofDJ s refers to a state of the fluid in
which no external force other than the aligning torque a
on the particles, and the pressure and temperature of the
are uniform so that the total number densityn5n1(rW,t)
1n2(rW,t) is independent of (rW,t). The self-diffusion tensor
is now defined through the equation

VW̄ 22VW̄ 15DJ s•~¹W ln n12¹W ln n2!5
n

n1n2
DJ s•¹W n1 , ~12!
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which is a generalized form of the Fick’s law for any anis

tropic fluid and whereVW̄ m refers to the average peculiar ve
locity of any one particle of the setm. The expression forDJ s

can be obtained if we can find an alternative form for (VW̄ 2

2VW̄ 1). In order to achieve this, we follow the approac
adopted in Ref.@23# for isotropic fluids and get

VW̄ m5S 2kBT

mnm
2 D 1/2E E E Fm

~1!~jm ,rW,t !vW m dvW m dVW m dĉm

~13!

with

Fm
~1!52

1

n
f ~ ĉm•n̂!fm

~0!~vm ,Vm ,rW,t !AW m•¹W n1~rW,t !,

~14!

where AW m[AW m(vW m ,VW m ,ĉm ;n̂) is a postcollisional vector
function that is to be determined. It may also be recalled t
the average ofVW m with respect toFm

(0) is zero.
We combine Eqs.~13! and ~14! to get an expression fo

VW̄ 22VW̄ 1 , and compare the resulting equation with Eq.~12!.
We thus obtain

DJ s5
n1n2

n2 S 2kBT

m D 1/2

(
m51

2
~21!m11

nm

3E E E f ~ ĉm•n̂!fmAW mvW m dvW m dVW m dĉm . ~15!

The unknown functionAW m satisfies the equation

JWm~AW m!5
~21!m11

4pxm
Fm

~0!VW m , ~16!

and we write the first Sonine-polynomial approximation
the form

AW m5
~21!m11

xm
gJ 0•VW m , ~17!

wherexm5nm /n andgJ0 is a constant diagonal tensor. In a
isotropic fluid environment, the components ofgJ0 are equal,
i.e., g0 , so thatgJ0•VW m5g0VW m . Also, the collisional integral
JWm(AW ) has the form

JWm~AW !5
1

8p2 S kBT

m D 1/2

3E E E E Fm
~0!Fn

~0!~AW m1AW n2AW m8 2AW n8!

3 k̂•gW zex~ k̂!dk̂ dvW n dVW n dĉn , ~18!
7-3
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whereAW m8 ~or AW n8! is the precollisional value ofAW m ~or AW n!
with m or n51,2 andmÞn. Insertion of Eqs.~17! and ~7!
into Eq. ~15! and the use of Eq.~9! yields the first approxi-
mation forDJ s in the form

@DJ s#15S kBT

m D gJ0 ~19!

since**( ĉn•n̂)dĉn51.
To find the value ofgJ0 , we now combine Eq.~16! with

Eqs.~4! and ~9! to get

(
m51

2
~21!m11

xm
E E E JWm~AW m!vW m dvW m dVW m dĉm

5S kBT

2m D 1/2 n3

n1n2
UJ , ~20!

whereUJ is the unit tensor. We further combine Eqs.~4!, and
~9!, ~17!, and~18! with ~20!. We then use the form

zex~ k̂!5
4a4c2

h4 ~21!

obtained from Eq.~10! writing z252z1[z and h15h2
[h(z)5a(11ecz

2)1/2 in case of a pair of perfectly aligne
identical spheroids, which is of our concern here, toget
with the symmetry relation~3.54.3! of Ref. @23#, whence we
find

gJ0•E E E E F (
m51

2

(
n51

2
~21!m1n

xmxn
~vW m2vW m8 !~vW n2vW n8!G

3f1
~0!f2

~0!k̂•gW zex~ k̂!dk̂ dvW 1 dvW 2 dVW 1 dVW 2

5
n3

2n1n2
S m

kBTD 1/2

UJ . ~22!

We now transform the velocity variablesvW m andvW m8 of a

pair of molecules toGW , vW , andvW 8, whereGW 5m GW 0 /kBT is
the dimensionless variable corresponding to the center
mass velocityGW 0 of the pair, vW m5@GW 1(21)mvW #/& and
vW m8 5@G1(21)mvW 8#/&. We then perform the integratio

over GW and thus find that Eq.~22! takes the form

gJ0•E E E E exp@2~v21V1
21V2

2!#

3~vW 2vW 8!~vW 2vW 8!k̂•gW zex~ k̂!dk̂ dvW dVW 1 dVW 2

5S mp7

n2kBTD 1/2

UJ . ~23!

The quantity (vW 2vW 8) appearing in the above equation
related tok̂•gW and is given@14,15# by

vW 2vW 852kW
k̂•gW

w2 , ~24!
06170
r

f-

wherew is the rotation-to-translation energy transfer functi
having the form

w5~11d1
21d2

2!1/2 ~25!

with

dW m5S m

2I D
1/2

~rW m3 k̂m!5S ma4ec
2

2I D 1/2

~12zm
2 !1/2

zm

hm
.

~26!

Here I is the moment of inertia of an elongated-spher
perpendicular to its symmetry axis and for a pair of perfec
aligned identical spheroids, Eq.~25! can be written as

w25112d2512S m

Ih2D ~h22c2!~h22a2!, ~27!

whered[d15d2 .
The velocity and angular velocity integrations in Eq.~23!

can be performed by the Hoffman-like technique@14,24# af-
ter insertion of Eq.~24! into it and the result is

gJ0•E k̂k̂

w
zex~ k̂!dk̂5

1

2n S pm

kBTD 1/2

UJ . ~28!

We now expressk̂ in terms of its components alongĉ[ ĉ1
5 ĉ2 and perpendicular to it~i.e., alongĉ'1 andĉ'2! obtain-
ing

k̂5 ĉ~ k̂• ĉ!1~UJ2 ĉĉ!• k̂

5 ĉz1~ ĉ'1 cosf1 ĉ'2 sinf!~12z2!1/2, ~29!

wheref is the azimuthal angle ofk̂ with respect toĉ.
Insertingzex( k̂) from Eq. ~21! and k̂ from Eq. ~29! into

Eq. ~28!, using dk̂52dz df and then performing the
f-integration, one finally obtains

gJ0•E
0

1 1

wh4 @2ĉĉz21~UJ2 ĉĉ!~12z2!#dz

5
1

16na4c2 S m

pkBTD 1/2

UJ . ~30!

The terms containingĉĉ•gJ0 and (UJ2 ĉĉ)•gJ0 can be readily
separated from the above equation. When they are su
tuted in Eq.~19!, we finally obtain first-order results for th
parallel and perpendicular components of@DJ s#1 as

Dzz5
1

32na4c2 S kBT

pmD 1/2F E
0

1 z2 dz

w~z!h4G21

~31!

and

Dxx5
1

16na4c2 S kBT

pmD 1/2F E
0

1 ~12z2!

w~z!h4 dzG21

. ~32!
7-4
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Hence, the anisotropy of diffusion defined@4,5# by the ratio
RD5(Dzz2Dxx)/(Dzz12Dxx) has the form

RD5F E
0

1 ~123z2!

w~z!h4 dzGF E
0

1 ~113z2!

w~z!h4 dzG21

. ~33!

The results in Eqs.~31! and ~32! are identical with those
derived in Ref.@5# through the LB kinetic equation. Thi
testifies that the application of the generalized MT theory
the study of transport phenomena in the perfectly align
model nematics is fully justified. Hence, our approach can
extended to study other transport coefficients and we now
out to apply our generalized theory toward the study of
thermal-conductivity tensor for the fluids comprising pe
fectly aligned hard prolates.

IV. THERMAL CONDUCTIVITY TENSOR

We follow the approach adopted in Ref.@16# to solve the
MT equation whence the thermal flux vectorqW is obtained in
the generalized form

qW 52E E E f 2~ ĉ2•n̂!f2~v2 ,V2 ,rW,t !

3CW •¹W ln T~rW,t !EVW 2 dvW 2 dVW 2 dĉ2

52S 2kB
3T

m D 1/2

~¹W T!•E E E f 2f2CW vW 2~v2
21V2

2!

3dvW 2 dVW 2 dĉ2 , ~34!

whereCW 5CW (vW 2 ,VW 2 ,ĉ2 ;n̂) is a postcollisional vector func
tion which is to be evaluated and we have substituted for
thermal energy,E5kBT(v2

21V2
2). On the other hand, the

thermal conductivity tensorlI is defined through the genera
ized Fourier’s law

qW 52lI•¹W T ~35!

and, hence, we have

lI5S 2kB
3T

m D 1/2E E E f 2f2
~0!CW vW 2~v2

21V2
2!dvW 2 dVW 2 dĉ2

~36!

in the first approximation.
As a first Sonine-polynomial approximation toCW , we

adopt the form@27#

CW 5
1

n
@gJ1•VW 2~v2

22 5
2 !1gJ2•VW 2~V2

221!#, ~37!

which is a generalization of the corresponding expression
Ref. @16#. Here,gJ1 andgJ2 are constant diagonal tensors a
are to be determined. In isotropic fluid phase of the sp
roids, we havegJ j5g jUJ so thatgJ j•VW j5g jVW j . We substitute
Eq. ~37! into Eq. ~36!, use* f 2dĉ251 as CW is now not a
06170
r
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e
et
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function of ĉ2 , and perform the velocity and angular veloci
integrations to obtain the first approximation oflI as

@lI#15
kB

2T

2m
~5gJ112gJ2!. ~38!

To determinegJ1 andgJ2 , we note thatCW satisfies@16,23# the
equation

JW2~CW !5
1

4p
F2

~0!~v2
21V2

22 7
2 !VW 2 , ~39!

where the form of the collision integralJW2(CW ) follows from
Eq. ~18! by just replacingAW by CW . We then substituteCW from
Eq. ~37! in the equation so obtained, multiply it, respective
by (v2

22 5
2)VW 2 and (V2

221)VW 2 , and integrate the right-han

sides of the resulting two equations overvW 2 , VW 2 , and ĉ2 .
We thus obtain

(
i 51

2

gJ i•GIi j 5
722 j

2~ j 11!
UJ , ~40!

with j 51,2 and where

GI115@~v2
22 5

2 !vW 2 ,~v2
22 5

2 !vW 2#, ~41!

GI125@~v2
22 5

2 !vW 2 ,~V2
221!vW 2#, ~42!

GI215@~V2
221!vW 2 ,~v2

22 5
2 !vW 2#, ~43!

GI225@~V2
221!vW 2 ,~V2

221!vW 2#. ~44!

are the so-called square bracket integral~SBI! tensors@xW ,cW #
defined as the generalization of the corresponding SBI’s
Ref. @16#:

@xW ,cW #[
1

n2 E E E xW JW~cW !dvW 2 dVW 2 dĉ2

5
1

~4pn!2 S kBT

4m D 1/2E E E E E E E F1
~0!F2

~0!

3~xW 21xW 12xW 282xW 18!~cW 21cW 12cW 282cW 18!

3 k̂•gW zex~ k̂!dk̂ dvW 1 dvW 2 dVW 1 dVW 2 dĉ1 dĉ2 .

~45!

We also haveGI215GI12.
The velocitiesvW m andvW m8 in the SBI tensors are replace

by GW , vW , andvW 8, and the integrations with respect toGW are
performed, whence the final results have the form

GIi j 5~21! i 1 jLI1PI i j , ~46!

where

LI5UJ Ô$~v22v82!2%, ~47!
7-5
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PI1154Ô$v2vW vW 1v82vW 8vW 81~v22v82!~vW vW 2vW 8vW 8!

2vW •vW 8~vW vW 81vW 8vW !%, ~48!

PI1252Ô$~v822v2!~vW vW 2vW 8vW 8!% ~49!

and

PI2252Ô$~V2
22V1

2!2vW vW 1~V28
22V18

2!2vW 8vW 82~V2
22V1

2!

3~V28
22V18

2!~vW vW 81vW 8vW !%, ~50!

and we have defined an integral operator as

Ô$¯%5
1

8p3 S kBT

pmD 1/2E E E E $¯%exp@2~v21V1
2

1V2
2!# k̂•gW zex~ k̂!dvW dVW 1 dVW 2 dk̂. ~51!

By using

VW m8 2VW m522dW m

k̂•gW

w2 , ~52!

together with the relation given in Eq.~24!, the velocity and
angular velocity integrations appearing in Eqs.~47!–~50! can
be performed by the standard Hoffman-like@14,24# method.
We then use Eq.~29! and dof-integration whence the re
sults are obtained finally as

LJ52kUJ E
0

1S 1

w
2

1

w3D zex~z!dz, ~53!

PI1152kUJ E
0

1 1

w
zex~z!dz1kE

0

1S 9

w
2

8

w3D
3$@2ĉĉz21~UJ2 ĉĉ!~12z2!#zex~z!%dz, ~54!

PI12522kE
0

1S 1

w
2

1

w3D
3$@2ĉĉz21~UJ2 ĉĉ!~12z2!#zex~z!%dz ~55!

and

PJ 2254kUJ E
0

1 d2

w
zex~z!dz18kE

0

1F S 1

2w
2

2d2

w3 D ĉĉz2

1S 1

4w
2

3d2

2w3D ~UJ2 ĉĉ!~12z2!Gzex~z!dz, ~56!

wherek5(pkBT/m)1/2.

The components of (GI11,GI12,GI22) parallel and perpen
dicular to the symmetry axis of a perfectly aligned ha
spheroid readily follow from Eq.~46! together with Eqs.~27!
and ~53!–~56!. We thus have

G11
zz52kE

0

1F S 2

w
2

1

w3D1z2S 9

w
2

8

w3D Gzex~z!dz, ~57!
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G11
xx5kE

0

1F S 13

w
2

10

w3D2z2S 9

w
2

8

w3D Gzex~z!dz,

~58!

G12
zz522kE

0

1S 1

w
2

1

w3D ~112z2!zex~z!dz, ~59!

G12
xx522kE

0

1S 1

w
2

1

w3D ~22z2!zex~z!dz, ~60!

G22
zz52kE

0

1F S w2
1

w3D22z2S 1

w
2

2

w3D Gzex~z!dz,

~61!

and

G22
xx52kE

0

1F S w2
1

w3D2~12z2!S 2

w
2

3

w3D Gzex~z!dz.

~62!

Now writing Eq.~40! in the component forms and solvin
the simultaneous equations so obtained, we get

g j
t t5

1

D tt @2G11
tt d j ,215G22

tt d j ,12~3 j 21!G12
tt #, ~63!

where j 51 or 2, D tt54@G11
tt G22

tt 2(G12
tt )2#, d j i is the Kro-

necker delta function, and the symboltt stands forzzor xx.
Furthermore, considering the component forms of Eq.~38!
and using Eqs.~63! in conjugation with Eqs.~57!–~62!, we
finally obtain the formulas for the components of@lI#1 as

lzz5S pkBT

m D 3/2 kB

pDzzE
0

1F S 25w1
28

w
2

49

w3D
12z2S 13

w
1

14

w3D Gzex~z!dz ~64!

and

lxx5S pkBT

m D 3/2 kB

pDxx E
0

1F S 25w1
16

w
2

10

w3D
13z2S 4

w
2

13

w3D Gzex~z!dz. ~65!

Hence, the anisotropy of the thermal conductivity charac
ized by the ratioRl5(lzz2lxx)/(lzz12lxx) can also be
calculated.

V. CONCLUDING REMARKS

The consideration of an ansatz has helped us in gene
izing the modified Taxman equation to a form that is suita
to deal with transport tensors in systems with the nem
order. The theory has been applied, by adopting
Chapman-Enskog~CE!-like method@23#, to obtain explicit
expressions for the self-diffusion and thermal conductiv
tensors for low-density fluids composed of perfectly align
7-6
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hard spheroidal molecules. The componentsDzz and Dxx
have been found to be exactly of the same form as th
obtained in Ref.@5# through the solution of the modifie
Lorentz-Boltzmann equation. Hence, we have applied
generalized theory to obtain the explicit formulas forlzz and
lxx that had not earlier been obtained through any appro
The validity of our procedure can further be checked by t
ing recourse to the limiting-isotropic phase. Since, we h
considered here the perfectly aligned nematics, we canno
to the limiting spheroidal-isotropic phase. However, the
limit, when gI05g0UJ and alsoh5c5a, zex54a2, and w
51, can be looked into.

It is straightforward to see from Eqs.~31! and~32! that for
a HS molecule of diameters, one gets

Ds
~HS!5Dzz

~HS!5Dxx
~HS!5

3

8ns2 S kBT

pmD 1/2

~66!

up to the first approximation that is the same as the Ens
formula @23#. However, in view of@25# and @27#, it is not
possible to see straightway the HS-limiting behavior fro
Eqs.~64! and~65!; these equations have been derived for
hard, elongated, spheroidal molecules with five degree
freedom—three translational and two rotational. We fi
take care of the remarks in@25# and@27# and hence introduce
the appropriate changes in Eq.~37!. We then follow the sub-
sequent procedure, of course, in a trivial manner and u
mately get

l~HS!5lzz
~HS!5lxx

~HS!5
75kB

64s2 S kBT

pmD 1/2

~67!

for a nonrotating sphere and

l~HS!5lzz
~HS!5lxx

~HS!5
111kB

64s2 S kBT

pmD 1/2

~68!

for a rotating sphere, which are respectively the Eucken
the modified Eucken thermal conductivity formulas@23# for
the low-density HS fluids, correct up to the first approxim
tion.

It may well be possible to extend the theory develop
here for the general situation when partial alignment is th
in the low-density fluids and also for the discussion of t
viscosities of the aligned molecules. Also, one may like
generalize out theory@20# for the dense fluids for the stud
of the transport phenomena in the nematic environm
However, it seems pertinent to point out that the MT eq
tion considers only binary collisions and so, ordinarily, is n
applicable to dense fluids of nematogens. But in the cas
rigid spheroids the collisions are instantaneous and so p
ability of multiple encounters is negligible@28# provided one
ignores the chattering collisions. One can use this fac
graft a dense, hard, spheroid transport theory on the gen
ized MT equation. It is worth recalling that Enskog had d
veloped a theory for a dense isotropic fluid of hard sphe
@23# and we have generalized it for the isotropic fluids
biaxial ellipsoids@20#. This work requires further generaliza
tion in order to have a new generalized MT equation t
06170
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would be applicable in the liquid-crystalline phase compos
of spheroidal nematogens. The CE method of solution of
MT equation adopted in the isotropic phase would be ap
cable here also and Eq.~29! has to be utilized in the execu
tion of the difficult k̂ integrations appearing therein. Neve
theless, the CE method would require some ba
improvements in predicting the Miesowicz viscositiesh1 ,
h2 , andh3 @8,9,12#, and the Helfrich viscosityh12 @12,29#
of the nematics because the antisymmetric part of the p
sure tensor is not included in the CE method whereas
part contributes toh1 and h2 although not toh3 and h12
@9,30#.

The equilibrium velocity distribution function is aniso
tropic in the AT technique@30# and hence the kinetic contri
bution to the friction tensor of the nematics cannot be cal
lated using the kinetic theory approach of the isotropic flu
of spheroids. However, the sum of both kinetic and poten
contributions are measured in an experiment, and NEM
calculations@8# predict that the kinetic contributions toh1
and h3 for the perfectly aligned soft or Lennard-Jones pr
late spheroids cannot be disregarded. Based on these re
one may conclude that the kinetic contribution tolI should
not be ignored because both viscosity and thermal cond
tivity are collective phenomena. More importantly, the d
velopment of the CE method for the calculation of this ten
at the Enskog level of approximation requires the kine
contribution as an important input and the method can
work without it. It should also be noted that, so far, AT
MAT theory has not predicted even the potential contrib
tion, which is within its ambit, to the thermal conductivity o
spheroids.

By neglecting the memory term from the exact Mo
transport equation for the velocity autocorrelation functi
and by making approximations, as in@7#, that the pair distri-
bution function ~PDF! of the nematics is isotropic on th
contact surface and the same contact PDF can be utilize
the isotropic and nematic environments, we have obtai
@31# in a very simple way the forms for the components
DJ s for spheroidal fluids at the Enskog level of approxim
tion. The results so derived reduce to Eqs.~31! and ~32! if
the PDF is approximated to unity. However, the results
Eqs.~64! and ~65! for the thermal conductivity component
cannot be derived through the Mori method, the reason@14#
being that the result for the thermal conductivity even for
isotropic dilute fluid of spheroids obtained through a Mo
generalized Langevin method@21# is approximate.

Summarizing, the thermal conductivity has not yet be
determined either by any theory or by simulations, even
low-density of aligned spheroidal molecules, and the liqu
crystalline phase requires evaluation of the so-called kine
potential, and cross contributions. The AT, MAT, or TC
theory has its own limitations, at least till now, and henc
ours is a modest approach along proper direction; our lo
density results will be required as a leading term in exte
ing the present theory at the Enskog level.
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