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Velocity correlations and diffusion during sedimentation
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We study the dynamics of sedimenting non-Brownian particles under steady-state conditions in two-
dimensional geometry. We concentrate on the autocorrelation functions of the velocity fluctuations and the
corresponding memory functions and diffusion coefficients as functions ofFV for small but finite Reynolds
numbers. For the numerical simulations we have chosen the model of Schwarzer@Phys. Rev. E52, 6461
~1995!# where a continuum liquid phase is coupled through Stokesian friction to a discrete particle phase with
volume fractionFV . We find that the steady-state velocity fluctuations are spatially highly anisotropic and the
correlation functions parallel to gravity have nonexponential time dependence similar to that of purely dissi-
pative systems with strong interactions. The corresponding memory functions also show nontrivial behavior.
Diffusion along the direction of gravity is much faster than perpendicular to it, with the anisotropy decreasing
as either the Reynolds number or the volume fraction increases.
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I. INTRODUCTION

The diffusive dynamics of tagged particles plays an i
portant role in many physical phenomena, such as chem
reactions@1# and surface growth@2#. In most cases, suc
diffusive behavior is induced by coupling of the degrees
freedom of the tagged particles to the fluctuations of
underlying ~large! system@3#. A classic example of this is
the case of a Brownian particle immersed in a fluid where
collisions of the individual fluid molecules induce a fric
tional force on the particle. The~Brownian! tracer diffusion
coefficient of such particles is given by the Green-Kubo f
mula as@4#

DB5
1

dE0

`

Cv~ t !dt, ~1.1!

whered is the spatial dimension,Cv(t)5^v(t)v(0)&e is the
equilibrium velocity autocorrelation function in terms of th
single-particle velocitiesv(t), and^•&e denotes ensemble av
eraging in equilibrium. In the case of simple Brownian m
tion, the velocity autocorrelation function decays expon
tially in time, indicating lack of memory effects@5#. It is,
however, known that, for example, in the case of se
diffusion in a fluid, in which the conservation of momentu
drives particles to diffuse in a concerted manner under lo
ranged hydrodynamic interactions, algebraic decayCv(t)
;t2x is obtained with an exponentx5d/2 @5–7#. Recently,
an intermediatealgebraic decay of velocity correlations h
been reported to occur in some dissipative two-dimensio
~2D! adsorption systems@8,9# and dissipative hard spher
fluids @10#, spanning times extending up to about two ord
of magnitude in the case of strong interactions@9#. This re-
flects the presence of strong memory effects, and the co
sponding memory functions also display a regime with
power law decay@9#.

These results raise an interesting question concerning
behavior of the velocity correlations in gravity driven sed
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mentation of particles in a liquid where there arebothhydro-
dynamic interactionsand dissipation present. In the limi
where the particle is sufficiently massive and gravitatio
forces dominate, the motion becomes ballistic relative to
fluid. In this limit of a dilute suspension of identical sed
menting particles they settle with a finite mean Stokes vel
ity vs5(2/9)r 2h21drg @11#, where r is the radius of the
particles,h the viscosity of the fluid,g the gravitational con-
stant, anddr the density difference between the two phas
The behavior of the particles can be characterized by
Péclet number Pe5vsr /DB @12#. When Pe is small, Brown-
ian motion dominates, while for high values of Pe, Browni
motion is unimportant. The latter situation becomes parti
larly relevant for increasing volume fractions of the partic
phase because of the solvent mediated long-range hydr
namic interactions. They cause velocity fluctuations wh
induce diffusive behavior in the steady state and domin
over Brownian motion@13–16#.

The corresponding hydrodynamic diffusion coefficientD
can then be defined through generalizing the Green-K
relation as

D5
1

dE0

`

C~ t !dt, ~1.2!

whereC(t) is the particle velocityfluctuationautocorrelation
function

C~ t ![^dv~ t !dv~0!&, ~1.3!

with dv(t)[v(t)2^v&. Here the angular brackets denote a
eraging over the steady-state distribution during sedime
tion. The existence of such a distribution is a nontrivial m
ter and depends on the details of the sedimenting sys
The behavior of C(t) has been studied experimental
@14,17# and by numerical simulations@18#. It has been found
that the autocorrelation timet characterizing its decay is
function of the particle volume fraction. Velocity autocorr
©2001 The American Physical Society05-1
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lations have usually been assumed to decay exponential
time @14,18,19# as in the Brownian case, reflecting the la
of memory effects@5#. However, the recent results on th
nontrivial intermediate time dependence ofCv(t) indicate
that this assumption does not hold in strongly interact
dissipative systems. Thus there is no reasona priori why
C(t) should decay exponentially, either.

In this work we present numerical results of the veloc
fluctuation autocorrelation functions, the correspond
memory functions, and the diffusion coefficients in the ca
of a sedimentating suspension of uniform spherical n
Brownian particles under steady-state sedimentation co
tions in 2D geometry. We have used a model developed
Schwarzer@13# where the liquid is treated through con
tinuum Navier-Stokes equations, to which the discrete p
ticle phase is coupled by a Stokes law. The method is
proximate but it allows the use of rather large systems
can be considered to be complementary to the latt
Boltzmann types of method@20,21#. The model also allows
us to consider the case of small but finite Reynolds numb
Rep!1. We indeed find that the velocity correlation fun
tions show nonexponential decay at intermediate times, w
an asymptotic inverse power law decay in the direction
gravity. The corresponding memory functions do not ha
such simple behavior, however. The hydrodynamic diffus
coefficients are highly anisotropic, with much faster diff
sion along the direction of gravity for smaller volume fra
tions. This anisotropy becomes less pronounced for la
Reynolds numbers and volume fractions.

II. MODEL

To model the sedimentation of non-Brownian spheri
particles, we use the hybrid method developed by Schwa
@13#. This model couples a continuum fluid phase to a d
crete particle phase with a Stokesian frictional force. T
fluid phase is described by a discretized velocity and p
sure field and the dynamics is calculated by iteratively so
ing the discretized Navier-Stokes equation@22,23#

r l S ]u

]t
1u•“uD52“p1h¹2u1f ~2.1!

together with the equation of continuity

“•u50. ~2.2!

Hereu andp are the velocity and pressure fields andr l and
h are the density and viscosity of the fluid, respectively. T
quantity “ denotes the corresponding difference opera
and the partial time derivative has to be understood as
difference between two successive time steps divided by
length of the step. The force termf contains the coupling to
the particle phase and the action of gravity. Since the ce
of mass of the fluid is not moving, the average off should be
zero.

The dynamics of the sedimenting spheres is simulated
ing methods that are familiar from the molecular dynam
methods@24#. The total force on a particlei is calculated at
time stepsDt using
06150
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Fi5Fi
e1Fi

b1(
j Þ i

Fi j 1Fi
d , ~2.3!

where Fi
e is the external force~gravity!, Fi

b the buoyancy
force originating from hydrostatic pressure,Fi j contains two-
particle interactions, andFi

d contains the dissipative interac
tion between the fluid and the particle. In this work the tw
particle force is chosen to be

Fi j 5H 2knj i j ni j if j i j .0

0 otherwise,
~2.4!

where the constantkn describes the stiffness of the contac
j i j 5(r i1r j )2uxi2xj u, andni j is a unit vector pointing from
particlei to j. Such an elastic interaction is needed to prev
the particles from interpenetrating@25#. The fluid and par-
ticle phases are coupled by a frictional force proportiona
the difference between the particle velocityvi[ ẋi and the
fluid velocity interpolated to the particle center. The intera
tion force acting on particlei is chosen to be of the Stoke
form @22#

F i
d526phr i@vi2u~xi !#, ~2.5!

where u(xi) is the interpolated fluid velocity at off-lattice
positionxi @26#. The interaction part of the force density fie
of the fluid is

fd~x!52(
i

Fi
dd~x2xi ! ~2.6!

and the discretization is done by dividing eachd function
among the nearest lattice sites. Tests of the present mode
various physical quantities such as settling velocities, vel
ity fluctuations, etc. can be found in Refs.@13#.

In the simulations the units have been chosen so that
radius of particles, the Stokes velocity, and the density
fluid all equal unity. The simulations are done by using t
fourth order predictor-corrector method@24# to calculate the
dynamics of the particle phase and the multigrid method@27#
to solve the velocity field of the fluid. This forces the numb
of lattice sites in each direction to be 2n11 with integern. In
the present work, we use a version of the model with o
two spatial degrees of freedom for the fluid and the partic
However, the Stokes term@Eq. ~2.5!# is of 3D form. The
fluid is free to flow everywhere without explicit particl
blocking. Thus, the system can be thought of as a thin la
of suspension between frictionless walls. The system is
riodic in thexy plane with gravity pointing in the2y direc-
tion. Because of this the average of the force field has to
subtracted in they direction. This prevents the hydrodynam
pressure from being induced and explains why the buoya
is put directly into the equation of motion of the particle
The linear size of the square simulation box isL5132 in
most cases, its thickness 2, and the lattice constant 4 in u
of particle radii. The simulation time step is 0.0005 Stok
times, which is defined as the time that it takes a sin
particle to settle down by an amount equal to its radius. T
volume fractionFV5(4/3)pnp /V varies from zero to 0.350
5-2
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VELOCITY CORRELATIONS AND DIFFUSION DURING . . . PHYSICAL REVIEW E63 061505
where np is the number of particles andV is the system
volume. Due to the chosen geometry, the particle area f
tion ~relevant in the case of a true 2D system! is given by
FA5(3/2)FV . The other parameters are such that the c
tact stiffnesskn51 and the ratio between the density of t
particles and the fluid is2:1. In these units the particle Rey
nolds number Rep5rvsr lh

21 is the same as the inverse vi
cosity and was varied from 0.005 to 0.03.

III. RESULTS

A. Particle velocities

The simulations start from random particle configuratio
and are allowed to evolve until the mean and square vel
ties have saturated, which is considered as the steady-
distribution of the sedimentation process. The time it take
reach steady state varies as a function of the volume frac
With small values ofFV the fluctuations saturate in a fe
Stokes times while withFV50.350 it takes 120 Stokes tim
units to reach the steady state.

The mean sedimentation velocity^v i& along the2y di-
rection describes the ballistic part of the motion of the se
menting particles. Due to symmetry, the velocity in thex
direction^v'&50. In Fig. 1 we show the velocitŷv i& ~units
of vs) as a function ofFV for two Reynolds numbers. In ou
system, the mean settling velocity decreases with increa
FV somewhat more slowly than in the numerical simulatio
by Ladd@19# or in experiments@28#, due to the 2D geometry

In Fig. 2 we show the velocity fluctuations

Dv i
25^v i

2&2^v i&
2, Dv'

2 5^v'
2 & ~3.1!

as functions of the volume fractionFV . These fluctuations
are clearly larger in the direction of gravity, and increa
strongly with increasing volume fraction. Like Ladd@20#, we
see no evidence of screening of the hydrodynamic inte
tions up toL5516 with our parameters@16#.

FIG. 1. The normalized mean sedimentation velocity^v i& ~units
of vs) as a function of the volume fractionFV . Crosses and circles
denote particle Reynolds numbers 0.02 and 0.03, respectively.
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B. Velocity autocorrelation and memory functions

A fundamental quantity characterizing the dynamical b
havior of the sedimenting particles is the velocity~fluctua-
tion! autocorrelation function~VACF! defined in Eq.~1.3!.
With the present anisotropic case, we separateC(t) into its
parallel and perpendicular components with respect to g
ity, Ci(t) and C'(t), respectively. In Fig. 3 we show th
corresponding~normalized! functionsCi(t) and C'(t) cor-
responding to the volume fractionsFV50.0266, 0.0534,
0.133, and 0.267. The anisotropy is evident in the slower
of decay of the parallel component, which also remains po
tive for all times within the statistical errors. As the volum
fraction increasesCi decays more rapidly, but also the di
ference between the two functions becomes smaller. We
that for smallerFV’s our results are in good qualitativ
agreement with those of Ladd@19# using the lattice-
Boltzmann approach with periodic boundaries.

The decay rate of the autocorrelation function can
quantified by calculating the autocorrelation time

t5E
0

` C~ t !

C~0!
dt. ~3.2!

FIG. 2. Velocity fluctuations~units of vs
2! of Eq. ~3.1! parallel

~circles! and perpendicular~crosses! to gravity with Rep50.02.

FIG. 3. Normalized velocity fluctuation autocorrelation fun
tionsCi(t)/Ci(0) ~solid lines! andC'(t)/C'(0) ~dashed lines! for
Fv5(a) 0.0266,~b! 0.0534,~c! 0.133, and~d! 0.267 (Rep50.02).
5-3
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E. KUUSELA AND T. ALA-NISSILA PHYSICAL REVIEW E 63 061505
The two autocorrelation timest i andt' are shown in Figs.
4~a! and 4~b!. We find that to a good degree of accuracyt i
decays in a power law fashion ast i}FV

2a , with a50.45
60.05. Within the accuracy of the data, we find no simi
power law fort' .

The dominance of the hydrodynamic interactions in o
model makes it interesting to study the time dependenc
the VACF’s. It has been recently shown that for 2D dissip
tive hard sphere fluids@10# and some strongly interacting 2D
adsorption systems@9#, C(t) displays an intermediate powe
law decayC(t);t2x, where the exponentx typically has
values 1&x&2 depending on the range and type of intera
tion ~attractive or repulsive!. In the present case, we do n
find such simple behavior. However, since by definiti
C(t50)5^dv2& is finite, we can try to describe the VACF’
by

C~ t !5
C~0!

11Atx
, ~3.3!

which would asymptotically giveC(t);t2x for Atx@1. In
Figs. 5~a! and 5~b! we show @Ci(t)/Ci(0)#2121 and
@C'(t)/C'(0)#2121 as functions of the time~units of ts)
on a log-log scale for several volume fractionsFV . The

FIG. 4. The autocorrelation times~units of ts) as a function of
FV for Rep50.02~circles! and 0.03~crosses! for ~a! t i and~b! t' .
In both cases the inset shows the data on a log-log scale.
06150
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parallel component ofC(t) shows well-defined power law
behavior over about two orders of magnitude in time, wh
indicates that Eq.~3.3! is indeed a good approximation fo
the parallel VACF for the times shown in the figure. Th
inset of Fig. 5~a! shows results of least-squares fitting to t
logarithmic data. The effective exponentx'2 is almost in-
dependent of the volume fraction and in the same range
results for strongly repulsive dissipative systems@9#. For the
perpendicular component, the effective power law is not
well defined, and the exponentx'2.3, again indicating tha
repulsive interactions dominate@9#. In both cases, the late
time behavior eventually becomes exponential as expect

A quantity closely related to the VACF is the memo
function M (t) that appears in the generalized Langev
equation for a dynamical variableA(t) ~such as the velocity!
@5#,

dA~ t !

dt
5V0A~ t !2E

0

t

M v~ t2s!A~s!ds1R~ t !. ~3.4!

HereV0 is the so-called frequency variable which vanish
in the continuum@29#. The memory functionM (t2s) is

FIG. 5. Results for ~a! @Ci(t)/Ci(0)#2121 and ~b!
@C'(t)/C'(0)#2121 vs t ~units of ts) shown in log-log plots
(Rep50.02). The curves show different volume fractionsF
50.0066, 0.0266, 0.0667, 0.133, 0.200, 0.267, and 0.367, f
bottom to top. In each case, the inset shows results of least-squ
fit of the data to the formtx. See text for details.
5-4
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VELOCITY CORRELATIONS AND DIFFUSION DURING . . . PHYSICAL REVIEW E63 061505
proportional to the autocorrelation function of the rando
forceR(t) and reduces to ad function for simple Markovian
processes with no memory effects@5#. The autocorrelation
function C(t) satisfies the equation

dC~ t !

dt
5V0C~ t !2E

0

t

M ~ t2s!C~s!ds, ~3.5!

which can be Fourier transformed to give

M̃ ~ iv!1V05
1

C̃~ iv!
2 iv. ~3.6!

As shown in Ref.@9#, this form is particularly convenient fo
a numerical determination ofM (t). First, the quantityV0
can be found from the limitv→`, where the real part of the
right-hand side~RHS! in Eq. ~3.6! converges toV0, since

FIG. 6. Memory functions~a! parallel and~b! perpendicular to
gravity (Rep50.02). Different curves represent volume fractio
FV50.0667, 0.133, 0.200, and 0.267~from top to bottom!. In ~a!
the inset shows bothM i(t)/M i(0) ~solid line! and Ci(t)/Ci(0)
~dotted line! on a log-log scale. In~b! the left inset shows the
reduced form @M'(t)/M'(0)#2121 and the right inset
M'(t)/M'(0) ~solid line! and C'(t)/C'(0) ~dotted line! on log-
log scales.
06150
M̃ (v→`)50. Subtracting this from the LHS givesM̃ (v)
which can then be inverse Fourier transformed to obt
M (t) in real time.

The results for the parallel and perpendicular compone
M i(t) and M'(t) are shown in Figs. 6~a! and 6~b!. Insets
show the memory functions together with their correspo
ing VACF’s on logarithmic scales. As expected, the decay

FIG. 7. ~a! Results for the tracer diffusion coefficientsD i
~circles! andD' ~crosses! for ~a! Rep50.005 and~b! Rep50.03.~c!
The ratioD i /D' . The case of Rep50.005 is denoted by circles an
Rep50.03 by crosses.
5-5
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E. KUUSELA AND T. ALA-NISSILA PHYSICAL REVIEW E 63 061505
the memory functions is non-Gaussian, and it is slower in
direction of gravity, reflecting the anisotropy and enhanc
memory effects in the direction of the flow. Unlike in the 2
adsorbate systems studied recently@9#, the behavior ofM (t)
is qualitatively different from that of its correspondin
VACF. In order to investigate the possible algebraic beh
ior of the memory function we try the same form as in t
case of the VACF. The left inset of Fig. 6~b! shows
@M'(t)/M'(0)#2121 on a log-log scale. There is a ver
short regime where the behavior is approximately algebr
In the case ofM i(t), there is no evidence of such behavio

C. Diffusion coefficients

A fundamental quantity characterizing the dynamics
single particles is the tracer diffusion coefficientD as defined
through the Green-Kubo formula of Eq.~1.2!. Using the
definition of the correlation timet, this equation can also b
written as

D5t^dv2&. ~3.7!

In Figs. 7~a! and 7~b! we show the diffusion coefficientsD i
andD' vs FV corresponding to the parallel and perpendic
lar correlation functionsCi and C' , respectively. Due to
significant finite size effects of the velocity fluctuation
@15,19#, it is difficult to compare their absolute values
other results@18,28#. However the overall behavior of th
two components ofD as a function ofFV is similar to the
experimental results in 3D@28# with small FV . The parallel
componentD i first increases strongly with increasingFV ,
and then decreases slightly for larger volume fractions. In
experiments this is also qualitatively observed@28#, but the
decrease is much more dramatic. Recent experiments in
claim that the behavior along the direction of gravity may
superdiffusive@17#.

The ratio between the diffusion coefficients in the diffe
ent directionsD i /D' is shown in Fig. 7~c! for two Reynolds
numbers Rep50.005 and Rep50.03. As found experimen
tally @28#, the ratio between the two diffusion coefficien
decreases with increasingFV and depends strongly on Rep .
In our studies the decrease for smaller Rep is more pro-
re
,

06150
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nounced than in experiments@28# where the ratio for small
FV is much smaller. The same result has been obtaine
other numerical simulations@19# and it has been suggeste
that the periodic boundaries are at least partially the rea
for this. In the experiment the ratio increases with very sm
volume fractions (FV,0.10). From our data we cannot con
clusively determine this due to the error bars.

IV. SUMMARY AND CONCLUSIONS

To summarize, in this work we have studied particle d
namics under steady-state sedimentation conditions usi
model where a continuum fluid is coupled to a discrete p
ticle phase. In a finite volume fractionFV of the particles,
the velocity fluctuations due to long-range hydrodynamic
teractions lead to diffusive behavior that can be character
by the velocity fluctuation correlation function. Its comp
nents parallel and perpendicular to gravity are highly ani
tropic, with the parallel component showing intermediate
verse power law type of behavior in time similar
dissipative adsorption systems with strong interactions.
have also studied the corresponding memory functio
which show nontrivial behavior. The ratio of the diffusio
coefficients parallel and perpendicular to gravityD i /D' de-
pends strongly on the Reynolds number, and decreases
idly with increasingFV . Our results are in qualitative agree
ment with lattice-Boltzmann studies of Ladd@18,20#, and
with corresponding experiments@28#. Part of the quantitative
difference is due to the fact that we consider a case with o
two spatial degrees of freedom. It would be interesting
carry out further experimental studies of the settling veloc
and velocity correlations of sedimentating suspensions c
fined between two closely spaced walls@30#.
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