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Shape oscillations of a viscoelastic drop
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Small-amplitude axisymmetric shape deformations of a viscoelastic liquid drop in microgravity are theoreti-
cally analyzed. Using the Jeffreys constitutive equation for linear viscoelasticity, the characteristic equation for
the frequency and decay factor of the shape oscillations is derived. Asymptotic analysis of this equation is
performed in the low- and high-viscosity limits and for the cases of small, moderate, and large elasticities.
Elastic effects are shown to give rise to a type of shape oscillation that does not depend on the surface tension.
The existence of such oscillations is confirmed by numerical solution of the characteristic equation in various
regimes. A method for determining the viscoelastic properties of highly viscous liquids based upon experi-
mental measurements of the frequency and damping rate of such shape oscillations is suggested.
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I. INTRODUCTION rate were derived and numerically analyzed by Tian, Holt,
and Apfel[11] by introducing surface compositional elastic-
Many natural and industrial processes involve shape dety and surface dilatational and shear viscosity. Agehl.

formations of liquid drops. Examples include cell division in [12] demonstrated experimentally the important role of sur-
biology, containerless materials processing in space, impacfactants in liquid drop oscillations under microgravitsee
between stellar objects, spraying and atomization, evaluatinglso Ref.[13]). On the numerical side, Lundgren and Man-
radar cross sections of rain clouds, and indirect measuremesgpur[14] first implemented the boundary integral method for
of rheological parameters. An example of the latter is asumerical simulations of clean axisymmetric drops. The
follows: In microgravity, an incompressible liquid drop as- same method was used by Feng and[$5] to simulate a
sumes a spherical shape at equilibrium. This shape can Bgyuid drop in an acoustic field and by Rush and Nadi]
perturbed by external means. When the external perturbatiog, 5 weakly viscous two-dimensional drop.
is removed, the drop eventually returns to its original spheri- 14 or knowledge, the role of bulk viscoelasticity on the

cal form. Depending upon the bulk properties of the liquid 54isymmetric shape oscillations of a liquid drop has not been

and the surface parameters this process may take th? fqrm ﬁlfvestigated previously, although transient deformation of a
underdamped oscillations about or overdamped aperiodic d iscoelastic drop in a steady uniaxial extensional flow of a

cay toward the spherical shape. Experimental measureme =wtonian liquid has been considef@d]. As we will show

of the frequency and damping rate of shape OSCiIIation?ﬁere viscoelasticity of the liquid appears to have a stron
through the acoustic levitation technique would thus enable ; ™’ y q PP 9

the physical properties of the liquid to be inferrgld-3|. !”f'“e’_‘ce on the shape OS.Ci"atiQnS of quuio_l drops qnd ignor-
The study of shape oscillations of liquid drops began with!"d this factor when dealing with polymeric and biological
the work of Lord Kelvin[4] where the frequency of inviscid !lduids may introduce large errors. Moreover, it appears to be
shape oscillations was determined. Lafsh developed ap- feasple to infer the elastic parameters of the liquid from
proximate expressions for the damping rate of weakly visexperimental measurements of the frequency and damping
cous liquid drop oscillations. Reif] analyzed a viscous rate of shape oscillations.
liquid drop in a vacuum or low density gas and derived the We present here a complete analysis of small-amplitude
characteristic equation for the frequency and damping rate gixisymmetric shape deformations of viscoelastic liquid drops
the shape oscillations; this was subsequently solved numerin microgravity assuming the Jeffreys constitutive equation
cally by Chandrasekdi7]. Miller and Scriven[8] extended for linear viscoelasticity. Since during small-amplitude shape
Reid’s results by including intrinsic surface rheological prop-oscillations the liquid is subject to small strains, linear vis-
erties and considering a drop immersed in another immiseoelasticity should represent a valid model. We derive the
cible fluid. Further refinements were made by Prospdi@lti characteristic equation for the frequency and decay factor of
and Marstor{ 10]. the shape oscillations and analyze it asymptotically in the
In recent years the emphasis has shifted to investigatingases of small and large Reynolds numiggh- and low-
surface viscoelastic effects on the shape oscillations ofiscosity limitg. When the Reynolds number is large, the
weakly viscous drops. In particular, Lu and Apf&@] con-  liquid drop undergoes shape oscillations due to surface ten-
sidered the case of a purely viscous liquid drop oscillating irsion, i.e., elasticity has a minor effect on the drop dynamics.
another fluid with and without surfactants. Approximate ana-A decrease in the Reynolds number results in the disappear-
lytical solutions for free-oscillation frequency and dampingance of the oscillations. However, upon adding elasticity in
that limit (once a critical value of the relaxation time is ex-
ceedefl a shape oscillation is seen to emerge, determined
*On leave from Department of Continuum Mechanics, Bashkirsolely by the viscous and elastic stresses. This allows an
State University, 32 Frunze Street, Ufa 450074, Russia. alternative means of estimating the viscoelastic properties of
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liquids based on measuring the frequency and damping rafactor (positive values ofs correspond to dampingand its

of liquid drop shape oscillations. We show that a furtherimaginary partw is the angular frequency of shape oscilla-
increase in the relaxation time and viscosity leads to the octions

currence of additional shape oscillation modes, so that a

large number of such modes exist for incompressible elastic o=Reafa,}, o=Im{an}. (6)
solid balls with a small shear modulus. Numerical solution of
the characteristic equation confirms the results of the
asymptotic analysis. as

The general solution fgp, v, and 7 can then be expanded

20
Il. BASIC EQUATIONS AND BOUNDARY CONDITIONS p(r.®,H)="—+ +ep wfR? a,(r)P,(cos® )exp( — ayt),

Consider a spherical viscoelastic liquid drop of radiris (73
surrounded by a vacuumlike medium. It is assumed that the
Bond numbeB=gR?(p,—pm)/o is much less than unity, vr(r,0,0)=ew R by(r)Pr(Cos®)exp(—ant), (70)
the liquid is incompressible and isothermal, and the drop dP.(cos®)
undergoes small-amplitude deformations. Hgris the ac- ve(r,0,1)=cw R gy(r) ——"
celeration of gravityp, andp,, are the densities of the liquid do
and the medium respectively, amdis the surface tension. ) .
The continuity equation for the liquid takes the form ) =70 exp(—apt),  y(r,H)=y™(r)exp - an(t7)a)

wherer is the position vector an@, is the Lamb frequency
and upon neglect of the gravitational force and nonlineat5], which for a drop in vacuum is given by
terms the momentum equation reduces to

on(n—1)(n+2)
v o=\ ————— ®)
=—Vp+V.r. () pIR

P|E

exp —apt), (70

V-v=0, (1)

o _ o Substituting Eq.(7d) into the constitutive equatioi3d)
The deviatoric stress tensemllows for viscoelasticity of the  ghows that
liquid in the form of the linear Jeffreys constitutive equation
[18]:

TO=2pey ™, per=mp ©)

1_C¥n)\2
l—an)\l '

ar . ay\ .1
— = - == t I .
T+)‘1,9t ZARARE at ) Y 2(Vv+ VW) @ e thus see that for an exponential time dependence, vis-

coelasticity of the liquid can be incorporated into axisym-
wherey is the rate-of-strain tensov, is the velocity vector, ~Mmetric shape oscillations of the drop as a modification of the
w is the shear viscosity, and, and\ , represent the “relax- Shear viscosity. It is clear that the momentum equat@n
ation” and “retardation” times. simply becomes the linearized Navier-Stokes equation in

Equations(l)_(3) need to be Supp|emented by boundaryvl\/hich. the §heal' ViSCOSity, has been replaced by the effec-

conditions at the drop surface)( Denote the outward unit V€ VISCOSIty wef
normal and velocity vectors at the surface yand v, and
note that by assumption the stress tensor in the external me- p|—
dium is negligible. The kinematic and dynamic boundary dt

conditions at the surface are then given b
" . g y When Eqgs.(7a)—(7c) are substituted into Eq$l) and (10

ov
=—Vp+ uesV2V. (10)

V[s=Vs, (pn—n-7)s=0a(Vs-n)n 4 we obtain
whereVg-n is the total surface curvature of the drop, with _A P "
V.=V-nn.V. an(r) An(R , (11a

Consider a spherical coordinate system®(,¢), intro-

duce a small parameterthat measures the amplitude of the B o \[r\"?! R\ .

drop deformation, and assume the shape oscillations to be ba(r)=nA, /R +Bp| |intkn), (11D

axisymmetric. For a pure mode, the surface profile of the

droprg can be expressed in terms of the Legendre polyno- o \(r\"! B,/R\[. (Kr)jneq(Kr)

mial P,,(cos0) gn(r)=A, ) R T ] (kD) = — |,
r«=R[1+eC,P,(cosO®)exp — a,t)], (5) (1190

where C,, and a,,= 6+iw are unknown parameters. Obvi- whereA,, B,, are unknown coefficients;, is the spherical
ously, the real party of «, is the amplification or decay Bessel function of orden, and k= a,p, /e The con-
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stantsA,, B,, C,, and«, can be found from the boundary This characteristic equation far, provides a way of evalu-

conditions(4) that take the forms

arg
Ur r=r. at’

S

(p_Trr)r:rS:U(vs'n)a Tre

with
1
(Vgn)—y = §[2+ e(n—1)(n+2)C,P,(cosO)
Xexp —apt)].

IIl. DECAY FACTOR AND OSCILLATION FREQUENCY

Upon defining the dimensionless variables

L R -
VRep Ot TR

p= :
PlewE
and substituting Eqg5), (7), and(11) into Eq.(12) we ob-
tain a linear system of algebraic equation®\in, B,,, C, (at
ordere)

a’njn(z) aﬁ
nA,+ By +—5Cp=0, (133
o on
2n(n—1) 2a, . .
> 1Ayt ——[(n=1)jn(2) = Z}n+1(2)]Bp
Z (J)LZ
Cn
+—"=, (13b
n
2(N—1)A,+ ——_[(2n2—2-22)j(2)
" wn(n+1) In
+22j,41(2)]By=0, (139
where
pran(l—Nay)
z=kR=R\/——m. 14
V i a0 14

Nontrivial solutions of systenil13) exist only if its coef-
ficient determinant is zero,

o}
2(n=1)(2n+1)—| 1+ — | Z*+2Q(2)
a’n
2 —
y (1 w_;)_Zn(n 12)(n+2) o as
an z
where

_ Zjn+1(2)

ating the decay facto$ and the angular frequeney of free
oscillations of a viscoelastic liquid drop. As seen from Eq.
(14), the variablez is a more complicated function af,,
compared with the purely viscous case. However, the equa-
tion retains its form. Actually, rearrangement of E35)
gives the result

(n+1)W(z)
- ZI2-W(2)

17

with W(z) =] ,+1(2)/j,(2) =Q(2)/z, which was obtained by
Reid[6] for surface oscillations of a viscous liquid drégee
also[7,8]).

Due to the presence of spherical Bessel functions in Eq.
(15) it is impossible to calculatey,, at finite values of the
shear viscosity u analytically. Straightforward analysis
shows that there are an infinite number of roots of @),
depending critically on the values of the relaxation and re-
tardation times\; and\,, as well as the surface tension
In the purely viscous case most of the roots are real and
represent various aperiodic modes of decay in the drop shape
oscillations. These real roots correspond to the pol&3(a)
[which occur at the zeros 9f,(z)] because in the neighbor-
hood of each of these poles the left-hand side of(E§). has
a zero[7]. However, the asymptotic behavior of, for z
—0 andz— can be readily established.

Before proceeding with the asymptotic analysis, it is best
to choose dimensionless parameters that are appropriate for
the limiting cases to be studied. These parameters include the
Reynolds number Re, and the relaxation and retardation
Deborah numbers Qeand Deg:

&)2 2(n>-1) - +2n(n—1){

22-27WM2) z°

an

prLRZ
Re= T, De]_:(l)L)\l, Dez=a)|_)\2. (18)
Equation(15) then becomes
1 1 2n(n—1)(n+2
1+ —]22-2Q(2)| | 1+ —%H
X X z
=2(n—=1)(2n+1) (19
with
Rex(1—De; x) a,
2:— = —
z 1- D62 X ’ X L ' (20)

It is clear that the cases—0 andz—« correspond to the
high viscosity Re»0, and low viscosity Re>«, limits, re-
spectively.

A. High-viscosity limit
For small z,Q(z) can be expanded in powers nf19]:
2 Z2

Q(Z)|Z~>0:2n+3 1+ (2n+3)(2n+5)

+0(2°),
(21
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and Eq.(19) reduces to Re Dg
De, Rex®— (Re+F, Dey)x?+

17E, +F, X
, 1| 2(n—1)(2n?+4n+3)
9 1+ Ept —| = ot , Re
X T1TE, =0. (25
E 4An(n—1)(n+2) 99 This equation has complex roots under the condition that
" (2n+1)(2n+3)(2n+5)° (22
A, A A, A
—+—+—+R—+AO>O, (26)
1. Purely viscous liquid drop Re¢ Re Re& Re

A deformed drop of a highly viscous liquid returns to a where
spherical shape aperiodically, i.e., there exists a critical value

_ 2
of viscosity ., such that ifu>u., no shape oscillations _2(n—1)(2n"+4n+3)

occur. This is supported by the numerical solution of Eq. " (2n+1)(1+E,
(17) presented by Chandraselat (see also the next sec- 2 )
tion). PU +1}

In the high-viscosity limit there are only two possible O 1+E,|1+E, '
modes of aperiodic decay. Indeed, in a Newtonian fluid
(De,=De,=0) Eq.(22) becomes quadratic in Both roots 4F, [ D€

of this equation are real. The first root is proportional to Re 171 E, (3De~5De)~5De +3 Dez},

and therefore determines the extremely slow decay. It is easy

1+E,

to show by going back to dimensional variables that this 5 Dé: De; 2
i i > A,=F7| — +
[rr;?de exists due to a nonzero surface tensiorof w; >0) 2= Fp (1+E.)2 1+E,
5oy (2n+1)p,R?w? X (6 Dg—11Dg De, +6 De%)—ll,
1= X1 0L=

2(n—1)(2n°+4n+3)u

D€}
—— (2 De,—Dey) +2 De —De,

— 3
_n(n+2)(2n+1)o As=2Fn 17 E,

= . 23
2(2n>+4n+3)uR 23

A,=—FiDé.

In contras_tt,hth(: bseco;d r%c;[) ng\;]es a 1ecay f??ﬁ?r tha(; NErom Eq.(26) it can be seen that shape oscillations occur for
creases without bound as =&. The existence of this mode 5 \iqe range of relaxation Deborah numbers, Det only

is explained solely by the action of viscous forces on thefor small values of the retardation Deborah numbej.Des

drop, Re—0 the dominant term in this condition is tidg term. It
) is negative and the conditiof26) would not be satisfied
52=x2wL=2(n_ 1)(2n“+4n+3)u _ (24) unless Dé<4 Re Dg /F,. We see that shape oscillations of
(2n+1)(1+E,)p R? high-viscosity liquid drops appear due to the presence of
relaxation terms in the constitutive equation but can be sup-

It should be noted that the asymptotic expans@h holds ~ Pressed by the retardation terms. We therefore restrict our

as z—0 but not for z=Ry&,p, /u~O(1). Even so, the attention to liquids Wlth small _retardatlon times. _

power series fof)(z) remains convergent and terms of order 10 Obtain asymptotic solutions of E25), since Re is

28 (and higher are rather small such that the high-viscosity SMall, we assume solutions of the form

root of_ Eq. (15), corresponding to a very rz_ipid decay, is x=Re[xO+Re xD+ R xP)+ .. . ] (27

approximately equal to Eq24). For example, in the case of

quadrupole deformations&2), numerical analysi¢of the ~ wherev ands are to be determined so that the expansion

type carried out in Sec. IMfor a typical water drop shows (27) is uniformly valid for Re-0.

the difference between these roots to be less than a few per- One obvious possibility i3=s=1. We then get a solu-

cent. tion that describes a small aperiodic decay of viscoelastic
liquid drop deformations by

Re Re De,—De;)
The presence of elastic components in the stress tensor Xl_Fn(1+En) 1+ F.(1+E,)

has a significant effect on the deformations of a highly vis-

cous drop. In particular, such a drop can undergo shape odtote that the leading term of E¢R8) agrees with the purely

cillations rather than just an aperiodic decay. This followsviscous solutior{23). Since the retardation time must always

from Eq. (22) that is now cubic be less than the relaxation one (BeDe;) [18] the decay

2. Viscoelastic liquid drop

+0O(R€). (29
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factor 6;= w| x; decreases with adding elasticity, i.e., a vis-
coelastic liquid drop returns to its spherical shape more

slowly than a purely viscous one.

The other choice of ands that gives the next two solu-
tions is governed by the relative sizes of ,Dend Re. One
should chooser=—1, s=1 for small Dg and De, i.e., in

the case of small elasticity
De,=¢Re, De=yxyRe with & x=0(1).

The solution takes the forms

(1 xF)(1FX)
X238 T JiRe
ERG2—(1+xF)(1+X)] LORE),
(L+E[(1+xF)2(1FX)—4£F ]
(29
where
X=\1—4¢&F,(1+ xF,) 2, (30

and become complex wher¢B,>(1+ xF,)?. There there-
fore exists a critical relaxation time

(2n+1)(1+E,)pR?
8(n—1)(2n?>+4n+3)u

lc™

+2(n—1)(2n2+4n+3)>\2ﬂ 2
(2n+1)(1+E,)pR?

. (3D

such that ifa ;>\ 4. and u is large a viscoelastic liquid drop
undergoes shape oscillations. As indicated above the retarda-
tion components of the stress tensor hinder the occurrence of

oscillations. Increasing, results in a significant rise iNq
when the liquid viscosity is large.

PHYSICAL REVIEW B3 061508

1+ xF,
3= "¢Re

Fn(1—xFn)
Re

+0(&,x).

In the purely viscous case; and the decay factoos
= w, Real(x3) go to infinity, i.e., there is no contribution of
this mode to the drop deformation. The inclusion of the re-
laxation components leads to finite valuesxgf For a small
N1 we once again have a mode of aperiodic decay. When
is increased this mode plays an increasingly important part in
the drop deformation, because the greatemthehe smaller
the decay factors;. But as soon ad; reaches its critical
value \ . the modes of aperiodic decay given by andx;
are transformed to a mode of decaying shape oscillations
with the frequency(32).

Let us now consider the case of moderate elasticity,

De,=x Re, Re<Deg<1/Re, x=0(1).

To obtain the complex solutions of E(5) we now taker
=—1/2, s=1/2 and substitute Eq27) into Eq. (25). The
solutions are in the form

_1+FnX+Re p% (1+F,x)°
X23= 3 De, ' 2 |(1+E,) 4F,De,
. Fo [, Re[(1+Fux)* De
“'"NReDg|" 2F,| 4De @ 1+E,
+O(ReM?). (33

They describe a mode of decaying shape oscillations with the
angular frequency

\/2(n—1)(2n2+4n+3)ﬂ
ws%

The resulting shape oscillations subsist solely on theand the decay factor

forces given by the stress tend®) and not on surface ten-

sion. To show this, we go to dimensional variables,
=Xz,
term of Eg.(29), assume\;=\;.+ A1, A\»,=0 and recall
that £=u\,/(p;R?) and y=pu\,/(pR?)=0. The angular
frequency of shape oscillations then does not depend,on

ws=—Im{an,}=Im{ans}

~ \/2(n—1)(2n2+4n+3),uA1
(2n+1)(1+Ey)p RO\,

: (32

apn3=w X3. For simplicity, neglect the second

(34)
(2n+1)(1+E,)pR?\ ¢

5 1 2(n—1)(2n°+4n+3)uh, 35
52N\ (2n+1)(1+E,)p R

It is significant that the frequency decreases with increas-
ing relaxation and retardation times as seen from (B§).
But Eq.(32), which is valid for the relaxation times close to
N1c, exhibits an opposite dependence on frequency. Hence,
with increasing\ ; from \ . the frequency rises, attaining a
maximum value at the relaxation time

Alm%?’)\lc y (36)

i.e., the oscillations take place even with no surface tension,

o=w; =0. Thus, elasticity of the liquid leads to another
kind of shape oscillation governed only by the viscous an

elastic stresses in the drop.

The validity of Eq.(29) is further supported by the fact
that the second solutior, agrees with the mode of rapid

aperiodic decay24) in the limit A ,A,— 0. The third rootx;

cﬁ]nd then falls off. The valug,,, was found from the extre-

um condition

dIm(xz)

s =0.

M=Nim

comes into existence due to the relaxation components in the

stress tensor. Whex; ,\,—0

The maximal value of the frequenays,, is found to be
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4(n—1)(2n*+4n+3)u 1),
Wsm= > 1+—|z =2(n—1)(2n+1) (40
JV3(2n+1)(1+E,)pR X
2(n—1)(2n%+4n+3)\,u| " with zandx given in Eq.(20. _
X1+ 5 . (37 The reduction in the shear viscosity brings into existence
(2n+1)(1+EnpR shape oscillations in purely viscous liquid drops. In the limit
Re—, as seen from Eq40) where Dg and Deg are set to
Finally, the high elasticity case zero, the surface of the drop oscillates with the angular fre-
quencyw= o, Im(x),
N=wulG, Np=0 with G=0(1) w=w [1+0O(Re ?)]

is suitable for describing an incompressible elastic soliaand the decay factas= v Realk)
“pall” in a vacuumlike medium because, upon neglecting (n—1)(2n+1)u

small terms, the stress tensor is then equivalent to 2o R
P

T =2Gy, (39 This result was first obtained by Lanib] and investigated
in detail by Chandrasekdi7]. Obviously, there exists only
one mode of surface oscillation and no modes of aperiodic
decay in the low-viscosity limit.

Here again elasticity leads to a cubic equationXor

wherey is the strain tensor.
The pattern of shape oscillations becomes very comple
for large\; (now Dg>1/Re). From Eq(20) it follows that

if De, Rex®*—[Re+ G, De,]x*+[G,+ Re Dg]x— Re=0,
(41)
x>i (39) whereG,=2(n—1)(2n+1). Once again, complex roots oc-
De;’ cur under the conditioi26) but with

. . . . AO:4[DeZl+1]2!
the argument is imaginary. This means that the root of Eq.

(22) satisfying the conditionf39) becomes complex valued. A1=4Gn[DP§(3 De,—5 De,) —5 De +3 De, ],
Moreover, in the case of high elasticity the argumeist not

small and the high-viscosity asymptotics do not apply. The A,=G?[ —De? De3+2(6 D& — 11 Dg De,+ 6 De;) — 1],
characteristic equatiofl5), as indicated above, has an infi-

nite number of real solutions in the purely viscous case. They A;=2G}[D&j(2 De,—De;) +2 De; — Dey],
take values from near zero, given by the slowly decaying 4

e i - A=—G D%.
mode (23), to infinity. Adding elasticity to the stress tensor 4 n

causes some of these roots, corresponding to the higheﬁb

d f iodic d b | lued. Hiah w 1/Re—0 and the major contribution to this condition
modes of aperiodic decay, to become complex valued. Highzomeg from the terms with, and A, that are positive for

frequency modes_ of ehape oscillation come into existencesma” Deg and De. This is not surprising because a purely
When the relaxation time is small, all these modes have VelYiscous liquid drop already undergoes shape oscillations

Iargie dejcay_ factgrsihTheyl otl!e g,;t fa(; in adv?_n(]:cle of the;hnorVNhen viscosity is low. The question of interest here is to find
mal mode given by the solutia83) and cannot influence € when these oscillations do not occur. Increasing Dees

drop deformation. Increasing the relaxation time results Mot accomplish this. The condition for complex rogte
additional complex-valued roots being generated from th%scillatior) is satisfiee even when De De,— o because t.r’1e
real Ilones, as sdeen Irrlorq‘fEcE,?)h.TEef'r decay facto(;s a[)e dominant term in Eq(26) is the Ay term (as 1/Re~0) and
E;nua}se i%rgpi:aeaterotheefrelrﬁencIg o} rzq%%g%y trﬂg gsstere'ieven if Dg and De get large, that term still remains domi-
damping F?nally in the cgse ofyhigh elasticiiy we find a lant. Hence elaeticity_ ha_s a minor effect on shape oscilla-
large nur.'nber of \,/veakly decaying modes of oscillation tions in the low-viscosity I|r_n|t. Nevertheless, a_mode of ape-
' riodic decay appears that is due to viscoelastic properties of
the liquid. In order to understand this better, consider the
B. Low-viscosity limit asymptotic solution of Eq(41). The solution can again be

Suppose now that the shear viscosity of the liquid is smalF’otht in the f_orn(27) with S less than zero.
Let us restrict our attention to the case of moderate elas-

so that Re and hencgtend to infinity. The asymptotic form . . X

of the characteristic equation is then readily available fromt'c'ty’_ so that Dg, De=0O(1). In orqler to obtain all the
Eq. (17). Whenz—o the functionW(z) remains finite ev- solut_|ons we suppose=0 andgf —1in Eq.(27). We then
erywhere apart from its poles. It is easy to verify that theObtaln an aperiodic decay solution of the form

poles cannot be solutions of EEL7) in this limit. Thus we 1 G, (De,— Dey)

can assumeN(z) to be negligibly small compared ta. Xy =—— n—1+0(Re*2) (42)
Equation(17) then reduces to the form De; ReDg(1+De))
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and the oscillatory solutions 1.0151 numerical result
L = = = = formula
G,(1+De, Dey) . G,(De;,—Dey) i
Xy = + /= = 1.01F
~  2Rg1+Dé€) 2 Re1+Dé€)) ;
+O(Re™?), (43 1.005 -

The x; gives a mode of aperiodic decay that is damped out
very fast in the limit Dg— 0 and, as discussed above, makes
no contribution in the subsequent drop deformation in this
limit. For the other roots, elasticity lowers the decay factor 0.995
and slightly enhances the frequency of shape oscillations. In
dimensional form

Nondimensional frequency, Im(x)

PRI ERR IR RRNRTITI B SRi
0.5 1 1.5 2
Relaxation Deborah number, De,

(a)

(=Y o

0.024
w=w_ IM(Xy) = o + wg, i

_(n=1)(2n+ 1 uw (N1—Ny) 0.018}

pR2(1+ wE)\i)

(44)

We|

0.012
It is noteworthy that the correction to the frequency due to
elasticity we is at its maximum when De=1, i.e., A\
=1/w, . In contrast to the high-viscosity limit, there are no
shape oscillations whetn=w =0, i.e., low-viscosity drops r
oscillate due to surface tension only. 0

0.006

Nondimesional decay factor, Re(x)

R R R R
0 0.5 1 1.5 2

Relaxation Deborah number, De,

IV. QUADRUPOLE OSCILLATIONS: NUMERICAL (b)
ANALYSIS

: FIG. 1. Quadrupole shape oscillations of a drop comprised of
In the case of quadrupole deformations=2), the nu- _ X
q P ) water and a low-fraction polymer materigh) frequency andb)

merical solution of the characteristic equatidrb) has been . -
. . . - . decay factor versus the relaxation Deborah number. The solid line
found using Maple. The first case to be investigated is a

water drop of the radiuR=0.1 mm in zero aravity. A polv- Is the numerical solution of E15); the dashed line corresponds to

. P dtob d'_ 'I din th gt ¥'| poly H]e asymptotic solution(43). Parameters:R=0.1 mm, p,
mer is assumed to be dissolved in the water at low enough ;3 kgm 2, ¢=0.073 kgs2, x=0.001 kgm's L, De,=0.
concentration that the surface tension, density and shear vis-

cosity are not affectedp=10> kgm~?, 0=0.073 kg s?, ~ is meant that there exists a critical value of viscogitysuch
n=0.001 kgm's™*, but the drop begins to take on vis- that if 4> u, shape oscillations do not occur. Numerical
coelastic properties. This addresses the question of how elagnalysis validates this observation. As displayed in Fig. 2 the
ticity influences the drop deformation. In this case the Lamqvrequency vanishes at=u.~0.0655 kgm*s . Here the
frequencyw, , given by Eq.(8), is w ~24166 S*. The  gensity, surface tension, and radius of the drop are identical
Reynolds number Rep R?w /. is much more than unity, ith those in Fig. 1 but elasticity has not been taken into

Re~241, and one would expect the occurrence of shape 0gccount (Dg=0). The critical Reynolds number is then
cillations even without elasticitglow-viscosity limit). Figure

1(a) shows the change in the nondimensional frequency of 1
shape oscillations with increasing the relaxation Deborah
number De=w N\ (De, is taken to be zeno

The frequency grows with increasing Deattains a maxi-
mal value at Dg=1, and then slowly falls off. This agrees
with the low-viscosity asymptotic formuléd3). There is a
small difference between theoretical and numerical results
that disappears if terms of order 1/Re are accounted for in
Eq. (43). The dependence of the decay factor on the relax-
ation Deborah number is illustrated in Figtbl We have -
good agreement between asymptotic and numerical calcula- 0(; = Y
tions: the decay factor decreases with increasing. Dée Viscosity. . o ’

. . - y, ) (kgm's?)

small discrepancy is again due to the neglect of terms of
order 1/Re in Eq(43). FIG. 2. Quadropule shape oscillations of a purely viscous liquid

As discussed earlier, highly viscous liquid drops regaindrop: frequency versus shear viscosity. Paramefrs0.1 mm,
their original spherical shapes without oscillation. By this it p,=10° kgm 2, =0.073 kgs?, De,=De,=0.

0.75}
0.5F

0.25}

Nondimensional frequency, Im(x)
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L — — = - Re,=3.45

I~y e Re, = 2.42

0.4 Re, =0.48
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N T
g 0.3 =
Y- . | P
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3 0.2 ]
g 4
£ &

30

0.1}

C. vy b
00 0.0025 0.005 0.0075 0.01 0

Relaxation Deborah number, De,

(a)

Relaxation Deborah number, De,

5 (@)
r : 100
ar
¥ r T
Tt 7
= 3r E
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3 2F
g | f:
'S r b
r § 25
I o
0 C ! ! ! ! 1 ! ! L = :"—'e'e-,.__,_.
0.138 %141 0.148 0.158 I N S S
Relaxation Deborah number, De, 0.1 0.4 0.7 1
(b) Relaxation Deborah number, De,
FIG. 3. Variation of frequency of drop shape oscillation versus (b)

the relaxation Deborah number: R8.72, the remaining param-

FIG. 4. Variation of frequency and decay factor of drop shape
eters are identical with those in Fig. 1. d y y P P

oscillation versus the relaxation Deborah number for different val-
ues of shear viscosity (De0).

Re=Re.~3.69. Hence, any purely viscous liquid drop with
the Reynolds number Re3.69 does not undergo shape os-An increase in the retardation Deborah numbej Bads to
cillations. a rise of the critical relaxation Deborah number,Dand a
Elasticity of the liquid leads to a reduction in this critical decrease in the frequency of shape oscillation. This is fully in
Reynolds number because oscillations disappear even withccord with the results of asymptotic analysis.
Re=3.72>Re. [Fig. 3(@]. What is more important, how- In the case of moderate elasticityh;=De/w,
ever, is that a further increase in Déo a value above =0(1/w )] the dependence of frequency and decay factor
De;;~0.14122 causes a nonzero frequency to appear again
[Fig. 3(b)]. A shape oscillation depending on the stress but 5.35
not on surface tension is generated. The critical relaxation
Deborah number Dg, as illustrated in Fig. @), decreases
with a reduction in the Reynolds number. Increasing De
beyond Dg. results in a fast rise of frequency, especially at
low Reynolds numbers, to the maximal valué,,
=wn/(27) followed by a decrease in frequency with addi-
tional increase of De Such an elasticity dependence of fre-
guency is consistent with the results of asymptotic analysis
in the case of high viscosity. Figure} shows how the
decay factor depends on elasticity. It decreases monotoni-
cally with increasing Dg Formula(31) approximates the
critical relaxation time\ ;.= De;./w, for various values of 0.35
viscosity very well(Fig. 5. Thus, Eq.(31) gives the actual
minimal value of relaxation time needed for “elastic” shape
oscillations in most viscoelastic liquid drops. FIG. 5. Comparison between the numerical solution and the
Figure 6 demonstrates the hinderance due to the retardapproximate formuld31) of the critical relaxation time versus vis-
tion time of the occurrence of “elastic” shape oscillations. cosity (R=0.1 mm,p;=10° kgm 3, 0=0.073 kgs?, D&=0).

numerical result
= = = = formula

4.35

3.35

n
[}
a

-
("]
o

Critical relaxation time, A, (us)

T TR L
025 0.5 0.75 1
Viscosity, i (kg m™'s™)

o
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120 24

numerical result
De, = 0.1 = = = = formula

T
1
1
1
1
o
o
B
u

- -
|
|
|
1
=]
K]
"
=]
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-
0

90

-

60

-
Frequency, f (kHz)
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©

Frequency, f (kHz)
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’
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Relaxation Deborah number, De,

o

FIG. 6. Variation of the frequency of drop shape oscillation
versus the relaxation Deborah number for different retardation
Deborah numbers (Re0.24).

of viscoelastic drop oscillation on the relaxation time is re-
alistically described by the asymptotic formul&34) and
(35. Numerical analysis verifies the statement that both the
frequency and the decay factor decrease with increasing re- i
laxation time (Fig. 7). But there is some quantitative dis- 0

Decay factor,§ [(ms)”]

L T IR TTAN [T NIRRT S S N [ TR N
. ) 40 140 240 340 440 540
agreement between the numerical solutions and the Relaxation time, A, ( us)

asymptotic results at high values of the relaxation time. Ac-
tually, increasing the relaxation time leads to an increase in (b)

the argumentz in the characteristic equatiofl5) and the ) ) )
high-viscosity approximation ceases to be valid. FIG. 7. Comparison between the numerical and asymptotic so-

lutions (34), (35) for the (a) frequency andb) decay factor of drop
hape oscillation as a function of the relaxation Deborah number
Re=0.24, Dg=0).

As indicated above, wheR; and u tend to infinity, we
have a model of an elastic solid sphere instead of a viscoela
tic liquid. A large number of shape oscillation modes exist
for elastic solid balls. Figure 8 shows decay fact@wsdi-
nate and frequenciesabscisspafor the first 14 modes ob-

tained from the numerical solution of Eq15 at u the occurrence of a different kind of shape oscillation once

=100 kgm s tand\;=10s,i.e.G=u/\;=10 Pa. The e o e s
) . . . : . the relaxation time exceeds a critical value. This critical
density, radius, and surface tension are identical with those

A . value decreases with increasing viscosity, i.e., even small
in Figs. 1 and 2. The first mode has the frequenay elasticity would enable a highly viscous liquid drop to un-
=w_ Im(X)=1/\, i.e., all these modes satisfy the condition y gnly q P

(39). The modes are damped out almost simultaneously buqergo shape oscillations.
slowly, apart from one modénumber 6 that has a much
smaller decay factor and can be referred to as the normal
mode of oscillation. It is easy to check that the frequency of
this mode is almost equal to the Lamb frequency, i.e., it is
well approximated by the low-viscosity solutidd3). Actu-

ally, the relaxation Deborah number is now Bew \;
>Re and the argumemtin Eq. (15) is very large and corre-
sponds to the low-viscosity limit. Elastic solid balls therefore
undergo high-frequency shape oscillations initially. For long
times, however, the remaining dominant angular frequency is
simply the Lamb frequency determined by surface tension.

merically. Asymptotic solutions of the equation obtained in
the high-viscositylow Reynolds numberlimit have shown

2.5

00 GOEEHEOROEBE

0.5

Nondimensional decay factor, 10°Re(x)

\|||||@| T -1 I

0.5 1 1.5 2
Nondimensional frequency, Im(x)

V. CONCLUSION

o

The characteristic equation determining the frequency and

decay factor for shape oscillations of a viscoelastic liquid FIG. 8. The first 14 modes of elastic solid ball shape oscillation
drop has been derived and investigated analytically and nyG=10 Pa.
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From an experimental point of view, the regime that pro-under the assumptions thatR?*/ u<1/w, , \;>pR% u,
vides the most promising prospect for measuring the visa,<\;, andn=2.

coelastic properties is the one of high viscosity /8 and
moderate elasticity (ReDe<1/Re). Suppose such a vis-

An increase in the relaxation time and viscosity was
shown to lead to the occurrence of additional shape oscilla-

coelastic liquid drop is levitated acoustically and its quadru-tion modes, so that a large number of such modes exist for

pole mode (=2) of oscillation is excited, as is routinely

incompressible elastic solid “balls.” Neverthelessnd

done with Newtonian drops and foams. The radius of thesomewhat surprising)y the dominant angular frequency for

drop R, the liquid densityp, and the shear viscosity are

shape oscillations of such an elastic ball at long times turns

easy to measure independently. Upon measuring the freut to be the Lamb frequency that is determined by surface
quency and decay factor of drop surface oscillations from théension.
experiments, one would be able to calculate the relaxation

and retardation timeks; and\,. As seen from Eqg34) and
(35), these would be given by

N .
TS R T o
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