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Velocity correlations and diffusion during sedimentation
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We study the dynamics of sedimenting non-Brownian particles under steady-state conditions in two-
dimensional geometry. We concentrate on the autocorrelation functions of the velocity fluctuations and the
corresponding memory functions and diffusion coefficients as function,ofor small but finite Reynolds
numbers. For the numerical simulations we have chosen the model of SchRms:r Rev. E52, 6461
(1995] where a continuum liquid phase is coupled through Stokesian friction to a discrete particle phase with
volume fractiond,,. We find that the steady-state velocity fluctuations are spatially highly anisotropic and the
correlation functions parallel to gravity have nonexponential time dependence similar to that of purely dissi-
pative systems with strong interactions. The corresponding memory functions also show nontrivial behavior.
Diffusion along the direction of gravity is much faster than perpendicular to it, with the anisotropy decreasing
as either the Reynolds number or the volume fraction increases.
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[. INTRODUCTION mentation of particles in a liquid where there &gh hydro-
dynamic interactionsand dissipation present. In the limit
The diffusive dynamics of tagged particles plays an im-where the particle is sufficiently massive and gravitational
portant role in many physical phenomena, such as chemicébrces dominate, the motion becomes ballistic relative to the
reactions[1] and surface growth2]. In most cases, such fluid. In this limit of a dilute suspension of identical sedi-
diffusive behavior is induced by coupling of the degrees ofmenting particles they settle with a finite mean Stokes veloc-
freedom of the tagged particles to the fluctuations of thety vs=(2/9)r?» 18pg [11], wherer is the radius of the
underlying (large) system[3]. A classic example of this is particles, the viscosity of the fluidg the gravitational con-
the case of a Brownian particle immersed in a fluid where thestant, andsp the density difference between the two phases.
collisions of the individual fluid molecules induce a fric- The behavior of the particles can be characterized by the
tional force on the particle. Th@Brownian tracer diffusion  Peclet number Pe=vr/Dg [12]. When Pe is small, Brown-
coefficient of such particles is given by the Green-Kubo for-ian motion dominates, while for high values of Pe, Brownian
mula as[4] motion is unimportant. The latter situation becomes particu-
larly relevant for increasing volume fractions of the particle
phase because of the solvent mediated long-range hydrody-
namic interactions. They cause velocity fluctuations which
induce diffusive behavior in the steady state and dominate
whered is the spatial dimensiorC,(t)=(v(t)v(0))e is the ~ over Brownian motiorj13—16.
equilibrium velocity autocorrelation function in terms of the ~ The corresponding hydrodynamic diffusion coefficiént
single-particle velocities (t), and(- ), denotes ensemble av- can then be defined through generalizing the Green-Kubo
eraging in equilibrium. In the case of simple Brownian mo-relation as
tion, the velocity autocorrelation function decays exponen-
tially in time, indicating lack of memory effects]. It is, 1J'
however, known that, for example, in the case of self- d
diffusion in a fluid, in which the conservation of momentum
drives particles to diffuse in a concerted manner under longwhereC(t) is the particle velocitfluctuationautocorrelation
ranged hydrodynamic interactions, algebraic de€ayt) function
~t~* is obtained with an exponent=d/2 [5-7]. Recently,
an intermediatealgebraic decay of velocity correlations has C(t)=(dv(t)sv(0)), 1.3
been reported to occur in some dissipative two-dimensional
(2D) adsorption systemg8,9] and dissipative hard sphere with dv(t)=v(t)—(v). Here the angular brackets denote av-
fluids [10], spanning times extending up to about two orderseraging over the steady-state distribution during sedimenta-
of magnitude in the case of strong interacti¢@$ This re-  tion. The existence of such a distribution is a nontrivial mat-
flects the presence of strong memory effects, and the corréer and depends on the details of the sedimenting system.
sponding memory functions also display a regime with aThe behavior of C(t) has been studied experimentally
power law decay?9]. [14,17 and by numerical simulatiorj48]. It has been found
These results raise an interesting question concerning thibat the autocorrelation time characterizing its decay is a
behavior of the velocity correlations in gravity driven sedi- function of the particle volume fraction. Velocity autocorre-

1 ©
DB=af0 c,(Hdt, (1.1)

C(t)dt, (1.2

1063-651X/2001/6@&)/06150%7)/$20.00 63 061505-1 ©2001 The American Physical Society



E. KUUSELA AND T. ALA-NISSILA PHYSICAL REVIEW E 63 061505

lations have usually been assumed to decay exponentially in

time [14,18,19 as in the Brownian case, reflecting the lack Fi=Fi+F+ > Fy+F), 2.9
of memory effectd5]. However, the recent results on the 17

nontriv?al interme(_jiate time depende_nce ©f (t) indicate  whereF® is the external forcggravity), ,:ib the buoyancy
that this assumption does not hold in strongly interactingqce originating from hydrostatic pressufg; contains two-
dissipative systems. Thus there is no reasopriori Why  paricie interactions, anB? contains the dissipative interac-

C(tl) ?E.Omd dkecay expon?ntlally, _eltTer. its of th locit tion between the fluid and the particle. In this work the two-
n this work we present numerical results of the velocity , .10 force is chosen to be

fluctuation autocorrelation functions, the correspondin
memory functions, and the diffusion coefficients in the case —kn&ijyj if &;>0
of a sedimentating suspension of uniform spherical non- ,J—[ (2.9
Brownian particles under steady-state sedimentation condi-

tions in 2D geometry. We have used a model developed by ere the constark, describes the stifiness of the contact,
Schwarzer[_13] where the Ilgwd is treated thro_ugh con- £;=(r,+1;)—|x—x;|, andn; is a unit vector pointing from
tinuum Navier-Stokes equations, to which the discrete parps iciei toj. Such an elastic interaction is needed to prevent

ticle phase is coupled by a Stokes law. The method is apyg particles from interpenetratiri@s]. The fluid and par-

proximate bUt. it allows the use of rather large systems anficle phases are coupled by a frictional force proportional to
can be considered to be complementary to the lattice-

Boltzmann types of methof®0,21. The model also allows th? differe_nce between the particle. velocity=x, and' the
us to consider the case of small but finite Reynolds number@UId velocity |_nterpolateo! to 'ghe particle center. The interac-
Re,<1. We indeed find that the velocity correlation func- tion ffzrg]e acting on pariiclé is chosen to be of the Stokes
tions show nonexponential decay at intermediate times, Witlf1Orm

an asymptotic inverse power law decay in the direction of F-d=—67mr<[v-—u(x-)] (2.5
gravity. The corresponding memory functions do not have ' o v

such simple behavior, however. The hydrodynamic diffusionyhere u(x;) is the interpolated fluid velocity at off-lattice

coefficients are highly anisotropic, with much faster diffu- positionx; [26]. The interaction part of the force density field
sion along the direction of gravity for smaller volume frac- of the fluid is

tions. This anisotropy becomes less pronounced for larger
Reynolds numbers and volume fractions.

0 otherwise,

fa(x)=— 2, Fls(x—x) (2.6
I

Il. MODEL

and the discretization is done by dividing eaéhfunction

To model the sedimentation of non-Brownian Spherlcalamong the nearest lattice sites. Tests of the present model for

particles, we use the hybrid method developed by SChwarze{;arious physical quantities such as settling velocities, veloc-

[13]. This model couples a continuum fluid phase to a dls-i,[y fluctuations, etc. can be found in Refd3].

crete particle phase with a Stokesian frictional force. The In the simulations the units have been chosen so that the

fluid phase is described by a discretized velocity and PreSradius of particles, the Stokes velocity, and the density of

sure field and the dynamics is calculated by iteratively solv, . . : .
ing the discretized Navier-Stokes equat[@®,23 fluid all equal unity. The simulations are done by using the

fourth order predictor-corrector meth¢#4] to calculate the
Ju dynamics of the particle phase and the multigrid metf&xd
m(E +u- Vu) =—Vp+ yVeu+f (2.1  to solve the velocity field of the fluid. This forces the number
of lattice sites in each direction to b& 21 with integem. In
the present work, we use a version of the model with only
two spatial degrees of freedom for the fluid and the particles.
V.u=0. (2.2) However, the Stokes terfEq. (2.5)] is of 3D form. The
fluid is free to flow everywhere without explicit particle
Hereu andp are the velocity and pressure fields gndand  blocking. Thus, the system can be thought of as a thin layer
n are the density and viscosity of the fluid, respectively. Theof suspension between frictionless walls. The system is pe-
qguantity V denotes the corresponding difference operatorriodic in thexy plane with gravity pointing in the-y direc-
and the partial time derivative has to be understood as thon. Because of this the average of the force field has to be
difference between two successive time steps divided by theubtracted in thg direction. This prevents the hydrodynamic
length of the step. The force terfrcontains the coupling to pressure from being induced and explains why the buoyancy
the particle phase and the action of gravity. Since the centds put directly into the equation of motion of the particles.
of mass of the fluid is not moving, the averagd should be  The linear size of the square simulation boxLis 132 in
zero. most cases, its thickness 2, and the lattice constant 4 in units
The dynamics of the sedimenting spheres is simulated usf particle radii. The simulation time step is 0.0005 Stokes
ing methods that are familiar from the molecular dynamicstimes, which is defined as the time that it takes a single
methodg 24]. The total force on a patrticleis calculated at particle to settle down by an amount equal to its radius. The
time stepsAt using volume fraction®, = (4/3)mn,/V varies from zero to 0.350,

together with the equation of continuity
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FIG. 1. The normalized mean sedimentation velogity) (units FIG. 2. Velocity fluctuationgunits of v?) of Eq. (3.1) parallel

of vg) as a function of the volume fractioh, . Crosses and circles (circles and perpendiculafcrossesto gravity with Rg=0.02.
denote particle Reynolds numbers 0.02 and 0.03, respectively. B. Velocity autocorrelation and memory functions

) ) ) A fundamental quantity characterizing the dynamical be-
whereny is the number of particles andl is the system payior of the sedimenting particles is the velodifjuctua-

volume. Due to the chosen geometry, the particle area fragion) autocorrelation functiofVACF) defined in Eq.(1.3).
tion (relevant in the case of a true 2D sysbeis given by  With the present anisotropic case, we sepa@(t® into its
®,=(3/2)®y,. The other parameters are such that the conparallel and perpendicular components with respect to grav-
tact stiffnessk,=1 and the ratio between the density of theity, C(t) and C, (t), respectively. In Fig. 3 we show the
particles and the fluid i2:1. Inthese units the particle Rey- correspondingnormalized functionsC(t) andC, (t) cor-
nolds number R;?=fvsp|77_l is the same as the inverse vis- responding to the volume fraction®,,=0.0266, 0.0534,
cosity and was varied from 0.005 to 0.03. 0.133, and 0.267. The anisotropy is evident in the slower rate
of decay of the parallel component, which also remains posi-
tive for all times within the statistical errors. As the volume
. RESULTS fraction increase€ decays more rapidly, but also the dif-
ference between the two functions becomes smaller. We note
that for smallerd,’s our results are in good qualitative
The simulations start from random particle configurationsagreement with those of Laddl19] using the lattice-
and are allowed to evolve until the mean and square velociBoltzmann approach with periodic boundaries.
ties have saturated, which is considered as the steady-state The decay rate of the autocorrelation function can be
distribution of the sedimentation process. The time it takes tluantified by calculating the autocorrelation time
reach steady state varies as a function of the volume fraction.

A. Particle velocities

With small values of®,, the fluctuations saturate in a few = fx&dt. (3.2
Stokes times while witlib,,=0.350 it takes 120 Stokes time o C(0)
units to reach the steady state. |
The mean sedimentation veIoci(yJH> along the—y di- o8l @] (b
rection describes the ballistic part of the motion of the sedi- 06 |
menting particles. Due to symmetry, the velocity in the MR
direction(v, )=0. In Fig. 1 we show the velocityv ) (units = 04 '
of vg) as a function ofb,, for two Reynolds numbers. In our 5’ 02 |
system, the mean settling velocity decreases with increasing < ¢ Seomm T bt
®,, somewhat more slowly than in the numerical simulations 33> I} () (d)
by Ladd[19] or in experiment$28], due to the 2D geometry. 5’ 06 | )
In Fig. 2 we show the velocity fluctuations os !
Avf=(@f)—(vp?  Avi=(v?) (3.0 02\
of m--== P
[¢] 50 100 0 50 100

as functions of the volume fractioi,, . These fluctuations
are clearly larger in the direction of gravity, and increase
strongly with increasing volume fraction. Like La¢i2i0], we FIG. 3. Normalized velocity fluctuation autocorrelation func-
see no evidence of screening of the hydrodynamic interaaions C(t)/C(0) (solid lineg andC, (t)/C, (0) (dashed linesfor
tions up toL =516 with our parametersl6]. ®,=(a) 0.0266,(b) 0.0534,(c) 0.133, andd) 0.267 (Rg=0.02).

t (units of ¢,)
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FIG. 4. The autocorrelation timesinits oftg) as a function of FIG. 5. Fjlesults for (a)_ [Cy(1)/Cy(0)] . and (b)
®,, for Rg,=0.02(circles and 0.03(crossesfor (a) 7y and(b) 7, . [C.()/C.(0)] "—1 vst (units of t;) shown in log-log plots

In both cases the inset shows the data on a log-log scale. (Rg=0.02). The curves show different volume fractioss
=0.0066, 0.0266, 0.0667, 0.133, 0.200, 0.267, and 0.367, from

bottom to top. In each case, the inset shows results of least-squares

The two autocorrelation times and 7, are shown in Figs. fit of the data to the form”. See text for details.

4(a) and 4b). We find that to a good degree of accuragy

iecays in a power law fashion agx®, “, with a=0.45 parallel component of(t) shows well-defined power law
+0.05. Within the accuracy of the data, we find no similarpepayior over about two orders of magnitude in time, which
power law forr, . o _ _ indicates that Eq(3.3) is indeed a good approximation for
The dominance of the hydrodynamic interactions in OUfihe parallel VACF for the times shown in the figure. The
model ma,kes it interesting to study the time dependence Qhset of Fig. Fa) shows results of least-squares fitting to the
the VACF's. It has been recently shown that for 2D dissipaogarithmic data. The effective exponent2 is almost in-
tive hard sphere fluidgl0] and some strongly interacting 2D jependent of the volume fraction and in the same range as
adsorption systeﬁi&%], C(1) displays an intermediate power regyits for strongly repulsive dissipative systei@ For the
law decayC(t)~t"", where the exponent typically has  perpendicular component, the effective power law is not as
values k=x=2 depending on the range and type of interac-ye|| defined, and the exponert=2.3, again indicating that
tion (attractive or repulsive In the present case, we do not g sive interactions dominaf@]. In both cases, the late-
find such sm;p[e behavior. However, since by de‘c'”'t[o“time behavior eventually becomes exponential as expected.
C(t=0)=(ov?) is finite, we can try to describe the VACF's A quantity closely related to the VACF is the memory

by function M(t) that appears in the generalized Langevin
equation for a dynamical variabl(t) (such as the velocily
C(t)= ¢ 33 5]
1+A
dA(t)

t
which would asymptotically giveS(t)~t~* for At>1. In ar - QoA — fOMv(t_S)A(S)dS+ RM). (34

Figs. 5a) and §b) we show [C|(t)/Cy(0)] *~1 and
[C,(1)/C,(0)] -1 as functions of the timéunits of t) Here (), is the so-called frequency variable which vanishes
on a log-log scale for several volume fractiods,. The in the continuum[29]. The memory functionM (t—s) is
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the inset shows botiM (t)/M(0) (solid line) and C(t)/C;(0)
(dotted ling on a log-log scale. Inb) the left inset shows the
reduced form [M, (t)/M,(0)]"*—1 and the right inset 200
M, (t)/M, (0) (solid line) andC, (t)/C, (0) (dotted ling on log- 4 A
log scales.
= T
Q

proportional to the autocorrelation function of the random
force R(t) and reduces to & function for simple Markovian
processes with no memory effeds]. The autocorrelation

Mg 120 1,

function C(t) satisfies the equation k3
00 0.65 011 0.‘15 0:2 O.éS 0:3
dC(t t
d(t):QOC(t)f M(t—s)C(s)ds, (3.5 Oy
0

FIG. 7. (a) Results for the tracer diffusion coefficienf3;
) ) ) (circles andD, (crossegfor (a) Re,=0.005 andb) Re,=0.03.(c)
which can be Fourier transformed to give The ratioD; /D, . The case of Re=0.005 is denoted by circles and
Re,=0.03 by crosses.

~ 1
M(iw)+ Qo= w. (3.6)  M(w—x)=0. Subtracting this from the LHS gived (o)
Cliw) which can then be inverse Fourier transformed to obtain
M (t) in real time.
As shown in Ref[9], this form is particularly convenient for The results for the parallel and perpendicular components
a numerical determination d(t). First, the quantity)o M (t) and M, (t) are shown in Figs. @ and &b). Insets
can be found from the limitv— o0, where the real part of the show the memory functions together with their correspond-
right-hand side(RHS) in Eq. (3.6) converges td,, since ing VACF's on logarithmic scales. As expected, the decay of
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the memory functions is non-Gaussian, and it is slower in th@ounced than in experimenf&8] where the ratio for small
direction of gravity, reflecting the anisotropy and enhancedb,, is much smaller. The same result has been obtained in
memory effects in the direction of the flow. Unlike in the 2D other numerical simulationgl9] and it has been suggested
adsorbate systems studied recefl}; the behavior oM (t) that the periodic boundaries are at least partially the reason
is qualitatively different from that of its corresponding for this. In the experiment the ratio increases with very small
VACF. In order to investigate the possible algebraic behavvolume fractions ¢,<0.10). From our data we cannot con-
ior of the memory function we try the same form as in theclusively determine this due to the error bars.

case of the VACF. The left inset of Fig.(§ shows

[M,(t)/M,(0)] *—1 on a log-log scale. There is a very IV. SUMMARY AND CONCLUSIONS

short regime where the behavior is approximately algebraic.

In the case oM (t), there is no evidence of such behavior. To summarize, in this work we have studied particle dy-

namics under steady-state sedimentation conditions using a
model where a continuum fluid is coupled to a discrete par-
ticle phase. In a finite volume fractiod,, of the particles,

A fundamental quantity characterizing the dynamics ofthe velocity fluctuations due to long-range hydrodynamic in-
single particles is the tracer diffusion coefficiénas defined teractions lead to diffusive behavior that can be characterized
through the Green-Kubo formula of E@1.2). Using the by the velocity fluctuation correlation function. Its compo-
definition of the correlation time, this equation can also be nents parallel and perpendicular to gravity are highly aniso-
written as tropic, with the parallel component showing intermediate in-

5 verse power law type of behavior in time similar to

D =r(év°). (3.7 dissipative adsorption systems with strong interactions. We
have also studied the corresponding memory functions,
which show nontrivial behavior. The ratio of the diffusion
coefficients parallel and perpendicular to grauity/D, de-
pends strongly on the Reynolds number, and decreases rap-
idly with increasing®,,. Our results are in qualitative agree-
ment with lattice-Boltzmann studies of Ladd8,20, and
with corresponding experimenita8]. Part of the quantitative
difference is due to the fact that we consider a case with only
two spatial degrees of freedom. It would be interesting to
carry out further experimental studies of the settling velocity
Gnd velocity correlations of sedimentating suspensions con-
Eped between two closely spaced wdlBg].

C. Diffusion coefficients

In Figs. 1a) and qb) we show the diffusion coefficien
andD, vs @, corresponding to the parallel and perpendicu-
lar correlation functions<C; and C, , respectively. Due to
significant finite size effects of the velocity fluctuations
[15,19, it is difficult to compare their absolute values to
other resultd18,28. However the overall behavior of the
two components oD as a function of®,, is similar to the
experimental results in 3[28] with small®,,. The parallel
componentD first increases strongly with increasirig, ,
and then decreases slightly for larger volume fractions. In th
experiments this is also qualitatively obsenf@d], but the
decrease is much more dramatic. Recent experiments in 2
claim that the behavior along the direction of gravity may be
superdiffusive[17].

The ratio between the diffusion coefficients in the differ-  We want to thank Stefan Schwarzer, Matthiaslleiy and
ent directionsD| /D, is shown in Fig. Tc) for two Reynolds  Kai Hofler for courteously letting us use their code and for
numbers Rg=0.005 and Rg=0.03. As found experimen- many helpful discussions. We also wish to thank Tuomo
tally [28], the ratio between the two diffusion coefficients Hjelt and llpo Vattulainen for technical help and discussions.
decreases with increasiny, and depends strongly on Re  This work was supported in part by the Academy of Finland
In our studies the decrease for smaller,Re more pro- through the Center of Excellence program.
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