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We introduce an elegant method that allows the application of diffusing-wave spectrod2dyfy) to
nonergodic, solidlike samples. The method is based on the idea that light transmitted through a sandwich of
two turbid cells can be considered ergodic even though only the second cell is ergodic. If absorption and/or
leakage of light take place at the interface between the cells, we establish a so-called “multiplication rule,”
which relates the intensity autocorrelation function of light transmitted through the double-cell sandwich to the
autocorrelation functions of individual cells by a simple multiplication. To test the proposed method, we
perform a series of DWS experiments using colloidal gels as model nonergodic media. Our experimental data
are consistent with the theoretical predictions, allowing quantitative characterization of nonergodic media and
demonstrating the validity of the proposed technique.
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I. INTRODUCTION practically important cases. The theoretical model of DWS is
based on the diffusion approximatif®,4]. It applies equally
Diffusing-wave spectroscopfDWS) [1-7] is an exten- Well to both statistically homogeneous and heterogeneous
sion of “conventional” dynamic light scatteringdLS) [8,9] medla(med|a with m_clusmns, scatterer flows, etdAbsorp-
to the multiple scattering regime. The basic idea of DWS isgOn of light, reflection of scattered waves at the sample
to use the autocorrelation functiong,(7)=(I(t)I(t oqndarles, modulation of the_ source intensity, as well as
> S . various types of scatterer motidBrownian [3,4] and sub-
+ T)>T/<!(t)>T of the light mtens@yl (1) scattered by atr  pownian [40] motion, laminar[41—-43 and turbulen{44]
bid medium to study the dynamics of scatterers in the meygqys, etc) can be taken into account within the framework
dium. Here(.--)7 denotestime averaging that can differ of the diffusion model. Recently, the theory of DWS has
from the ensembleaveraging(- - -)g. Introduced in 1987 peen extended to nonlinear random media,46).
[1], the technique of DWS has rapidly evolved in recent An important condition for the applicability of the exist-
years and is currently applied to study various types of turbidng diffusion theory to DWS experiments is teegodicity of
media, such as colloidal suspensidis-6,10, particle gels the turbid medium under investigation. Indeed, ensemble-
and ceramic green bodiegl1-15, emulsions[16-1§, averaged quantities are commonly calculated theoretically,
foams[19-23, and granulaf24,25 and biological[26—28  while it is the time averaging that is most easily obtained in
media. It has been demonstrated that DWS can be used #xperiments. Thus;- - -)g={(- - )1 is required for the ex-
image macroscopic static and dynamic heterogeneities in tuperimental data to be described by the theory. If the light-
bid media[29-39. In 1995, Mason and Weitz have sug- scattering sample is nonergodisay, the sample or some
gested that the motion of colloidal particles, characterized byart of it is solidlike additional efforts, e.g., translational or
DWS, can be directly related to the viscoelasticity of therotational motion of the sample during the measurement, are
surrounding mediungthe corresponding experimental tech- necessary in order to obtain - - )¢ [29,33-35. Similar ar-
nigue is sometimes called “DWS microrheology’[36].  guments hold for the role of nonergodicity in standard DLS
Much attention has been paid to this approach since it couldxperiment§47-53.
provide fast and noninvasive access to viscoelastic properties In the present paper we propose an elegant and simple
of numerous materials, thereby opening a large new field ofvay of performing diffusing-wave spectroscopy of noner-
potential applications for DW§14,37-39. godic media[11,54. The method is based on the idea that
One of the main reasons for the remarkable success dight transmitted trough a sandwich of two turbid cells can be
DWS is the availability of a relatively simple and reliable considered ergodic even if only the second cell is ergodic.
theoretical model that describes the experimental data in allve show that the resulting transmitted multiple-scattered in-
tensity is ergodic despite the nonergodicity of random me-
dium in the first cell. Consequently, the usual DWS theory
*E-mail address: Frank Scheffold@unifr.ch applies to the description of the intensity autocorrelation

1063-651X/2001/6()/06140411)/$20.00 63 061404-1 ©2001 The American Physical Society



SCHEFFOLD, SKIPETROV, ROMER, AND SCHURTENBERGER PHYSICAL REVIEWGE 061404

function g,(7). Moreover, the double-cell sample can be
constructed in a way that the presence of the second, ergodic
cell does not obscure the light-scattering signal of the non- 08
ergodic medium under investigation. In order to simplify the
interpretation of the experimental data, we introduce a so-
called “multiplication rule.” Namely, we show that if a sig-

g,(®-1
o
S

nificant attenuation of diffuse waves occurs at the interface 02k,
between the cells due to absorption and/or leakage of light in :q‘
transverse directions, the ensemble-averdigsd [55] auto- 0 el

: 10® 107 10® 10° 10* 10° 10° 10’

correlation functiong$®(L,,L,,7) of the double-cell setup

equals a product of autocorrelation functia{®(L,,7) and

g(ll)(Lz,T) corresponding to the individual cellfrom here FIG. 1. Typical light scattering signal of a nonergodic system.

on, we use superscripts 1 and 2 to denote the autocorrelatidtepeatedtime averagedmeasurements a,(7)—1 lead to non-

functions corresponding to single- and double-cell Samp|e§!eproducible results, each being of limited use for _the characteriza-

respectivelyl , andL, are the thicknesses of the cgll§his ~ tion of the system. Over the measurement tiftypically a few

allows a full DWS study of the turbid media in the first cell minutes, th_e t'me anql ensemble averages of the fluctuations of the

o - . . . . scattered light intensity are not the same.

despite its nonergodicity. Due to its simplicity and high sta-

tistical accuracy, our method is ideally suited for the study Ofdecay timer,> 7,. This prevents the light-scattering signal

turbid gels, coII.oidaI glasses, and other nonergodic multiple—Of the first, nzoneﬁ:]odic cell from being obscured by the sec-

;E%ﬁggggﬁit;negfl@:tlhleyl2(5{t1>§\’/5ea-l'n-1r:riignnitgocrjnifgrﬁgé?gg; tg:_qnd cell. In Seg. VII we discuss different aspects of app!ica—
. o tion and optimization of the two-cell technique in practice.

proach[36,37 to an important class of solidlike complex We summarize our main results in Sec. VI

materials where the motion of colloidal tracer particles is ' ’

highly constrained.

The paper is organized as follows. In the next section, we [l. DYNAMIC LIGHT SCATTERING
provide a brief review of known experiments in the field of BY NONERGODIC MEDIA
DLS by nonergodic media. We describe the methods used to

overcome the problem of nonergodicity and discuss the ap- In nonergodic random media, the scatterers are localized
plicability of similar methods in DWS experiments. In the near fixed average positions, probing only a small fraction of

second part of the section. we introduce a method to de tpeir possible spatial configurations by thermal motion. As a
with non?ar odicity in DWS ,and reveal the conditions under.._ o auence, the measured time-averaged quattities as
which the ?nethoéll can be applied. Section Il is devoted t the scattered intensity or its autocorrelation functidiffer
the theoretical model of DWS in a double-layer medium. rom the ensemble-averaged ones. Experimentally, one finds

. e . X that a series oftime-averaged measurements on a given
Ett?(;tr'\nf%rfrc?irgnthﬁedgggiﬂnaﬁqéj)?;'rzgsf&t?; ft'ﬁédaitt’é%g?rr;?é_sample yields a set of different results, each being of limited
tion function of light transmitted through a sandwich of two use for the characterization of the mediusee Fig. 1
turbid cells, separated by a nonscattering but perhaps absorb- _ .
ing wall. Section IV introduces the so-called multiplication A. Concepts to deal with nonergodicity

rule and reveals the conditions of its applicability. In Sec. V in dynamic light scattering

we describe our experimental setup, and Sec. VI is devoted For diluted, nonergodic samples several methods have
to the discussion of the main results of our experimentspeen applied to properly average the data obtained in DLS
First, we have performed model experiments to test the Vaexperiment§47—53. A good comparative review of some of
lidity of our theoretical model and to ensure that the experithese methods can be found in R¢80] and[51]. The most
mental setup is adequately described by the theory. In thesgirect method of performing ensemble averaging of scattered
experiments, no attenuation occurs on the passage of ligiight for nonergodic samples is based on the idea of collect-
through the wall separating the light-scattering cells and theng light scattered by different parts of the sample, thus per-
multiplication rule does not apply. Next, we show how our forming the “real” ensemble averaginfs0]. Experimen-
method can be applied to an important case of considerablgjy, the sample is slowly moved or rotated, while the
leakage of light at the intercell wall. This situation is the gytocorrelation function of the scattered intensiy(7) is
most interesting for practical applications, since the multipli-cojlected. Obviously, this leads to an additional decay of
cation rule implies that the autocorrelation function g, () which becomes increasingly rapid with increase of the
g§"(Ly,7) corresponding to the first layer can be obtainediransiation velocity or the rotation frequend0]. The
simply by dividingg{®(L,,L,,) measured for the two-cell rotation/translation method can be extended to concentrated,
setup byg(ll)(Lz,r) measured for the second cell taken turbid suspensions without any particular difficulties, and it
alone. In addition, our second sample is highly asymmetrichas been actually employed in recent experiments on
the first layer is of significant optical thickness and has adiffusing-wave imagind34,35. It has, however, an impor-
relatively short correlation decay timg, while the optical tant disadvantage of experimental compleXitanslation or
thickness of the second one is moderate and its correlatiomtation of the sample is requiredBesides, it is not well

T[s]
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suited for fragile turbid systemsuch as ge)s since moving (a)
or rotating the sample can lead to its disturbance or even 0
breakdown. Nonergodic medium: y

Pusey and van Mege#7] have proposed a method of scatterer motion is restricted L
obtaining the ensemble-averaged intensity autocorrelation Nonscattering wall !
function from a combination of static and dynamic experi- Ergodic medium:
ments. The idea is to measure the autocorrelation function of scatterers move freely
scattered intensity for a single sample orientation, and to - L
subsequently rotate/translate the sample rapidly in order to z
obtain the average intensity for a given scattering apgjfe- (b)
49,56. Recently, an extension of the above method to DWS Incident intensity profile x
experiments has been develogéd]. o

In general, all these approaches rely on a one-dimensional
motion of the sample, i.e., scanning the speckle pattern, AA A MR- [
which is not very efficient and therefore time consuming. “TL+A
This makes it intrinsically difficult to apply these methods to : '
systems that evolve in time, e.g., gelling systems. : :

A different method of dealing with nonergodicity in DLS L L
has been proposed in Ref52] and[53] (see also Ref58]). Time-averaged transmitted intensity 5
The authors use a charge-coupled-deicED) camera to o ) )
record the temporal evolution of many speckle spots simul-_ FIG. 2. Schemapc illustration of _th_e idea of the_ two-c_ell tech-
taneously, which allows them to perform correctly both time"idue- (@ A cell (thicknessL ;) containing an ergodic turbid me-
and ensemble averagéhe latter is the average over a large 4iUMm is added just after the cell containing the nonergodic medium
number of speckle spotsThe method appears to be very under mvest_lgatlor(thlcknessL1). The_ cells are separated b_y a
efficient in the small-angle single-scattering regime, while itsil?_sls-rvfir”(lilIC(I:)??I'SinswAe)-.aIQg;\a/gri?]Itlet:;i:tl;n;rsosﬁI(c)sfstgfessirg\?vlr?l-slihe-
Zp(zhecnaetlr(;rl} yt()inr;lzjflé'gf&fiﬁg”&%jﬁfp;'ngi?;gllgaéeéjljbymatically for the incident light, the muItipI_e-sca_ttered light at the

- ) . ) intercell interfacez=L, and for the transmitted light. Between the

cameragin DWS, fast and low-intensity speckle fluctuations

! cells, the time-averaged intensity exhibits speckles due to the non-
are usually monitored However, the method of Reff52]  ergodic nature of the medium in the first cell. The speckles are

and[53] can be applied to study extremely slow dynamics inyashed out upon the transmission through a sufficiently thick sec-
turbid systems where the above-mentioned constraints do nghq cell.

apply [59].

Time-averaged intensity y
between the layers :

eraged out upon the transmission through the second one,
and that no light can pass through the latter without being
To overcome the problem of nonergodicity, we prepare scattered. The described setup offers an advantage of high
sandwich consisting of two independent glass cells. The firsstatistical accuracy due to a two-dimensional averaging
cell contains a solidlike nonergodic medium under studyscheme. Furthermore, no mechanical disturbance is applied
while the second cell is filled with an ergodic medijisee  to the sample, which is of particular importance when work-
Fig. 2(a)]. By adjusting the concentration of scatterers in theing with fragile systems.
second cell, the viscosity of the liquid where the scatterers Let us briefly discuss different aspects of time and en-
are suspended, and the thickness of the cell, it is possible gemble averages in the double-cell geometry. For simplicity,
shift the “forced” decay of the autocorrelation function due we choose the intensity of lighand not its autocorrelation
to the second cell to long correlation times Then function as an object of averaging, but the same arguments
9$?(Ly,L,,7) will exhibit a short-time decay due to the mo- apply to the autocorrelation function as well. First, we con-
tion of scatterers in the first cell, at intermediatet will ~ sider the transmission of a plane wave through a layer of
saturate at a plateau because of the nonergodic nature of tf@fally rigid random mediunithicknessL ;, photon transport
medium in the first cell, and finally, at long correlation times, mean free pathy). We find that the ensemble-averaged in-
9$?(L,L,,7) will decrease to zero due to the motion of tensity of multiple-scattered lightl (R,z))e at depthz and
scatterers in the second cell. Physically, the slow motion ofransverse positiolR={x,y} is independent oR. Mean-
scatterers in the second cell gently shakes and randomiz&#dile, (I(R,z))r=I(R,z) is a random function oR, a “fin-
the speckle pattern of the nonergodic medium. In this waygerprint” of a given scatterer distribution in the sample.
ensemble averaging of light scattered by the first cell is acConsequently,(I(R,z))e#(I(R,z))y and the considered
complished, similarly to the case when the sample is movedight-scattering system is nonergodic.
The time scale of this averaging can be well controlled by Let us now add a second turbid lay@hicknessl ,, pho-
the scatterer motion inside the second cell and by the thickton transport mean free path) just after the first ongwe
ness of the cell. The only constraint being a high enougmeglect for a moment the thicknedsof a glass wall sepa-
optical thickness of the second cell, ensuring that the nonerrating the cells, see Fig(®]. We assume that the scatterers
godic intensity fluctuations produced by the first cell are av4in the second layer are moving, and that all possible spatial

B. Two-cell technique
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configurations of scatterers are explored in course of thi®y a plane monochromatic wave, the field correlation func-
motion. The light intensity (R,z,t) is then time dependent, tion G(r,7)=(E(r,t)E*(r,t+ 7))g inside each turbid layer
and the time-averaged intensity of light transmitted througrcan be found as a solution of the diffusion equafiaf,31]

the double-layer mediung) (R,L,t))7, can be considered as

a result of transmission of the speckle pattérfR,L,t))r,
being specific for the given configuration of scatterers inside
the first layer through the second layer. Now we assume that
the optical thicknesses of both layers are large enough ( where o(7) describes “attenuation” of correlation due to
>1r) so that the diffusion picture of wave transport is valid scatterer motion, an@(r)=s,6(z—z,) is the source term
in both layers. This allows us to estimate the typical speckldzy,~17). The explicit form of the “attenuation” coefficient
size at thez=L, plane asd~\ (see, e.g., Ref60]), where a?(7) in Eq. (1) depends on the type of scatterer motion
the wavelength of lighk is assumed to be roughly the same (€.9., Brownian motion, flow, etc.One can show that?(7)

in both layers and much smaller than the scattering lengths i determined by the absorption length and the mean
the layers. At the same time, as longlas-1% , theaverage ~ Sduare scatterer displaceméntr (7)%)e [5,31,61:

intensity of light transmitted through the second layer is not

(V2 a2(1)]Gs(r, 1) = — o) @

I*

. . 13 H H 1 7 2
sensitive to those. details of the “source distribution (1) = +—2<Ar(r)2>E, )
I[(R,Lq,t) that are finer that,. Consequently, the speckle [J* 1*
patternl (R,L,t) will be completely washed out upon the _ _ _ _
transmission through the second layer, ér((R,L,t)h_ will wherek=27/\ is the wave number of light in the medium.

be insensitive to the exact spatial configuration of scatterer50r Brownian motior{34] <Ar(27')2>E_:<Ar(T)2>T2:GDBlT

in the first (rigid) layer, being equal tql(R,Lt))g. The ~and a*(n)=3/(Ial")+67/(7ol™7) with  7o=(k"Dg) ",
scattering system is then ergodic: the time and ensemble awhile for a directed flow one find$41-43 (Ar(7)%)e 7
erages are equivalent. Similar arguments apply in the casé7, anda?(r)=7% In the case of a gel, which is an ex-
when the first layer is not completely rigid but exhibits some@mple of nonergodic medium considered in this paper, we
nonergodic dynamics. The general reason for this is the folassume that the particles undergo a sort of arrested subdiffu-
lowing. A given speckle spot of typical sizb<I} inthez  Sive motion[11,57,63,

=L, plane can be considered as a point source of light,

which produces a photon cloud spreading linearly upon the (Ar(7)2)g 1= 52+ 1—ex;{ - (l
diffusion through the second layer of turbid medium. Hence, ' Tc
the speckle spot &=L, gives contributions to the average
intensity within a region of typical transverse sizg at the
z=L plane. For this reason, the intensity of light at a given
point R of the z=L plane is formed as a sum of contribu-
tions of N~ (L,/d)?>1 speckle spots located at L, [see
Fig. 2b)]. In this way, the averaging over a large number of

p

] , ()

where § denotes the maximum r.m.s. particle displacement,
7. IS a characteristic time required for this displacement to
occur, andp is a free parameter. We expedl] p=0.7
+0.1. Equationg?2) and (3) give

independent speckle spots is performed. In some sense, such ()= 3 n (kﬁ)z[l—exp{ _ (1 P ] ()

an averaging is equivalent to that obtained by translai@on l* |*2 Te

rotation of a single nonergodic layer. It is worth noting,

however, that in order to average over the same nurNksr The time autocorrelation function for a sample consisting

speckle spots, the sample has to be translated by a distanceadftwo turbid layers separated by a nonscattering wall can be

orderL§Id> L,. found by solving Eq(1) inside each layer, and then applying

the boundary conditions at the surfaces of the mediam (

IIl. THEORY OF DWS IN A DOUBLE-LAYER MEDIUM =0 andz=L) and at the interfaces between the turbid layers

) - . . and the nonscattering wall. Boundary conditiong-a0 and
Adding a second cell modifies the intensity autocorrelaz=| are of a well-known forni63—66,

tion function of transmitted light, which now exhibits an ad-

ditional decay. In order to interpret properly the experimental {Gy(r,7)—z1[€,- VG4(r,7)]}|,=0=0, (5)
data, we need a theoretical model describing the autocorre-
lation function in a double-layer turbid medium. In this sec- {Gy(r, ")+ 2,[e, VG4(r,7)]}|,=. =0, (6)

tion, we show that such a model can be readily constructed,
provided that the transport of light is diffusive in both layers. wheree, is a unit vector parallel to the axis, z,= (2/3)I}, ,
Consider a slab situated between the plane®, z=L and the refractive index mismatch between the scattering and
=L,;+A+L,, and consisting of two layers of turbid media transparent media is neglected. In general, a rigorous theory
(thicknessed_; and L,) separated by a nonscattering but would require using the extrapolation lengthscalculated
perhaps absorbing walthicknessA, absorption coefficient with account for the refractive index mismatch at the sample
M,), as depicted in Fig.(@). L, andL,, are assumed to be surface§63-66, or deduced from the angular distribution of
much larger than the photon transport mean free paths insid#iffusely transmitted lighf67]. For our purposes, however, it
the layers)7 andl3 , respectively. If the slab is illuminated is sufficient to know thag,~ /7 , since the actual values of
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z, are of no importance in the limit o, <1 andl}/L, @) aly asl,
<1 that we apply in the following. g3 (Ll'LZ’T):sink(alLl) Sinf(ar,L)
Boundary conditions at the interfacessL,; and z=L,
+A between turbid and nonscattering media are found by X(1—1242z,/L;+22,/L,)
applying the condition of flux conservation, as discussed by 5 5 1
Ripoll et. al.[68]. Neglecting the refractive index mismatch x| 1—f2+ @12 @222
between the turbid and nonscattering media, we [fG8) tanf(a L) tanh(asly)|
11
[Ga(r, 1)+ 21{€ VG D}l o=1, where we assumed,|* <1 andl*/L,<1.
_ In our experiments, the time-averaged autocorrelation
=f(r)[Gy(r,7)+25{e,- VG(r, - , (7 . )
(D[G1(r. ) +25le, 11,z Lith @ function of the scatteredntensity g(r,7)={I(r,t)I(r,t
+7))1/{I(r,t))? is measured. As the double-layer system is
_ ) shown to be ergodi¢see Sec. )| g, is related tog, by the
[Gl(rlT) ZZ{GZ VGl(rlT)}]|Z=L1+A Siegert relatior[s]
=f(r)[Gy(r,7)—z1{e, VGy(r,7)}]|,=L., (8)
[Ga( i{e, 1 HIz Ly go(r, 1) =1+ Blgy(r, 1|2, (12)

. _ . where 8=1 is a constant determined by the experimental
with f(r) describing the losses of energy at the interlayer . o .
wall due to absorption and/or leakage of light in transversesetuD[g’g]' Let us assume that the first layer is filled with a

directions[0<f(r)<1 andf(r)=1 in the absence of both gel, while the second one contains a suspension of Brownian

. . B . _ * 2
absorption and leakagig=or an infinitely wide slatno leak- particles with a correlation decz_ay_tlrr’@— TO(.|2/ L2)". Wwe
age we have[69] also assume that the characteristic correlation decay time of

the first layerr; is much smaller tharr,. Then, it can be
shown from Eqs(11) and(12) that when the rms particle
f=exp—MaA)(1-MaA)+(M,A)2T(0M,A), (9)  displacementAr(7)?)*? approaches for 7> [Eq. (3)],
the autocorrelation functiog{®(L,,L,,7) reaches a plateau
for 1y<7<7,. The plateau height can be found from Eq.

wherel'(---) is the incomplete gamma function. For realis- (11). As 7 approaches,, g{?(L,L,,7) continues to de-
tic samples of finite width, leakage of light in transverseregse.
directions may be considerable. In the absence of absorption
(M,=0), we find for a cylindrical sample of raditRg>1} V. MULTIPLICATION RULE
after averaging over the sample cross-section, '

The autocorrelation function of light transmitted through

a single layer of turbid medium can be fouf&il] from Eg.

f=14 E _)2_ } é 4+ é Tm (10 (1) with boundary condition$5) and(6), and since forxl*
2\R 2R R <1 andL>1* the solution reads
(64
Averaging over the sample cross-section makésdepen- g (L, 7= Sin(al)’ (13
dent ofr, which largely simplifies the further analysis with-
out affecting the final result qualitatively. we can rewrite Eq(11) as
In what follows, we assume théfr) in Eqgs.(7) and(8) is
given either by Eq(9) or by Eq.(10), being independent of 92(Ly, Ly, =g (L, ngM(L,, P, (14)
r in both cases. The case when both absorption and leakage
are present can also be analyzed without any particular difyhere
ficulties, but this leads to cumbersome formulas without in-
troducing any new qualitative features. Both E¢®). and F=(1—f2+2z,/L,+22,/L,)
(10) exhibit a monotonic decrease from IM{A=0 or .
A/R=0)t0 0 M,A>1 orA/R>1). If f=1 (no absorption, ol 1—2 2,7y 2077, (15)

no leakagg Egs. (7) and (8) reduce to the well-known tanh(a;L,) tank a,L,)
boundary conditions between two turbid media in a direct
contact[29,31,33. If f=0 (strong absorption and/or leak- Hence, the autocorrelation function of light transmitted
age, Eqgs.(7) and(8) decouple and the problem is reduced tothrough the double-layer sample is given by a product of
two single-layer problems. autocorrelation functions of individual layers times some
Equations(1) and (5)—(8) enables us to calculate the au- functionF that describes the coupling between the layers. By
tocorrelation function of light transmitted through the adjusting the parameters of the experimental séfupl can
double-layer systemG,(L,7)/G4(L,0), which in the ab- be achieved, and then the followimgultiplication rule will
sence of absorption {— =) inside the turbid layers reads hold:
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9P(Ly, Lo, ) =gM(Ly,1)gfM(Ly, 7).

To reveal the conditions of validity of the multiplication rule
(16), we consider separately the cases of lolw=() and
considerablef(<1) losses of light at the interlayer interface.

If f=1, Eqg.(15 becomes
] E tanr(azl_z) E tanf(alLl) '
17
which reduces to unity only itx;L;<1 and a,L,<1, or

Ll/II>L2/|; and CY2L2<1, or L1/II<L2/I§ and alLl
<1. In other words, for the multiplication rulgl6) to hold,

(16)

Ly L, o

* %
1T 13

Lq asl, L, aily

F

PHYSICAL REVIEWGE 061404

L, L,
| |
Laser
Fiber
PM +
Correlator

FIG. 3. Experimental setup. A laser beaiy&532 nm) is in-
cident on a sandwich of two turbid layers. The light transmitted
through the sandwich is detected with a monomode fiber, and is
subsequently analyzed with a photomultiplig?M)—digital cor-
relator unit.

the optical thickness of, e.g., the first layer should be much

greater than that of the second one, wig{®(L,,7)=1 for
the latter.

In the presence of losses at the interlayer interféeel
and Eq. (15) yields F=1 if L,/I*>1/(1—f%) and
apl¥ Itanh@,L,)<1—f2 To give an example, suppose that

segments, one inside the first lay@ngths;) and the other
one inside the second layes,]. P,(s;,S,) will then reduce
to a productP,(s;)P1(s,), exactly as required for the mul-
tiplication rule to hold. Note that the Siegert relati¢i?)
implies that the multiplication rule applies @,(7)—1 as

50% of wave energy is lost on crossing the interlayer interiell.

face once {=0.5). This gives L,/I}>4/3 and
ayl ¥ Itanh,L,)<3/4. The latter conditions are commonly

satisfied in typical DWS experiments, making the application

of the multiplication rule rather practical.

It is worthwhile to note that there exists a different, less

rigorous but more transparent way of establishing the multi
plication rule. Adopting the path-integral picture of light
propagation through the double-layer medi[2r-4], we can

write the field autocorrelation function of transmitted light as

9(12)(|—1:|—2'T): fo dslfo ds,Py(s1,80)

1 ) 1 5
Xexpg — 5 (A ()5, — 5 (A ¢ (7)s,|,
(18)

whereP,(s;,S,) is the relative weight of paths consisting of
segments of overall lengtlss ands, inside the first and the

second layers, respectively. The variances of phase diffe
ences(A¢*(7))s describe the dephasing of light inside the

layers. For a single layer of thickneksone hag2-4]

19

:x: 1
gg_l)(LvT): fo dSPl(S)EX% - E(A(P2(7)>S

Obviously, if the variables; ands, can be considered in-
dependentP,(s;,S,) = P4(s1) P1(S,), and Eq.(18) reduces
to a product of two terms each being of the form of Ef).

V. EXPERIMENTAL SETUP

Our experimental setup consists of a frequency-doubled
Nd:YVy, (neodymium:yttrium vanadatelaser (“Verdi”

from Coherent, wavelengtky=532 nm) with a beam width

of roughly 1 mm. Only minor differences are found upon
expanding the beam to 7 mm in widteee also Ref[7]).

The laser radiation is directed at the surface of the sample
consisting of two cells and the multiple-scattered, transmit-
ted light is collected using a single-mode optical fiber. The
intensity of collected light is analyzed by a digital correlator
(see Fig. 3 Apart from the complex structure of the sample,
the described experimental setup represents a classical one
for diffusing-wave spectroscopy experiments in transmission
geometry[2-5]. We pay special attention to the preparation
of the sample, which is a key feature of our experiments. The
first cell (thicknessL ;) is filled by a colloidal gel, prepared
from a destabilized solution of polystyrene sphediameter

70 nm at a volume fraction up to 20% in a buoyancy-
matching mixture of water and heavy wafdrl,70,71. In

our experiments, the gel serves as a model nonergodic me-
dium where the average mean square displacement of the
constituent particles is reasonably well described by the
model of arrested subdiffusive motigsee Eq.(3)]. In gen-

eral, gel systems undergo a complicated temporal evolution
(see, e.g., Ref$11,13-15,50,58,62, which is not a subject

of the present paper. For our measurements, we wait till after
the sol-gel transition, till the height of the plateau@f( 7)

This transparent physical picture underlying the multiplica-—1 is of the order of 0.5, and the gel properties remain
tion rule is particularly helpful if one seeks to understand theconstant over the measurement time of about 10—30 min. We
role of losseqabsorption and/or leakage of lighit the in-  note that experimentallg,(7) —1 does not exhibit a perfect
terlayer interface. Increasing the losses makes the partiglateau but rather a long stretching. This indicates a second,
lengths of light paths, ands, in the layers more and more long-time decay of the autocorrelation function, not included
independent, since the losses reduce the probability for en our simple theoretical mod€Eg. (3)]. The characteristic
typical path to cross the interface more than once. Consdime scale of this decay extends to minutes or h¢uis58|,
qguently, most of the paths will consist of two independentand hence is beyond the time window of our experiments.
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Two different realizations of the two-cell sample were much smaller optical thickness than the first one, while the
used in the experiments reported bel@amplesA andB for ~ motion of scatterers is made slow inside it. Namely, the first
brevity). While sampleA is a model sample constructed to cell is filled with a very turbid gel(volume fraction ®
test the validity of our approach, sample B is optimized to=20%, |7 =19 xm), while the second one contains a mod-
facilitate its experimental applicatidithe multiplication rule  erately turbid suspension of colloidal polystyrene dispersed
holds for this sample in a water-glycerol mixture I§ =300-500xm). The de-

Sample AThe sample consists of three disc-shaped micrease of the measured autocorrelation function due to the
croscope cover plategradius R=7 mm, thicknessA motion of scatterers in the second ergodic cell is thereby
=0.15 mm) and two ring-shaped teflon spacers. The firsshifted to long timesr~ 7,= o(13/L,)? and does not ob-
cell contains a colloidal gelvolume fractiond=7%, pho-  scure the light-scattering signal of the first, nonergodic cell.
ton transport mean free path=53 um). The second cell is Hence, the multiplication rule can be efficiently applied for
filled with a suspension of TiQpowder (Aldrich, particle 7= 75, while for 7> 7, the measured autocorrelation function
diameter<5 um) dispersed in pure glycerdtefractive in-  will decrease to 0O due to the motion of scatterers in the
dexn=1.47). The transport mean free path for this suspensecond cell. For the sample B, /|7 ~50>L,/I5~2-3,
sion is |13 =41 um. The single scattering correlation time and therefore we call this sample “asymmetric.”
corresponding to the suspension in the second celtyis
=23*1 s, as determined by standard DWS measurements VI. RESULTS AND DISCUSSION
in backscattering geometf$]. The thicknessek; andL, of .
the layers were determined from DWS measurements in N order to demonstrate the efficiency of the method pro-
transmission geometry by filling them with a suspension of?0S€d and theoretically justified in Secs. II-Ill, and to show
known |I* and fitting the resulting intensity autocorrelation the feasibility of diffusing-wave spectroscopy in nonergodic
functions with Eq.(13. We find L,=1.75 mm andL, media, we have car_rled out several mo_del experiments using
—1.9 mm. The optical thicknesses of both layers are compas@MPIesA (symmetrig and B (asymmetrig.
rable and high enoughLg/I}=33~L,/lI5=46>1), and
therefore we call this sample “symmetric.” A typical photon A. Symmetric sample
path lengths in the sample is~L?/1* ~4X 10? mm (with Open circles in Fig. @) show the intensity autocorrela-
L=Li+Ly~4 mm,I*=I7~I3~40 um), which is two or- tion functiong®(L,,L,,7)—1 of light transmitted through
ders of magnitude larger than the sample thickness. Hencgze symmetric samplé. The solid line going through the
the scattering of light in our sample is essentially multiple,open circles of Fig. @) is obtained by fitting the experimen-
and a typical photon path is expected to cross the buriegh| data with Eq(11) assumingf=1 (no leakage of light at
interlayer interface many times. Estimatigni2] of the at-  the wall separating the cellsThe fitting parameters are the
tenuation factoff givesf=0.98=1, and hence the multipli- ge| parameterss=2.24 nm, 7,=25 us, p=0.6 [see Eq.
cation rule will only hold for the samplé in a trivial situa-  (3)], while the parameters of the medium in the second cell,
tion of a;L;<1 anda,l,<1, asL/IT~L,/15 . as well as the cell thicknessés and L, were determined

Sample BThe sample consists of two equally thick light- independently. We note that the two sets of parameters are
scattering cell§Hellma, L;=L,=1 mm). The thickness of only weakly correlated in the fit. Theory and experimental
the glass wall between the turbid media inside the cells iglata are found in excellent agreement.

A=2 mm. Such a thick wall leads to a significant photon  As shown in Fig. 4a), the autocorrelation function of the
leakage in transverse directions, and we put an aperture @fyo-cell setupg(zz)(Ll,Lz,r)—l exhibits two characteristic
radiusR=2.5 mm in between the two cells to prevent the decay times. The fast decay is due to the gel in the first layer,
phOtonS leaked out of the cell from reaChing the deteCtorwh”e the slow decay Corresponds to the dynamics in the
This leads to some additional decrease of the total transmigecond |ayer_ This is illustrated in F|g(m, where we de-
ted intensity, while ensures the multiplication rule as dis-composeg?’(L,,L,,7)—1 in two contributions due to the
cussed in Sec. IV. Indeed, for=0.46 estimated theoretically gynamics in the first and second layers, respectively. The
[72] the multiplication rule should hold whenevér,/IT  contributions of the firstdash-dotted lingand seconddot-
>1/(1-f%)~1 anda,/} <1—f?~1, which coincides with  ted lin® layers are obtained by assuming the second or the
the conditions of validity of Eq(11). We expect the actual first layer to be rigid Eq. (11) with f=1 anda,=0 or a;
value off to be even smaller due ttotal reflections of light =0, respectively. The contribution of the second layer is
at the interface that are not included in our present theoreticgknormalized so that its value at 0 is equal to the contri-
model. Even though the conditions of validity of the multi- pution of the first layer at— . The figure suggests that a
plication rule are satisfied, to apply it in a real experimentsimple interpretation of the correlation function resulting
[i.e., to findgs(Ly,7)—1 as a ratio ofg?)(L;,L,,7)—1  from the two-cell setup in terms of contributions of indi-
and g$"(L,,7)—1] we need bothg{?(L,,L,,7)—1 and vidual layers can be given if the decay times due to different
gsM(L,,7)—1 to be essentially different from 0, as other- layers are well separated.

wise experimental errors in determination of the above auto- The dotted line in Fig. @) shows the contribution of the
correlation functions can be significant, making the applicasecond layer tcg(zz)(Ll,Lz,r)— 1 [the same as in Fig.(8)

tion of the multiplication rule impractical. To overcome this but renormalized to [l Due to the presence of the first layer,
problem, we choose the second light-scattering cell to be oflthough assumed to be rigid, the decay of the autocorrela-
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——fit to the data

0.8+ =« = second layer rigid

- - - -first layer rigid

0.0

107 10% 10® 10" 10°  10?
1s]

FIG. 4. (a) Intensity autocorrelation function for transmission
through the symmetric two-cell sampe(open circlesand through
the isolated second cefull square$. Theoretical fit§ Eq. (11) with
f=1 and Eq.(13)] are shown by solid lines. The dotted line shows
the theoretical correlation function of the two-cell sample with the
first layer assumed to be rigid-{— ). (b) Different contributions 100 100 100 100 10°
to the intensity autocorrelation function are shown. The solid line is tls]
the fit to the two-cell data of the pan&). To obtain the dashed-
dotted line, we keep the second layer rigig- ), while all other
parameters are unchanged. The dotted line is that of the ganel
multiplied by the plateau value 0.422.

FIG. 5. Multiplication rule.(a) Intensity autocorrelation function
measured in transmission through the asymmetric two-cell sample
B (open circles Full squares show the autocorrelation function
measured for the isolated second ¢dicay timer,= ro(1%5/L,)?].

(b) Same aga) but for a different medium inside the second cell
tion function becomes significantly faster as compared to theéhigher glycerol content of the suspending liquid leading to a re-
second layer taken alondull squares in Fig. @)]. This  duced particle diffusion coefficient and a larger valuergf. (c)
stems from the fact that the typical lengths of photon paths ifThe ratios of the autocorrelation functions are shown for the data of
the second layer are increased due to the presence of the fistnels(a) (open circlesand(b) (full square$. The results are iden-
layer, which acts as an effective “diffuse mirror,” increasing tical for <57, [with 7, of panel(a)], and yield the ensemble-
the probability for a light path to get back to the second layeraveraged intensity autocorrelation functigy’(L,,7)—1 corre-
instead of being diffusely reflected from the sample. sponding to the nonergodic first cell taken alone. Inset: Relative
i difference A(7) ={[g@(7) —1]-[gP(7) - 1}/[gP(7) - 1] be-

The measurements performed on the symmetric sample (N={lg2"(1) —11-[9>”(7) — 11}/[95”(7) — 1]

allows us to conclude that the multiple scattering of light intween the two correlation functions of the main plot.

a two-cell sample is correctly described by the theory devel- ; ; ; ;
oped in Sec. lll. At the same time, the results of this subsecmtmdumng leakagor absorption of light at the interface

. : e between the layers in combination with a proper choice of
tion serve as a test of our method, allowing diffusing-wave y Prop

. . : arameters of the second layer. An optimal choice of the
spectroscopy to be applied to nonergodic random media. | Sarameters corresponds to our asymmetric sarBplaee
deed, the parameters of tligonergodi¢ gel (5, 7. and p)

. i ) Sec. V). For this sample, the optical thickness of the second

'c::_an ge obta_gegi tfrr]ortnt;he fit to t?e ex??{}'memi! d(mth layer is much smaller than that of the first one and the leak-

ig. 4), provide at tne parameters of the medium in eage of light at the interlayer wall is considerable. This en-
second cell as well as the thicknesses of both cells are me

X Qures the validity of the multiplication rule formulated in
sured independently. Sec. IV as confirmed by the experimental results presented
below. Figures &) and 5b) show the intensity autocorrela-
tion functionsg$?(L,L,,7)—1 obtained for the two-cell

Although the results of the previous subsection seem to beetup (open circles The results for two different second
sufficiently convincing to justify our method of performing cells are displayed. Full squares shgy’(L,,7)—1 ob-
DWS in nonergodic media, we will now show that the inter- tained for the isolated second cells, just as in Fig. 4. The
pretation of experimental data can be further simplified bycorresponding single scattering correlation time,

B. Asymmetric sample
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i : worthwhile to mention the problem of low transmitted light
) R intensity. Building a sandwich with regular glass cuvettes
1.0 o can result in a sample of significant overall thickness. Light
: incident on the setup spreads out diffusely that leads to rela-
0.8 i tively low intensity of light reaching the transmission side.
R i The problem becomes even more severe if absorption and/or
=, 06 o Tg leakage of light are introduced at the intercell wall to sim-
& G % ° plify the interpretation of experimental data by using the
’ o . multiplication rule. Second, due to reflections and additional
0.2 e leakage of diffuse light at the interface glass walls, some of
:% the light scattered out of the cell can reach the detector with-
0.0 e . . r b out passing through the whole sample. To avoid this prob-
107 10° 10° 10* 10° 10® 10" 10° lem, we recommend putting an apertieeg., a black plastic
T[s] foil with a centered hole of typically 5 mm in diameter

_ _ _ between the cells to suppress photons scattered snakelike
FIG. 6. Intensity autocorrelation function for a two-cell sample along the cell walls. Ideally, the double-cell sandwich would

with a rigid first layer(the colloidal gel in the first layer was re- haye only one moderately absorbing thin interface wall with
placed by a white paper that mimics a rigid turbid mediuopen 5 pyilt-in circular aperture forcing all transmitted light to

circles. Full squares show the autocorrelation function correspond-paSS through the whole sample. We also note that the second

ing to the isolated second layer. The ratio of the two autocorrelatiorbe” should preferably consist of scatterers with a particle
funCtlans (‘}*” circles) s 110 a good accuracy forr< "2 size larger than the laser wavelength. In this case, the trans-
=1o(13/L5)“, corresponding to the absence of scatterer motion mport mean free patH1§ is much larger than the scattering
the first layer. . .

Y mean free path, hence for the same optical densiti? , the

) ) ~amount of light passing the second layer without being scat-
=(k’Dg) ! of the particles in the second cell has been variedered at all is significantly reducd).

by changing the glycerol content in the suspending liquid,
which affects the viscosity of the liquid and, consequently,
the particle diffusion coefficienDg .

According to the multiplication rul¢Eqg. (16)], the ratio In the present paper we propose and test experimentally a
[09(L1,Lo,7)—11/[g87(L,,7) — 1] is expected to be equal new method for the application of diffusing-wave spectros-
to g$(L,,7)—1, i.e. the autocorrelation function corre- copy to nonergodic turbid media. We show that light trans-
sponding to the(first) nonergodic light-scattering cell. To mitted through a sandwich of two turbid samples can be
check this prediction, we have calculated corresponding raeonsidered ergodic even if only the second sample is er-
tios for the curves of Figs.(8 and 3b). The results are godic. The autocorrelation function of the transmitted inten-
presented in Fig. (®) [full squares correspond to the data of sity can be quantitatively described by the diffusion theory.
Fig. 5(@), while open circles correspond to the data of Fig.This allows direct application of diffusing-wave spectros-
5(b)]. The two curves are indistinguishable, supporting thecopy for the characterization of nonergodic media without
validity of the multiplication rule. Experimentally, we find any additional efforts usually required to achieve ensemble
that for <57, [with 7,=7o(13/L,)?] the deviations from averaging(i.e., without translation or rotation of the sample
the multiplication rule are negligible. The perfect agreemenin course of the correlation function measurement
of the results obtained for two different media in the second29,34,35,50). Proper averaging of the light-scattering sig-
cell confirms the validity of our method. nal is ensured by adding a second, ergodic light-scattering

As an additional check of the multiplication rule, we have cell with unprecedented accuracy. In order to simplify the
performed measurements of the intensity autocorrelatioanalysis of the experimental data, the parameters of the
function g(zz)(Ll,Lz,T)— 1 with the first layer of the double- double-cell sample can be optimized. Namely, moderate ab-
layer sample being totally rigidwhite paper was used to sorption and/or leakage of light should be introduced at the
model rigid but turbid random mediumThe results are pre- interface between the light-scattering cells, and the optical
sented in Fig. 6 by open circles fg(ZZ)(LlyLZvT)_l and thickness of the secpnd, ergodic cell should.b'e reduced well
full squares forg$P(L,,7)— 1 (the latter is measured for the Pelow the optical thickness of the cell containing the noner-

isolated second laygrFull circles are obtained by calculat- 90dic medium, while the dynamics of scatterers in the sec-
ing the ratio[g(zz)(Ll L, r)—l]/[g(zl)(Lz —1]. As ex- ond cell should be chosen slow. Under these conditions we

gave shown that thé&ield autocorrelation function of light
transmitted through the double-layer sample can be written
as a product of autocorrelation functions corresponding to
the individual layersg!{?(L,L,,7) =g (L, 1M (L,, 7).
Consequently, it is sufficient to measure finéensity auto-
One of the major advantages of the two-cell technique isorrelation functions [55] of the two-cell setup
its simplicity. Nevertheless, we would like to point out someg$?(L,,L,,7) and of the second, ergodic layg§"(L,,7),
pitfalls when designing a two-cell experiment. First, it is in order to obtain the properly averaged intensity autocorre-

VIlIl. SUMMARY AND OUTLOOK

pected, the ratio is 1 over a sufficiently extended time rang
(the ratio 1 corresponds to no scatterer motion in the paper

VIl. HOW TO APPLY THE TWO-CELL TECHNIQUE
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lation function of the nonergodic layeg$(L,,7)—1  Other promising applications include DWS microrheology
=[gP(Ly,Ly,7)—1]/[g8P(L,,7)—1]. Henceforth appli- that has previously been limited to time and length scales
cation of diffusing-wave spectroscopy for the characterizaVVhere the motion of tracer particles is not significantly con-
tion of nonergodic media becomes straightforward. OuStrained36,37. We expect the two-cell technique to extend
method is particularly suited for the study of time evolving (N Measurement range of this method and to provide access
systems, e.g., aggregating and gelling particle suspensioﬁg solidlike materials.

(see also Refg11] and[15]), since the data acquisition time ~ We thank Veronique Trappe for useful comments and dis-
can easily be adjusted from a few seconds to several hoursussions.
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