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Transport tensors in perfectly aligned low-density fluids: Self-diffusion and thermal conductivity
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The modified Taxman equation for the kinetic theory of low-density fluids composed of rigid aspherical
molecules possessing internal degrees of freedom is generalized to obtain the transport tensors in a fluid of
aligned molecules. The theory takes care of the shape of the particles exactly but the solution has been obtained
only for the case of perfectly aligned hard spheroids within the framework of the first Sonine polynomial
approximation. The expressions for the thermal-conductivity components have been obtained for the first time
whereas the self-diffusion components obtained here turn out to be exactly the same as those derived by Kumar
and Master§Mol. Phys.81, 491 (1994] through the solution of the Lorentz-Boltzmann equation. All our
expressions yield correct results in the hard-sphere limit.
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[. INTRODUCTION results. However, it was found ii%] that AT theory values
for the diffusion components differ from the LB kinetic

The hard uniaxial-ellipsoidal molecules serve as the mostheory predictions by up to 40% and the genesis for this can
commonly employed model for the study of structural, static,be traced back to the mathematical fact that the affine trans-
and dynamic properties of the fluids that undergo isotropicformation maps a hard spheroid onto a hard spti¢& with
nematic phase transition. The degree of orientation in sucH® same volume but with a different surface area. Since the
model fluids is characterized by the Maier-Saifipjorder ~ expressions for the transport-coefficient tensors involve vari-
parameteiS= 4(3(&-f)—1), wheret is a unit vector along ©OUS integrations over the surface element of the excluded
the molecular symmetry axig, is the director in the nematic volume, the volume-conserving transformation cannot be ex-
phase, and the angular bracket represents averaging wiligctéd to relate simply the transport results for the spheroids
single-particle orientational distribution function. The value@nd hard spheres. Furthermore, the aligned spheroids have
of S lies in the range &S<1; the isotropic phase of the angular velocities that affect the dynamics of collision but
fluid is described byS=0 whereasS=1 defines perfect the corresponding contributions do not appear in the affine-

alignment of spheroidal nematogens. The self-diffusion cotransformed smooth HS fluids. Nevertheless, the affine-
- < . . o transformed approaches provide some reasonable results too
efficient tensorDg and shear-viscosity tensaf in S>0

) : and the deficiencies as well as the qualities of AT and MAT
phase have been calculated by various theoretical as well FBeories have been thoroughly discussed in F&f
simulation methods but the thermal-conductivity tendor  The AT and MAT have also been applied to predict the
has been studied so far only by the latter approach. Theiscosities, respectively, of perfectg] and partially [9]
simulations have yielded resulf€,3] for the components  ajigned hard spheroids and compared with the corresponding
D,,and\,,of Dy and\ parallel to the director as well as the nonequilibrium molecular dynamicéNEMD) simulations
transverse component®,, =Dy, and A=\, . [10] and the experimental dafd1]. The viscosities have
The affine transformatiofAT) and the modified affine recently been calculatefd 2] by the TCF method also and
transformation(MAT) theories developed by Hess and co-the results have been found to track the experimental data
workers[4] give predictions foD,, as well asD,,, respec- [13] and the NEMD simulation$3] as well as the predic-
tively, for perfectly and partially aligned fluids of hard sphe- tions of MAT [9]. However, the AT, MAT or TCF theory
roids. These quantities have also been obtained in [B¢f. nhas not focused attention so far on the calculatiol af S
through the solution of the modified version of the Lorentz-~. o phase and the LB theory has not been applied for the
Boltzmann(LB) kinetic equation/6]. In LB theory the cal-  predictions of the viscosities or the thermal conductivity cor-

culation has been carried out only to the first Sonineyesponding to any value of the parameser.e., either in the
polynomial approximation but the shape dependence of th%otropic or the nematic phase.

friction and the mobility tensors has been treated exactly. On The ordinary diffusiongself as well as mutul thermal

compar?ng the n_umerical values with the uncorrelated_ timegjiffusion, viscosities(shear as well as bulk and thermal

correlation function(TCF) theory of Tang and Evarl§], it conductivity of fluids composed of uniaxial or biaxial ellip-

has been concluded in R¢8] that the approximations made ggids have been studi¢d4—1§ in isotropic phase through

in [7] in treating the shape dependence of the friclion tensofhe modified[14] Taxman(MT) kinetic approact19]. The

are judicious and their predictions of component®gfdif-  historical perspective leading to the modified verdib4] of

fer at most by 4% from the corresponding exact LB theorythe Taxman equation has recently been summarized by us
[20] wherein we have extended the MT theory to discuss the
kinetic theory of dense fluids composed of rigid biaxial mol-

*Permanent address: Department of Physics, University of Ranecules. The formulas for the shear viscosity of fluids of pure
chi, Ranchi 834 008, India. spheroids derived through the low-density MT as well as the
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uncorrelated TCH21,22 theories are found to be identical with 5, as the vector joining particle’s mass-center to this
but the thermal conductivity expressions are different due tgoint. We now define the dimensionless quantifits,24]
the approximation made in the TCF approach, as expounded

in Ref.[14]. Moreover, result for the bulk viscosity has been 1 m\¥2 .

obtained through the MT theory but not through the TCF v= 5(02_01)=<m) (V2—=Vy),

method. Also, it is somewhat surprising that the above two

theories, although based on uncorrelated collisions, are suc- m |12

cessful in describing the physics even at liquid densities. g:<_) Gor 2
Because of all these successes of the MT theory and out of 4kgT

pragmatism, we feel encouraged to generalize the theory for
the nematics and to find out explicit expressionsigrandx

in a perfectly aligned nematic environment. 1 \1%2( a3 Bbb ee Y2
Section Il considers the generalization of the MT theory ﬁ#: (_> 4 _> T 5, (3
for application in the nematic phase. Section Il derives ex- 2kgT Via Iy e

pressions for the components fS of a pure fluid of per- - o
fectly aligned hard spheroids and the results turn out to b&here (4,1p.1c) are the components df along the princi-
exactly the same as obtained in R&f] by the application of pal axes &,b,€), andT=T(r,t) is the local temperature.
the LB kinetic theory. This perfect agreement between the The solution of the MT equation provides informa-
results obtained from the two independent approaches cleartion  regarding  single-particle  distribution  function

>

indi<_:ates that the_ ge_neralized Taxman_ theory is the righ;ﬁM(JIL ,Q,,,f,t) in S=0 phase. However, the nematic phase
choice for the derivation of the expressions for other transof the spheroidal fluid can be described in terms of a function
port tensors as well. Hence Sef. IV is devoted to obtammg:ﬂ(gﬂ ,7,1) that incorporates orientational order wif rep-
formulas for the components of of the perfectly aligned resenting a set of variableg {,Q, ,&,, ,i). We consider the
nematogens. Finally, Sec. Ve provides the concluding regnsatz that

marks wherein it is shown th&, result reduces in the limit R
of low-density HS fluid to the ErLskog self-diffusion coeffi- Fué, r)=4mf(C,-N)¢,(v,,Q
cient formula[23]. Similarly, the \ result retrieves, in the . R o .
limiting case, respectively, the Enskog thermal conductivityVith f(€,.- 1) taken as equilibrium value of the normalized
or the modified Eucken formulg23] for the HS fluids pro- single-particle orientational distribution function, satisfies
vided one neglects or retains the contributions from the rothe equation

tational energy of HS molecules. This section also outlines P P
the scope as well as necessity for our low-density theory in — 40y —+d; T) Fi(&,F )
the study of transport phenomena for the spheroidal-nematic ot ar vy

liquid crystals. KT |12
B re=t
(ol ]| ey
Il. GENERALIZED TAXMAN THEORY

Consider any hard convex-body low-density pure fluid in Xk-Gled k,€1,82)dkdu, dQ2, AT, ®)
which each molecule of mass has translational as well as o ) . .
rotational degrees of freedom and, thereby, possesses prinétered, is the acceleration of the particle atigi(k,1,¢,) is
pal moment of inertia tensdr. Consider that a tagged mol- the excluded-volume surface element per unit solid angle at

ecule, designated as 1, undergoes binary collision with an{he point of contact. Alsd> |, =F (v}, ., ,€, ,A.F.1) is the
other molecule designated as 2. Theh molecule {  Precollisional counterpart df ,. . _

—1,2) has at space-time point,{) postcollisional peculiar N @ real nematic, interparticle interaction alone is respon-
velocity [23] \7w angular velocitya,,, and their precolli- sible for creating orientational order. However, if we con-

. - - ) sider that a hypothetical external potent&gl (¢ ,-N) given
sional counterparts a¢, and @, . The transport properties vp P Ml(C,-1) @

of the fluid can be calculated from the knowledge of theby

single-particle distribution function that in turn is obtained a
from the solution of an appropriate integro-differential ki- Vexd( € -N)=——
netic equation. The collision term in such an equation is B

conveniently described in terms of the unit surface-normal, .\, B=1/kgT and 0< a<c, creates such an order, one can

k=k,=—k, at the point of contact, i.e., the point where a approximatef (&, i) for uniaxial ellipsoidal nematogens as
pair of hard convex molecules are momentarily in contac{y 5]

during collision, and the postcollisional relative velocity

r,t), 4

mo

3 1
E(C/.L'n) _5 ’ (6)

) ) He, )= exfl —BVex(C,-N)] . @)
Qzﬁ;l (=DHV,+o,Xp,] (1) f exf — BVex( €, 1) ]dT,

061707-2



TRANSPORT TENSORS IN PERFECTLY ALIGNED LOW .. PHYSICAL REVIEW E 63 061707

It is now straightforward to see that E() is a generali- which is a generalized form of the Fick’s law for any aniso-
zation of the MT equation since the former reduces to th 7
latter one in the isotropic phase when=0 provided the
former is further averaged ové&y. Moreover, by adopting
the method for the evaluation @f, by successive approxi- can be obtained if we can find an alternative form o, (
mations, as in the isotropic cage3], F, can be determined
to any degree of accuracy. The first and second apprOX|ma
tions toF, for spheroidal fluids are given tﬂ(o) and F(O)

1
+F( ) Where s <2k T)l/zf jJ, ) ad, d
FO(E, TD=4m (2, Mo (0,0, 10  ®) (urt S

/J“”

%ropic fluid and wheré\7# refers to the average peculiar ve-
locity of any one particle of the sgt. The expression foﬁs

V,). In order to achieve this, we follow the approach
adopted in Ref[23] for isotropic fluids and get

with [25]

P, Q, 1 )=7""n exd - (v5+ Q3] (9

andn(r,t) as the number density of a pure fluid at the point (1) _ Ef(@ eV, 0, F )A Vny(F,t),
(7). The form forF (") depends on the consideration of any a noooA TR R
particular transport process and we will consider the appro- (14
priate forms in Secs. Il and IV. L R
Also, for spheroids, one hd$,7] where A, =A,(v,.Q,,C,;N) is a postcollisional vector
) 2 function that is to be determined. It may also be recalled that
R € . T () ;
k& .&,)=a’ SR (84X E)12 the average o¥/, with respect toF " is zero.
Led ki1 C2) hfhg[ (€1%C)] _ We combine Egs(13) and(14) to get an expression for
1 V,—V,, and compare the resulting equation with Etp).
+(1+e)| —+—|| =5+ =||, (100  We thus obtain
hy  hy/ihi h3
where . NNy [2kgT| 22 (== 1rrt
T m| AT,
h,=a(1+ez)"?, (12) Mo
is the support function fouth spheroid withe, = — k- ¢, and X f f f (€M ¢ AU, du,dQ, de,. (19
z,=k-&,. The anisotropy parameteerC is defined ase,
=(c/a)®~1 with “c” and “a” as the semiaxes, respec- The unknown functiori,, satisfies the equation
tively, parallel and perpendlcular to the symmetry axis.
We consider now onwards the perfectly aligned limit, i.e., (— 1)+l

the situation whert,=¢&,=0, and so there is no possibility jﬂ(,&ﬂ): —Fif”\?w (16)
of occurrence of the chattering collisiofi26], which is a 47X,

process wherein a pair of hard convex molecules collide two
or more times without any intervening collisions with other and we write the first Sonine-polynomial approximation in
molecules. the form

IIl. SELF-DIFFUSION TENSOR - (mpett
Aﬂzx—yo-vﬂ, (17
To determinelf);, we imagine that the given pure fluid is
a binary mixture in which the spheroids belonging to twowherex,=n, /n and ¥, is a constant diagonal tensor. In an
different sets are of the same mass and obey the same law igbtropic fluid environment, the components¥%f are equal,
interaction at collision so that they are mechanically similar; o 7o, SO thatyy- V# YoV Also, the collisional integral
[23]. The definition of Dy refers to a state of the fluid in j (A) has the form
which no external force other than the aligning torque acts “

on the particles, and the pressure and temperature of the fluid 1 [keT|12
are uniform so that the total number densiiy=n,(,t) jﬂ(,&):_z(i)
+n,(F,t) is independent off{;t). The self-diffusion tensor 87| m
is now defined through the equation S
- ) xj f f f FOFY(A,+A,~A,—A)
V,—V;=D¢ (VInn,—VInn,)=——D¢ Vny, (12) . .
2 T ! 2 ngn, 8 xk-geo(k)dkds,d9, de, (18)
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whereA/, (or A)) is the precollisional value of,, (or A,)
with u or v=1,2 andu # v. Insertion of Eqs(17) and (7)
into EqQ. (15) and the use of Eq9) yields the first approxi-
mation forDHS in the form

kBT> .

|70

[5’3]1=( = (19
since[[(€,-h)dt,=1.

To find the value ofy,, we now combine Eq(16) with
Egs.(4) and(9) to get

2 (_1),1,L+1 R R R
> TJ J JJM(A#)dev#dQ#dCM

n=1
kgT\¥2 n® _
5l a0
2m/) nin,

(20

whereU is the unit tensor. We further combine E¢4), and
(9), (17), and(18) with (20). We then use the form

4a4c2
{ed k)= —7— (21)
obtained from Eq.(10) writing z,=—2z;=z and h;=h,
=h(z)=a(1+e.z%)'?in case of a pair of perfectly aligned

PHYSICAL REVIEW E63 061707

wheree is the rotation-to-translation energy transfer function
having the form

o=(1+di+d)" (25
with
m /2 ma'e?| 12 z
s _(m - Ty _2\125k
d, (2|) (Buxk)=| 5| (1-Z)2L.
(26)

Here | is the moment of inertia of an elongated-spheroid
perpendicular to its symmetry axis and for a pair of perfectly
aligned identical spheroids, E(R5) can be written as

p?=1+2d?= 1_(”122) (h?=c?)(h*-a%), (27

Whel’edEdl=d2.

The velocity and angular velocity integrations in Eg3)
can be performed by the Hoffman-like technidud,24 af-
ter insertion of Eq(24) into it and the result is

- kk Rdike 1 (Wm)llz
o | o toiodi 0. @8

keT

identical spheroids, which is of our concern here, togethegve now expres in terms of its components alorig=¢,

with the symmetry relatioi3.54.3 of Ref.[23], whence we
find

o ][] 2 S omss

X ¢&°)¢&°)R~qzex<k>dkdﬁldﬁzdﬁldﬁz

- n3 m 1/2lj -
- 2ngn, kB_T ' @2
We now transform the veIOC|ty vanablegl ando of a

pair of molecules ta3, ¢, ands’, whereG=m GolkBT is

the dimensionless variable corresponding to the center-of-

mass velocityG, of the pair, 7, =[G+ (—1)*3]v2 and
*’—[G+( L)*5'1IvV2. We then perform the integration
over G and thus find that E(22) takes the form

5o | [ | [ eni-wr+03+a3y

X(5-0")(5—0" )k GZex k) dkdg d); A,

B mﬂT 1/2(] -
at) 2

The quantity ¢ —v') appearing in the above equation is

related tok-g and is given14,15 by
J( g
Ul 24
p (24

=¢, and perpendicular to {i.e., alongt, ; and¢, ,) obtain-
ing
k=e(k-e)+(U—ee)-k

=@z +(éllcos¢+cizsm¢)(1 z2%)Y2, (29

where ¢ is the azimuthal angle df with respect tct.
Inserting £(k) from Eq. (21) andk from Eq. (29) into

Eqg. (28), using dk=—dzdg and then performing the
¢-integration, one finally obtains

yo.fol ! s[28e22+(U—ee)(1-22)]dz

1 m \Y2_
~ 16na’c? kaT) u. (30

The terms containingé- ¥, and (U —&¢) - ¥, can be readily
separated from the above equation. When they are substi-
tuted in Eq.(19), we finally obtain first-order results for the

parallel and perpendicular components[ﬁfs]l as

o 1 kgT\ % fl 22dz ]! a1
22-3ona%c? | mm o ¢(z)h? (3D

and
o _ 1 kgT)\ 2 fl(l z2)d -
> 16na%c? | mm o o(z)h? &% (32
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Hence, the anisotropy of diffusion defingdl5] by the ratio  function of&,, and perform the velocity and angular velocity
Rp=(Dz;~Dx)/(D;,+2D,y) has the form integrations to obtain the first approximation Jofis
1(1-32%) (1+32%)
f —4dZ f —4dZ
o ¢(2)h o ¢(2)h
The results in Eqs31) and (32) are identical with those To determiney; and¥y,, we note thaC satisfied16,23 the
derived in Ref.[5] through the LB kinetic equation. This equation
testifies that the application of the generalized MT theory for
the study of transport phenomena in the perfectly aligned
model nematics is fully justified. Hence, our approach can be
extended to study other transport coefficients and we now set o
out to apply our generalized theory toward the study of thewvhere the form of the collision integrdl(C) follows from
thermal-conductivity tensor for the fluids comprising per- gq (18) by just replacingd by C. We then substitut€ from
fectly aligned hard prolates. Eqg. (37) in the equation so obtained, multiply it, respectively,
by (v3—3)V, and Q35— 1)V,, and integrate the right-hand
sides of the resulting two equations ov@y, ,, andé,.

We follow the approach adopted in Rg16] to solve the ~ We thus obtain
MT equation whence the thermal flux vectpis obtained in

2

- kaT
D~ (33 [)\]1:28_m(571+272)- (39

I 1 >
Jo(C)= - FY (03+ Q5= 5)Vy, (39

IV. THERMAL CONDUCTIVITY TENSOR

2 .
the generalized form om 172 -
ﬁ=—f f f F2(C2- ) ha(v2,02,11) with j=1,2 and where
xC-VInT(F,H)EV, dv, d, d, 1=[(03= )72, (3= )52), (41)
ZkgT 12 = = . 2 2 pad 2 5\~ 2 -

—-[Z2) - [ [ [ taoconoiro Fi=[(v3-$)i,.(23-1)5,], 42
X dir, d03, de,, (34) La=[(Q3—1)v,,(v3-3)52], (43
whereC=C(d,,0,,&,;0) is a postcollisional vector func- I=[(Q5-1)7,,(05-1)5,]. (44)

tion which is to be evaluated and we have substituted for the
thermal energyfF = kBT(szrQZ) On the other hand, the are the so-called square bracket integ&8l) tensorg ¥, 1]

thermal conductivity tensox is defined through the general- gef],'ni% as the generalization of the corresponding SBI's of
ized Fourier's law [16]:

o o

G=-\-VT (35) X 0] Eﬁlzjffxa(lp)dvzdﬂzdcz

and, hence, we have B 1 (k T)MJ f f f fjf F(O)
21T\ 2 ~(4mn)?
X 1Ci,(v3+03)di, dO, dE U
( ) fff 245" Coa(vy +03)doz d0), de, X (X2t X1— Xo— X (P2t n— o= tpy)

(36) A o o
Xk-glek)dkdo, do, dQ,dQ,dT, dT,.
in the first approximation.

' : : N > 45
As a first Sonine-polynomial approximation ©, we 49

adopt the form 27]

We also havd"eﬂ— flz
The Ve|0CItIeSU andv in the SBI tensors are replaced

C= —[71 Va(v3—3)+ ¥2- Vo(Q5-1)], (37)  byG, v, andd’, and the mtegratlons with respect@®are
performed, whence the final results have the form

which is a generalization of the corresponding expression of

Ref.[16]. Here,y; and ¥, are constant diagonal tensors and Lij=(— 1)I+IA+HIJ ' (46)
are to be determined. In |sotrop|c fluid phase of the spheWhere

roids, we havey; = le so thaty;- V y,VJ We substitute

Eq. (37) into Eq. (36), useffzdcz—l asC is now not a A=Ud{(v?-v'?»?%, (47)
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A~ 2> 121 =1 2 a2\ =1y 1/13 10 9 8
I1;,=40{v=vv+v'v'v"+(v°—v' ) (vv—0v'v") F)](')](':KJ'O (?— ?)—22(5— ;g”ge)g(z)dz,
—-v-v'(vv'+0'0)}, (48 (58)
T,=20{(v" 2~ v (55— 5'3" 49 11 1
12=20{( ) X “9 rigz—zxf (———3 (1+22%) {ex(2)d2, (59)
and 0
had ~ - > ’ ’ >y >y 1 1 1
I1,,=20{(Q5—- Q3)%55+ (Q2— Q%55 — (Q5—Q2) r;gz—zxf (E_ ?)(2—22)§ex(z)dz, (60)
0
X (2= (@5 +3"0)}, (50)
_ _ 1 1 2
and we have defined an integral operator as F§§=2Kf o— ? —27° ;— ? {ex(2)dz,
0
a1 [KeT 1’7 f JJ 2, 2 (61)
t1=g37m {texd —(v°+ Q7 and
+03)1k- §exk)di dQ; O, dk. (51) » 1 1 ,(2 3
, F22:2Kf ¢— —3| = (1-29| == =3 |{el2)dZ
By using 0 ¢ L 4
(62)
Q' _QM: - ZaM;ZQ, (52) Now writing Eqg.(40) in the component forms and solving
" ¢ the simultaneous equations so obtained, we get

together with the relation given in E¢R4), the velocity and a1 " u _ N

angular velocity integrations appearing in E(7)—(50) can ) = au 20005 2+ 512051~ (3j —D)I'z], - (83
be performed by the standard Hoffman-liKet,24] method.

We then use Eq(29) and do¢-integration whence the re- \herej=1 or 2, At=4[T T3~ (TY)?], 8 is the Kro-

sults are obtained finally as necker delta function, and the symbbistands forzz or xx.
11 1 Furthermore, considering the component forms of &)
KZZKGJ (__ _3) {ed(2)dzZ, (53  and using Egs(63) in conjugation with Eqs(57)—£62), we
ole ¢ finally obtain the formulas for the components[af]; as
A, D’fll Ddz F(g_ 8) . kg T\ %2 kg fl ) 28 49
e A P || ), || 2T
x{[28ez2+(U—¢e)(1— 22 14
{[2ee2°+(U-e0)(1-2)]Led2)}dz, (54) o T?}gex(z)dz 64
=
12— 4K ole ¢ and
T P ) kg T\ %2 kg (1 16 10
x{[2e€z°+(U—-CC)(1—2%)]le2)}dz (55 )\XX:( - ) mfo 25@.;_?
and
) 4 13
. _r1g2 1 ( 1 242 , +3z P {e(2)dz. (65)
I1,,=4 UJ— z)dz+8 f ———)ééz
227 4K o(Pfex() K02<P <P3

Hence, the anisotropy of the thermal conductivity character-

1 3d%\ . 5 ized by the ratioR, = (A,,— Ay )/ (N2t 2N\y) Can also be
Tl 7753/ (U=C8)(1-2°) |{ef2)dz,  (56)  calculated.
4 2¢
where k= (kg T/m)*2, V. CONCLUDING REMARKS
The components ofI{;,I'15,I',) parallel and perpen-  The consideration of an ansatz has helped us in general-

dicular to the symmetry axis of a perfectly aligned hardizing the modified Taxman equation to a form that is suitable
spheroid readily follow from Eq46) together with Eqs(27)  to deal with transport tensors in systems with the nematic
and(53)—(56). We thus have order. The theory has been applied, by adopting the
02 1 9 8 Chapman-Ensko@CE)-like method[23], to obtain explicit
zz_ s - 2[ 2 © expressions for the self-diffusion and thermal conductivity
i1=2« 3|tz 3] [{ex2)dz,  (57) _ : :
0 ¢ ¢ ¢ tensors for low-density fluids composed of perfectly aligned
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hard spheroidal molecules. The componebts, and D,,  would be applicable in the liquid-crystalline phase composed
have been found to be exactly of the same form as thosef spheroidal nematogens. The CE method of solution of the
obtained in Ref[5] through the solution of the modified MT equation adopted in the isotropic phase would be appli-
Lorentz-Boltzmann equation. Hence, we have applied thgable here also and E¢R9) has to be utilized in the execu-
generalized theory to obtain the explicit formulas Xgrand  tion of the difficultk integrations appearing therein. Never-
Ay« that had not earlier been obtained through any approacitheless, the CE method would require some basic
The validity of our procedure can further be checked by takimprovements in predicting the Miesowicz viscositigs,

ing recourse to the limiting-isotropic phase. Since, we haver,, and ns [8,9,12, and the Helfrich viscosityy;, [12,29
considered here the perfectly aligned nematics, we cannot g&f the nematics because the antisymmetric part of the pres-
to the limiting spheroidal-isotropic phase. However, the HSsUre tensor is not included in the CE method whereas this
limit, when 5,=y,U and alsoh=c=a, {,=4a2 and ¢ part contributes top; and 7, although not ton; and 7;,

=1, can be looked into. [9,30].

. ) The equilibrium velocity distribution function is aniso-
Itis stralghtforwa_rd to see from Eq1) and(32) that for tropic in the AT techniqué¢30] and hence the kinetic contri-
a HS molecule of diametar, one gets

bution to the friction tensor of the nematics cannot be calcu-
3 (KkaT| 12 lated using the kinetic theory approach of the isotropic fluid
(L) (66)  of spheroids. However, the sum of both kinetic and potential
contributions are measured in an experiment, and NEMD
] o ) calculations[8] predict that the kinetic contributions tg;
up to the first approximation that is the same as the Enskogng , for the perfectly aligned soft or Lennard-Jones pro-
formula [23]. However, in view of[25] and [27], it is not  |ate spheroids cannot be disregarded. Based on these results,
possible to see straightway the HS-limiting behavior fromyne may conclude that the kinetic contributionXashould
Eqgs.(64) and(65); these equations have been derived for they ot pe ignored because both viscosity and thermal conduc-
hard, elongated, spheroidal molecules with five degrees afyity are collective phenomena. More importantly, the de-
freedom—three translational and two rotational. We firstyelopment of the CE method for the calculation of this tensor
take care of the remarks j25] and[27] and hence introduce at the Enskog level of approximation requires the kinetic
the appropriate changes in E§7). We then follow the sub-  contribution as an important input and the method cannot
sequent procedure, of course, in a trivial manner and ultiwork without it. It should also be noted that, so far, AT or
mately get MAT theory has not predicted even the potential contribu-
tion, which is within its ambit, to the thermal conductivity of
75kg [ kgT\ 2 spheroids.
6402\ mm (67) By neglecting the memory term from the exact Mori
transport equation for the velocity autocorrelation function
for a nonrotating sphere and and by making approximations, as[in], that the pair distri-
bution function (PDF) of the nematics is isotropic on the
kBT) 112 contact surface and the same contact PDF can be utilized in

HS) _ HS) _ HS) _
D(s )_D(zz )_Dix )

"~ 8nc?\ ™m

HS)_y (HS)_y (HS) _
)\( )_)\(zz )_)‘§<x -

AHS = )\(les): (HS) _ 11kg

= GAgZ (68)  the isotropic and nematic environments, we have obtained

[31] in a very simple way the forms for the components of

for a rotating sphere, which are respectively the Eucken anls for spheroidal fluids at the Enskog level of approxima-
the modified Eucken thermal conductivity formufg] for ~ on. The results so derived reduce to E(&1) and (32) if

; ; : .~ the PDF is approximated to unity. However, the results in
the low-density HS fluids, correct up to the first approxima- Y
tion y P PP Egs.(64) and (65) for the thermal conductivity components

qg)annot be derived through the Mori method, the red4di
r

mm

It may well be possible to extend the theory developed . L
y P Y P eing that the result for the thermal conductivity even for an

here for the general situation when partial alignment is the o . ; . .
in the low-density fluids and also for the discussion of the!Sotropic dilute fluid of spheroids obtained through a Mori-
generalized Langevin methd@1] is approximate.

viscosities of the aligned molecules. Also, one may like to S . he th | ductivity h b
generalize out theorf20] for the dense fluids for the study ummarizing, the thermal conductivity has not yet been

of the transport phenomena in the nematic environmenl{.jetermm?d eith‘?r by any the_ory or by simulations, even at
However, it seems pertinent to point out that the MT equa_ow—densny of aligned spheroidal molecules, and the liquid-

tion considers only binary collisions and so, ordinarily, is notcrystallline phase requires gva_luation of the so-called kinetic,
applicable to dense fluids of nematogens. But in the case tential, af‘d Cross cpnt_rlbutlons. The .AT’ MAT, or TCF
rigid spheroids the collisions are instantaneous and so prol.r}— eory has its own limitations, at least r?ow,_an.d hence,
ability of multiple encounters is negligib[@8] provided one ours IS a modest_ approach along proper dlrectlon_, our low-
ignores the chattering collisions. One can use this fact téiensny results will be required as a leading term in extend-
graft a dense, hard, spheroid transport theory on the generalld the present theory at the Enskog level.

ized MT equation. It is worth recalling that Enskog had de-
veloped a theory for a dense isotropic fluid of hard spheres
[23] and we have generalized it for the isotropic fluids of The work was supported by the Department of Science
biaxial ellipsoidq 20]. This work requires further generaliza- and Technology, New Delhi, through Grant No. SP/S2/M-
tion in order to have a new generalized MT equation that41/97.
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