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Liquid-liquid equilibrium for monodisperse spherical particles
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A system of identical particles interacting through an isotropic potential that allows for two preferred
interparticle distances is numerically studied. When the parameters of the interaction potential are adequately
chosen, the system exhibits coexistence between two different liquid plaseklition to the usual liquid-gas
coexistencg It is shown that this coexistence can occur at equilibrium, namely, in the region in which the
liquid is thermodynamically stable.
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[. INTRODUCTION coexisting liquids is mainlysp-coordinated, whereas the
other shows a dominamstp® character.
Traditionally, liquid-liquid separation for single- On the basis of these results, it is natural to ask whether

component systems was not considered as a real possibilitgpme kind of soft-core potentiafaith no internal degrees of
because of the rapidly changing liquid structure, whichfreedom for the particlescan produce aequilibriumliquid-
smoothly varies on temperature and presgajeThis view  liquid transition. We will show, by providing concrete ex-
is changing. Experimentally, a whole family of network- amples, th.at soft-core Stell-Hemmer potentials are able to do
forming fluids, including some tetrahedrally coordinated ma-hat; we will then show that the phenomenon may also occur
terials, is suspected to have transitions between liquid statd8" Systems that, in addition to b}?'_ng rpqnodl_sperse, have
[2]. Usually this transition occurs well inside the supercoolegP?'ticles that are spherical and *rigid,” i.e., in cases in
region, where the liquid is already in a glassy state, and the hich internal degrees of freedom play no role. This is of

it is related to polyamorphisii2,3]. The numerical modeling asic interest since this model is much simpler and therefore
) . . . more transparent to analyze than real examples of material
of these materials shows that interaction potentials can bg_ .~ "~~~ .~ . . o
aving liquid-liquid coexistence at equilibrium. It also pro-

constructed for which there are transitions between differer\t/ides a benchmark for the study of tetrahedrally coordinated

liquid states. For instance, the potentials used to mimic th?naterials with liquid-liquid critical points in the supercooled

properties of water generate two liquid phases in the supefz oy The relation between the existence of the liquid-

cooled regior{4]. The main characteristic of these materials”quid critical point and the anomalous thermodynamic prop-
(and of the interaction potentials used to model themfich  arties of these materials can be studied here in the context of
is responsible for their anomalous properties, is the possibikhermodynamic equilibrium. In a different context, our re-
ity of generating open, low coordinated network structures aylts make plausible the existence of liquid-liquid separation
low pressure, while collapsing to more compact structures ait equilibrium in particular cases of colloidal dispersions,

higher pressurei2]. which is of potential technological interest.
This key ingredient is captured by a class of model spheri-
cal potentials, the so-called soft-core Stell-Hemmer poten- Il. MODEL
tials [5]. They include a strict hard core at some distange . ) )
and a soft core at a larger distance In this way, two We study a model of particles interacting through a po-

typical distances between particles occur, and there is a coféntial that is the sum of attractive and repulsive pafts)
=V(r)+Vg(r). The repulsive part is given as

lapse from the largest to the smallest distance on applying
pressure. The properties of these systems give a remarkably

. o ) Vi(r)y=0o for r<ryg,
consistent description of most of the anomalous behavior of R(F) 0

tetrahedrally coordinated materidis—8]. v _ _ _ f <r< 1
Recently, the possibility of liquid-liquid separation has R(N=eo(f1=N/(r1=ro) for ro<r<ry, (1)
been extended by the finding that it can occur even at ther- Va(r)=0 for r>ry,

modynamic equilibrium. Katayamat al. [9] report that

phosphorugwhich is a network-forming fluigshows liquid- namely, a hard core at distancg and a linear(repulsive

liquid coexistence at equilibrium, providing what we believe ramp between, andr,. The attractive part is taken also to
to be the first experimental evidence of this phenomenon. g |inear inr. of the form

addition, Glosli and Reg10] find numerical evidence of

liquid-liquid coexistence at equilibrium in carbon. This was Va(N)=—9(r,—1)l(ro—rg)  for r<ry,,
the first direct numerical evidence of the phenomenon for a )
single-component system. The interparticle potential used to VA(r)=0 for r>r,

model carbon-carbon interaction is nonisotropic, and incor-
porates information of the internalelectronig degrees (r,>r,, y>0). The repulsive part of the potential favors
of freedom of the atoms. It is shown that one of the twoone of the two distances, or r, between neighbor particles
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FIG. 2. Comparison of isotherm obtained in simulations of sys-
tems with 200 and 1000 particles. They are coincident, except
within the first-order loop, where the one corresponding to the
larger system is more flat. This is the right tendency since the iso-
therm at coexistence is absolutely flat in the limit of systems of
infinite size. Units as in Fig. 1.

FIG. 1. Isotherms from the simulation of a 2D system of 200
particles, at temperatures as indicatsgimbols are the simulated
points, lines are guides to the gyélhere is a critical point at
T=0.10, P=0.07, below which the isotherms get a typical van der
Waals loop. Note the expansion upon decrea3irg constanP (a
density anomalyin the results forv/rSzZ.l. Pressure is given in

units ofsolrg, and temperature in units ef,/kg. .
the T=0.105 andT=0.0875 isotherms of systems of 200

ind 1000 particles. Isotherms are seen to coincide with the

00-patrticle case, except within the coexistence region. Here
the isotherm is more flat in the case of larger systems. This is
in fact what is expected, since in an infinitely large system
- . o isotherms are strictly flat in the coexistence region. Figure 3

g0/(v1—vo), wherev, andu, are the specific volumes of - (o snapshots of the systenTat0.0875, within the LDL

the states with nearest particles at distaneeg or ~r . For and HDL phases and in the coexistence region. The HDL
P nearP,, the system has an anomalously large compress-

ibility. The attractive part of the potential may turn this (LDL) phase is characterized by a larger amount of particles

. . " at distancery (r1) from their neighbors. The snapshot at
?nneocnlqzlnyism%]a first-order transition through a van der WaalscoexistencéFig. 3(b)] shows indeed that different neighbor-

We will show results for two-dimensioné2D) and three- hoods of high density and low density coexist in the system.

dimensional(3D) systems. The parameters we use Bye The existence of a loop in the isotherms below the critical
=1.7%q, r,=4.8, and y=0.27%, for 2D and r;
=172, r,=3.0ry, and y=0.31g, for 3D. Temperature

will be measured in units of,/kg, and pressure will be
measured in units af,/r3 in 2D andey/r3 in 3D. Calcula-
tions were done by standard Monte Carlo techniques, in sys-
tems with periodic boundary conditions. Some of the results
to be presented correspond to constant volume simulations,
where the volume of the system is kept fixed at each simu-
lated value, and pressure is calculated through standard for-
mulas. Other results correspond to constant pressure simula-
tions, where external pressure is fixed, and the volume of the
system is taken as an additional variable during the simula-
tion.

depending on the value of external pressure and the attra
tion intensity y. Interparticle distance; (rg) is favored for
pressures lowethighen than some crossover vall®,. The
crossover pressuréfor y=0) is given roughly asP,

(a)

(b)

Ill. RESULTS
A. Two dimensions

Figure 1 shows the isotherms we get from the simulations
for a system of 200 particles in the 2D case, near the position
in which we find a liquid-liquid critical point for our param-
eters, namelyT, =0.10, P;, =0.07, andv,, =1.853. We
see in fact that when reducinigbelow ~0.1, the isotherms
get a loop, typical of a first-order transition. This transition
separates two liquid phases that we ¢fillowing the nota- FIG. 3. Snapshots of the system of 1000 particles at the points
tion in wate) low-density liquid(LDL) and high-density lig-  indicated in Fig. 2. Black dots represent the strict hard core of the
uid (HDL). We have checked that the position and characparticles at . In (a) and(c), the system is almost completely in one
teristics of this transition do not change when going to aof the two liquid phaseéHDL and LDL, respectively. In (b), there
system of 1000 particles. As an example, we show in Fig. 2s a clear coexistence of the two phases.

(©)
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0.10 - - - - plane[11,12. When testing for the stability of these struc-
P tures, the fact that some of them take a very long time to
Coll ™D appear spontaneously in simulations that start in the fluid
................... ] / phase is usually a problem, and then the equilibrium coex-
’ istence line between these phases and the fluid has to be
determined in some other way. We then applied the proce-
Ce dure already used ifil1] consisting of the inclusion of an
liquid additional external potential, with a spatial periodicity corre-
o , , %. sponding to the crystalline lattice to be studied. The exis-
Bog 005 010012 020 028 036 tence of this termwith a strength given by some parameter
T W) allows us to construct a path in tHe-T-W space that

FIG. 4. Pressure-temperature phase diagram of the two'Eakes the system smoothiye., without crossing any phase

dimensional model showing the existence of the liquid-liquid andtr_anSItlor) f_rom the fluid to the crystalline phase, and the

liquid-gas critical points. The temperature of maximum densityd'fference in free energAG between the two phases at

(TMD) is indicated. Units as in Fig. 1. some fixed value® =P, andT=T, can be calculated by a
generalization of expressidi3), namely

0.05}

temperature, instead of a flat region, even when the system

clearly separates in different regions corresponding to the 2y ew +ew

two different phasegFig. 3(b)], is due to the nonvanishing A((-“’/T)|P0,To: L?dP’L W\/dw_ ?dT’ (4)
contribution to the total energy of the surface energy be-

tween the two phases. This contribution only vanishes in ) ) o
infinite systems. whereey, is the potential energy per particle in the external

From the isotherms of Fig. 1, we see that the LDL has Footential. In order to move the system from the crystalline to
density anomaly, since there is a temperature range in whici€ fluid phase, the integration consists typically in the fol-
volume increases as temperature is reduced, at constant pré%W'”Q,dose path: increasingV from zero to some large
sure. This density anomaiyhich is reminiscent of the simi- Valué; increasing from Ty, to a large value; decreasiny
lar phenomenon in watgris known to occur[6] in core- ~down to 0; decreasing down toTy. In this way, the differ-
softened models even in the absence of an attractive part §1C€ in free energy between the fluid phase and the possible
the interparticle potential, namely wh&fh,=0. crystalline phases was determined at fixed points inRtHe

We will now present the equilibriurP-T phase diagram Phase diagram. TheAG can be calculated for the whole
of the system, close to the liquid-liquid critical point, to Plane by thermodynamic integration of the pure phases. Us-
show clearly that the liquid-liquid coexistence we are ob-iNg this procedure, we have verified that the only crystalline
serving occurs in thermodynamic equilibrium, and it is notPhase that is thermodynamically stable within thd sector
crystalline. parameter~r,. Other crystalline structures appear only for

The P-T phase diagram is presented in Fig. 4, and thdOWer temperatures of higher pressures. .
different borders between phases were obtained as explained Note in Fig. 4 that the melting of the crystal is anomalous
in the following. The position of the equilibrium first-order N the region near liquid-liquid coexistence, i.e., both liquid
line between LDL and HDL phases in tieT phase dia- Phases are denser than the solid around this point, which is
gram was determined from the isotherms of Fig. 1 and fronindicated by the negative slope of the liquid-crystal coexist-
the values of the enthalpy=e+Pv (not shown by ther-  €nce line. This is probably not a general rule, but is the case

modynamic integration, calculating differences in Gibbs fregV@ found in all simulations we performed. In this figure, the
energyG from the relation line of maximum density is also indicated. Note that this line

does not end exactly at the critical point, but somewhere on
G, G, 20 h the first-order line, within the LDL region.
T——T—zf Td P——dT, (3 At very low pressure, the condenséliquid or solid
2 1 ! T phases are unstable against the formation of a gaseous phase,
as in a standard fluid. The condensed-gas coexistence line
where 1 and 2 stand for two sets of vali®s T, andP,,T, can be numerically determined in a reliable way by the stan-
and the integration is through an arbitrdrgversiblg path in  dard simulation methods we use only close to (lguid-
the P-T plane. In this way, we can compa@on both sides ga9 critical point, where the metastability range is small.
of the first-order line, performing an integration surroundingTypical isotherms around this point are shown in Fig. 5,
the critical point, and the first-order line can be determinedrom which the location of the liquid-gas critical point is
with good precision. This procedure is more reliable than theestimated to be & ¢=0.02, T, 5=0.37. Using the position
standard Maxwell construction, although the results we havef this critical point, we estimate the liquid-gas coexistence
obtained in this case are almost equivalent. line by fitting to a van der Waals equation, chosen to give the
Concerning the crystalline structures, we know in fact thatcorrect values oT | ¢ andP, ;. This is the line that is seen in
the present model shows a variety of different crystallinethe right part of Fig. 4(note the change in the horizontal
structures, which are stable in different regions of M@ scale in this sectgr At temperatures0.1) where we ob-
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FIG. 7. Structure factor of the two coexisting liquid phases of

FIG. 5. Isotherms near the liquid-gas transition for a two-
the 3D system at=0.075, P~0.032.

dimensional system of 500 particles. Units as in Fig. 1.

peaks corresponding to interparticle distamgeandr, are
indicated. There is an abrupt change in the relative weight of
these two peaks at the liquid-liquid transition, corresponding
to an abrupt change in the mean distance between first-
neighbor particles.

serve liquid-liquid coexistence, the transition pressure to th
gas phase is of the order of 10 Then we are sure that the

liquid-liquid transition occurs in a region in which liquid is

thermodynamically stable with respect to gas.

The crystal-liquid-liquid triple point we obtained turns X : N , , ,
into a gas-liquid-liquid triple pointstill at equilibrium) by For the simulations shown in Fig. 6, we did not find evi-
increasing the intensity of the attraction between particles. If/€nce of the appearance of any crystalline structure, suggest-
fact, this moves all coexistence lines to lower pressures confnd that the liquid-liquid coexistence occurs at equilibrium.

pared to the condensed-gas line, and at a certain point thiP be_z sure, we s_hould investigate the st_ab_ility of the different
crystal-liquid-liquid triple point is forced to be in the meta- possible crystalline structures, as we did in the 2D case. For
stable region with respect to the gas phase. At this point, thi'® 3D system, however, this is much harder, as we actually
gas-condensed line together with the liquid-liquid line deter-d® not know all the crystalline structures for this cdsee

mine a liquid-liquid-gas triple point. For instance, increasingl12)- Therefore, we take another route, seeking for other

y from 0.27 to 0.285 produces a liquid-liquid-gas triple pOimmdicators of stability of the liquid phase, to rule out the
located at P=10°, T=0.10. The liquid-liquid critical possibility that we are observing a liquid-liquid transition in

point in this case is located &=0.03, T=0.12. At still a metastable region. So we will look f.ort.he fulfillment.of the
higher values of the attraction, the whole liquid-liquid line Hansen-VerIe{lB] and Lowen[14] cr|ter|a.for crystalllza—.
moves into the metastabR<0 region and the equilibrium t|on..AI'though they stand only'as approximate, and mainly
liquid-liquid transition is lost. h_eurlstl(_:, they have been verified in a variety of cases. For
simple(i.e., Lennard-Jongsystems, the Hansen-Verlet cri-
_ _ terion states that freezing occurs when the first peaR(kj
B. Three dimensions reaches gquasjuniversal value of-2.85. A straightforward
For the 3D case, we show in Fig. 6 the isotherms obtaine@eneralization of this criterion to “anomalous” fluids tells us
for a system of 300 particles. They again show the existencthat this relation should be checked for all peak$(k) [8].
of the liquid-liquid critical point. The curves are smooth for The results forS(k) of Fig. 7 show that all peaks are lower
T=0.08, whereas there is a jump in at the coexistence than this value, suggesting liquid stability. The Lowen crite-
pressure forT lower than this value. Also apparent from ria for freezing indicates that this occurs when the relation
these curves is the existen@s in 2D of density anomalies between long- and short-time single-particle diffusion coef-
for the low-density liquid. ficients drops below a value of0.1. This dynamical crite-
The structure facto®(k) of the 3D liquid is shown for the rion is independent of the nature of the crystalline structure
two coexisting liquids aff=0.075 in Fig. 7. The two main to which the system freezes. Although it has been proposed
and verified in systems with Brownian dynamics, we have
verified in simple casesi.e., hard sphergsthat it is also
fulfilled with the Monte Carlo dynamics, and so we apply it
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FIG. 6. Isotherms of a 3D system of 300 particles near the v/rg
liquid-liquid critical point (located atT~0.08, P~0.038). Sym-
bols are the simulated points, lines are guides to the eye. Pressure is FIG. 8. Relation between long- and short-time diffusivityD ,
given in units ofeolrg, temperature in units of 5 /kg. along theT=0.075 andT =0.09 isotherms, for the 3D system.
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tentatively here. The relation between long- and short-timehat favors two different equilibrium distances between par-
values of the diffusivityD/D, (calculated with the Monte ticles. The study of the prese(dr some relatedmodel dis-
Carlo dynamickis shown in Fig. 8 along th& =0.075 and  playing liquid-liquid coexistence at equilibrium is likely to
T=0.09 isotherms. The relatidd/Dy, is in the whole range contribute to the understanding of the same phenomenon in
well above the value of 0.1 expected at freezing. Then altases in which it occurs in the supercooled reg@jnwhere
indicators coincide in telling that the liquid-liquid coexist- it is much harder to study due to metastability against crys-
ence we are observing occurs in truly thermodynamic equitallization and long relaxation times. Our findings also open
librium. From Fig. 8, we also see that the evolutionDobn  the possibility of observing liquid-liquid coexistence in
density shows a maximum that is well known to occur inmonodisperse systems of rigid and spherical particles, i.e.,
tetrahedrally coordinated materidlk5], and it is also typical colloidal systems, where interaction potentials with more
of core-softened potential46]. than one equilibrium distance are easily obtaih&d.
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