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Effects of gravity and nonlinearity on the waves in the granular chain

Jongbae Hong and Aiguo Xu
Department of Physics and Center for Strongly Correlated Materials Research, Seoul National University, Seoul 151-742, Ko

~Received 20 January 2001; published 24 May 2001!

The solitary signal observed in a horizontal granular chain changes its speed and form due to gravity in a
vertical chain. We find that all the propagating signals in a vertical chain follow power laws in depth for
propagating speed, grain velocity, amplitude, and width. This stems from the power-law type changing of
elastic properties in a medium under gravity. The propagation may be separated into two types according to the
behavior of the power-law exponents, depending on the strength of the nonlinearity. We show that the power-
law exponents are constants in the strength of the impulse in the weakly nonlinear regime, while they depend
on the strength of the impulse in the strongly nonlinear regime. We derive power-law exponents for the weakly
nonlinear regime analytically and try to understand the behaviors of the strongly nonlinear regime through
analytical treatment.

DOI: 10.1103/PhysRevE.63.061310 PACS number~s!: 45.70.2n, 46.40.Cd, 02.70.Ns, 43.25.1y
u
ea

ve
-
la
t

e
ta
e

no
a

ne
a
b

fo
lyt

i
an
ta
ls

sy
in

or
of

a
-

f a
es
o

m
a
he
at
e

of
ciu

e
s of
e

tant

the
ies
nge
tic

rce.
ary
and

ular
for

ty
he
u-
pli-
of
se

m
us
av-

he
ted
is

the
rity
the
ill

in
m
a

lse
I. INTRODUCTION

Granular media are ubiquitous around us. Therefore,
derstanding their properties will be very useful in many ar
of industrial applications@1,2#. One useful property is the
nature of propagation, reflection, and transmittion of wa
in a granular medium@3–7#. From this one may get informa
tion about the interior of the granular medium. A granu
medium is a unique state of matter, because it is neither
usual liquid nor the usual solid@8#. The solid state of the
granular medium has very complicated force chains insid
@8#, along which elastic signals propagate easily. The con
force between grains is nonlinear and usually of the pow
law type @4#.

Even though force chains in a granular medium are
simple, we study in this work a simplified one-dimension
model composed of equal masses coupled by a nonli
power-law type contact force. Spherical and ellipsoid
grains give rise to a Hertz type contact force represented
F}d3/2, whereF is the squeezing force andd is the squeezed
distance between grains. The Hertzian contact force
spherical or ellipsoidal linear media can be obtained ana
cally @9#. The geometrical nature of the contacting area
solely responsible for the exponent 3/2. Sands, soils,
other irregular particulate media have a power-law con
force of exponent 2@4#. Bead or sphere assemblages a
have a exponent 2 for a certain pressure range@4#. Since the
contact force determines the dynamics of the granular
tem, it is probably meaningful to study the granular cha
with arbitrary power-law exponent of the contact force f
application to real irregular grains. A different situation
the granular chain has been studied recently@10#.

The horizontal granular chain with Hertzian contact h
been studied by Nesterenko@3# who showed that the propa
gating mode in a highly nonlinear regime is a soliton o
different kind from the one given by the Korteweg–de Vri
equation@11#. Nesterenko obtained a particlelike equation
motion in the highly nonlinear regime, i.e., under strong i
pulse. Recently, MacKay@12# has proved the existence of
solitary wave in the horizontal Hertzian chain using a rat
general mathematical theorem given by Friesecke and W
@13#. Ji and Hong@14# have extended MacKay’s proof to th
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case of arbitrary power-law exponent. A numerical study
the arbitrary power-law exponent has been done by Man
et al. @15# Experimental verification of the soliton in th
horizontal Hertzian chain has been provided using a serie
steel balls@16,17#. The effect of loading on the solitary wav
@18# and interesting properties of soliton crossings@19# have
been studied recently.

Sometimes a granular medium is placed under a cons
force field, e.g., gravity. A constant electric~magnetic! field
may exert a constant force on charged~magnetized! grains.
The discrete medium becomes denser as we go along
direction of the applied field, and the propagating propert
of elastic waves, such as speed, width, etc., may cha
along the direction of the applied force, since the elas
properties of the medium change due to the applied fo
The propagation and backscattering behavior of solit
waves in the Hertzian chain has been studied intensively
extensively@20#. These works, including Ref.@7#, suggested
a possible way to detect a buried material inside a gran
medium using elastic impulse. But more work is needed
practical purposes.

The objective of this work is to study the effect of gravi
and the effect of nonlinearity on signal propagation in t
vertical nonlinear granular chain. Molecular dynamics sim
lation clearly shows that gravity causes decreasing am
tude, slowing down of grain oscillation, and dispersion
signal width as the signal goes down the chain. All the
behaviors follow certain power laws, which originate fro
the power-law type contact force and gravity. Our previo
work @21# presented a mathematical analysis for those beh
iors due to gravity in the weakly nonlinear regime. But t
analysis was incomplete. This work presents a correc
derivation for the power-law exponents when the impulse
weak. Molecular dynamics simulation also shows that
power-law exponents depend on the strength of nonlinea
when the impulse is strong, while they are independent of
strength of nonlinearity when the impulse is weak. This w
be discussed analytically.

This paper is composed as follows. We first present
Sec. II molecular dynamics simulation results ranging fro
weak to strong impulse. A weak impulse gives rise to
weakly nonlinear oscillatory signal and a strong impu
©2001 The American Physical Society10-1
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gives rise to a rather solitary signal. Characteristics of b
oscillatory and solitary signals show power-law behaviors
depth as they propagate down. Various power-law expon
obtained by simulation are given. In Sec. III, we analyze
propagation nature of the wave in the weakly nonlinear
gime. The power-law behaviors in this region can be
plained by a linear dispersive wave equation obtained a
limit of the weak impulse, which maps the vertical granu
chain onto a horizontal granular chain with varying for
constant. Section IV attempts an analytical understandin
the signal behaviors in the strongly nonlinear regime. W
explain the role of nonlinearity in this regime. We prese
conclusions in Sec. V.

II. SIMULATION

We focus on the motion of grains in a vertical granu
chain with a power-law type nonlinear contact force of ar
trary exponent. Since it is usually hard to treat nonline
problems analytically, we first present the results of mole
lar dynamics simulations for the equation of motion of gra
under consideration in this work. The equation of motion
a grain at a vertical positionzi , which is the distance from
the top of the vertical chain to the center ofi th grain, is
written as

mz̈n5h@$D02~zn2zn21!%p2$D02~zn112zn!%p#1mg,
~1!

wherem is the mass of the grain,D0 is the distance betwee
centers of the adjacent grains,p is the exponent of the power
law contact force, andh is the elastic constant of the gra
under consideration. Therefore, the overlap between adja
grains at thenth contact isdn5D02(zn112zn). We do not
consider plastic deformation in treating Eq.~1!. For the Hert-
zian chain, i.e.,p53/2, the equation of motion comes from
the Hertzian interaction energy between neighboring gra
which is given by@9#

V~dn!5
2

5D S RnRn11

Rn1Rn11
D 1/2

dn
5/2[bdn

5/2, ~2!

whereRn is the radius of the spherical grain and

D5
3

4 S 12sn
2

En
1

12sn11
2

En11
D , ~3!

where sn ,sn11 and En ,En11 are Poisson’s ratios an
Young’s moduli of the bodies at neighboring positions,
spectively@9#. Therefore,h5 5

2 b for the Hertzian chain.
To perform numerical simulations for Eq.~1!, we choose

a vertical chain ofN grains, whereN ranges between 100
and 5000 according to our need. We choose 1025 m, 2.36
31025 kg, and 1.010231023 s as the units of distance
mass, and time, respectively. These units give the grav
tional accelerationg51 @7#. We set the grain diameter t
100, mass to 1, and the constanth of Eq. ~1! to 5657 for
molecular dynamics simulation. The equilibrium condition

mgn5hdn
p ~4!
06131
h
n
ts

e
-
-
a

r

of
e
t

r
-
r
-

s
f

nt

s,

-

a-

has been used for thenth contact of the vertical chain. Usin
the third-order Gear predictor-corrector algorithm@22# as a
calculational tool, we perform numerical simulations for a
bitrary p including p53/2. We choose various strengths
impulse for our study. For this purpose we neglect plas
deformation @17,23# and viscoelastic dissipation in ou
model system.

Figure 1 shows snapshots of three typical types of gr
velocity signal propagating down the vertical chain of He
zian contact. Figure 1~a!, which is obtained for the initial
impulse velocityv i50.001 in our program units, shows typ
cal grain velocity signals appearing in the weakly nonline
regime, Fig. 1~b! obtained forv i51 is the signal of the in-
termediate regime, and Fig. 1~c! for v i51000 shows the
characteristics of the strongly nonlinear regime in which
tail disappears. The common features of the propaga
characteristics shown in Fig. 1 are increasing signal spe
decreasing grain velocity, and increasing signal width as
signal goes down. The straight lines drawn on a log-log sc
in Fig. 2 certify that the depth-dependent behaviors of
leading and second-leading peaks of grain velocity and
placement are all of power-law type. According to our n
merical fits shown in Fig. 2, the explicit expressions for t
depth-dependent behaviors of the leading amplitudes of g
displacement and velocity are given byAmax(h)
}h20.083560.0003 and vmax(h)}h20.250060.0001 for v i50.001
and p53/2. We obtain other depth-dependent power la
showing the dispersiveness of the signal. One of them is
number of particles participating in the leading part of velo
ity signal,N(h), which describes the length scale of the s
nal. The other is the elapsed time to reach maximum am
tude Tmax(h), which describes the time scale of the sign
The power-law behaviors of these quantities with er
bounds arel}N}h0.33860.004 and Tmax}h0.17060.002. These
numerical data well satisfy the relations of an oscillating s
nal, such asT5A/v and l5Tvp , where vp is the phase
velocity of the signal, even though the oscillation is not p
fectly periodic. The phase velocityvp}h1/6 is the well-
known phase velocity of the signal propagating down a m
dium with Hertzian contact@4,5#.

We also obtain power-law exponents of the leading gr
velocity and signal speedvp for a wide range of impulse
strength fromv i51023 to v i5103 for p51.2,1.5, and 2.0 in
Fig. 3. The logarithmic scale has been used only for
abscissa of the graph in Fig. 3. Both Fig. 3~a! and Fig. 3~b!
have similar structures. One can see a trend that asv i de-
creases to less than 0.1 the exponents approach satu
values for a givenp, and the exponents vanish whenv i is
larger than 103. A transition region exists betweenv i50.1
and v i5103. These features are common to any value op
.1.

A remarkable feature shown in Fig. 3 is that there is
region in which the characteristics of signal propagation
independent of the strength of impulsev i for any p.1. We
called this region the weakly nonlinear regime where
signal is oscillatory. A typical form of the signal in this re
gime was shown in Fig. 1~a!. The power-law behaviors o
the signal in the flat region of Fig. 3 are explained analy
cally in the next section using the linear dispersive wa
0-2
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EFFECTS OF GRAVITY AND NONLINEARITY ON THE . . . PHYSICAL REVIEW E 63 061310
equation as a limiting case of weak nonlinearity. Anoth
region in which the exponent changes rather rapidly may
called the strongly nonlinear regime where the signal
rather solitary as shown in Fig. 1~c!. There is an intermediate
regime where a weak oscillatory part remains in the tail
the signal as shown in Fig. 1~b!. The signal in the interme
diate regime is a combination of a nonlinear solitary an

FIG. 1. Snapshots of typical modes of propagating signals un
weak, intermediate, and strong impulses in the vertical gran
chain with Hertzian contact.~a! Oscillatory mode due to weak im
pulse v i50.001. ~b! Quasisolitary mode due to intermediate im
pulse v i51. ~c! Quasisolitary mode due to strong impulsev i

51000.
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linear oscillatory wave.
In the limit of strong impulse, gravity is negligible; there

fore the system is nothing more than the horizontal chain
which a complete soliton is created@3,12,14#. In the region

er
ar

FIG. 2. Upper part shows the plots of leading~a! and second-
leading ~b! peaks of grain velocity versus depth drawn in log-lo
scale. Lower part shows the plots of leading~c! and second-leading
~d! peaks of displacement versus depth drawn in log-log scalep
53/2. v i50.001.

FIG. 3. Plots of power-law exponents of leading grain veloc
~a! and signal speed~b! versusv i for severalp’s. Logarithmic-scale
has been applied only to abscissa.
0-3
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JONGBAE HONG AND AIGUO XU PHYSICAL REVIEW E63 061310
of moderately strong impulse, however, the gravity effec
not negligible, and it causes a change in the elastic prope
of the medium as depth increases. Thus the height, the w
and the speed of the soliton change, because the me
changes. Therefore, the system under strong impuls
mostly dominated by the nonlinearity of the system. We d
cuss this matter in Sec. IV.

III. WEAKLY NONLINEAR REGIME

An interesting phenomenon we discovered above is
the absolute value of the power-law exponent of grain vel
ity and signal speed increases and approaches a satu
value for a given contact force as the strength of the ini
impulse decreases. This was shown in Fig. 3. The propa
ing mode in this saturated region, which corresponds to
weakly nonlinear regime, is oscillatory. The oscillation a
plitude, frequency, and wavelength follow power law
These interesting behaviors of the signal in this regime m
be described by a linear dispersive wave equation if we g
the limit of the weakly nonlinear region.

We rederive various power-law exponents, since some
rors were involved in the process of derivation in our pre
ous work@21#. For this purpose, we introduce a new variab
cn , denoting the displacement of thenth grain from equilib-
rium, defined by

cn5zn2nD01(
l 51

n S mgl

h D 1/p

, ~5!

where the last term is the sum of grain overlaps up to thenth
contact and we setz05c050. Equation~1! is transformed
into

mc̈n5hF S mgn

h D 1/p

1~cn212cn!G p

2hF H mg~n11!

h J 1/p

1~cn2cn11!G p

1mg ~6!

using Eq.~5!.
For the weakly nonlinear regime, the condition

ucn212cnu!S mgn

h D 1/p

~7!

is valid and the expansion of Eq.~6! under this condition
reads

mc̈n52mn~cn2cn21!1mn11~cn112cn! ~8!

wheremn5mpg(h/mg)1/pn121/p is the force constant of the
nth contact of the linear horizontal chain. We drop we
nonlinear terms of the expansion in Eq.~8! to make the sys-
tem linear. Thus the vertical granular chain becomes a h
zontal chain with varying force constants in which the gra
ity effect is contained. Both the left and right sides of Eq.~8!
are linear incn . Therefore, the scaling analysis tells us th
the equation of motion~8! has nothing to do with the initia
impulsev i .
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To analyze this linear difference equation analytically, w
reexpress Eq.~8! in the continuum limit, i.e.,

r
]2

]t2
c~h,t !5

]

]h Ft~h!
]

]h
c~h,t !G ~9!

when the intergrain distanceD0→0, where t(h)
5t1(h/D0)121/p denotes the depth-dependent tension, a
r5m/D0 and t15m1D0 are the density and the tension
the chain at the first contact, respectively. We setc1

5At1 /r, which is the well-known speed of a wave in
string of tensiont1 and densityr.

Since Eq.~9! is a linear differential equation, we can ap
ply Fourier analysis to this equation. Then we have the f
lowing dispersion relation for the complex wave numb
k(v)5kr1 ik i :

v~k!5krAt~h!

r F11
t82

4t2kr
2G 1/2

~10!

and ki52t8/2t. From Eq. ~10!, we obtain the phase an
group velocity as follows:

vp5
v

k
'At~h!

r
F 11

t82

8t2kr
2G ~11!

and

vg5
dv

dk
'At~h!

r
F 12

t82

8t2kr
2G . ~12!

Here and in what followsk meanskr . The difference be-
tweenvp andvg denotes that the wave is dispersive, andki
Þ0 normally means the wave is diffusive@24#.

Treating dispersive and diffusive waves is not simp
However, sincet8/t}h21 and thereforee2kih is constant in
h, the envelope function of the wave is not exponentia
damping, so it is not diffusive for this special case. The
fore, the general solution of the linear equation~9! is written
as

c~h,t !5(
v

A~v!ei (kh2vt) ~13!

and theh dependence of the envelope of the functionc(h,t)
is solely given by the coefficientA(v). Now we solve Eq.
~9! again usingcz(h,t)5uz(h)ei zt as a normal mode solu
tion, whereuz(h)5A(v)eikh andv}z. Thenuz(h) satisfies

d2

dh2
uz~h!1

121/p

h

d

dh
uz~h!1

z2

h121/p
uz~h!50, ~14!

which is a type of Bessel differential equation@25#. A solu-
tion of this equation propagating to the positiveh direction is
given by the Hankel function@25#

uz~h!5hjHn
(1)~uhg!, ~15!
0-4
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EFFECTS OF GRAVITY AND NONLINEARITY ON THE . . . PHYSICAL REVIEW E 63 061310
where j51/2p,g5 1
2 1j5 1

2 (111/p),u5z/g, andn5j/g
51/(11p).

The asymptotic form of Eq.~15! at largeh for a fixedn is

uz~h!'A 2

pu
hj2g/2ei [uhg2(p/2)n2p/4] ~16!

and the displacement is written as

cz~h,t !'hj2g/2ei [( z/g)hg2zt] . ~17!

Therefore, the depth dependence of the coefficientA(v) of
the displacement signal is

A„v~h!…5hj2g/25h2(121/p)/4 ~18!

for all v.
To obtain other depth-dependent properties of the sig

we need more information about the signal. This is given
an asymptotic analysis for the linear wave equation. T
asymptotic form of the solution of the general linear equat
is given by the saddle-point method or the steepest des
method. The result is written as@25#

c~h,t !>
A2pA~vs!exp@ i $ksh2v~ks!t%2a#

$tuv9~ks!u%1/2
~19!

when v9(k)Þ0, whereks means the wave number at th
saddle point, anda5( ip/4)sgnv9(ks). When there are
many saddle points, the asymptotic solution must be the
over all saddle points. This work concerns the case o
single saddle point; therefore the amplitude of the gen
solution of the linear wave equation in the asymptotic regi
is given byA(vs)$tuv9(ks)u%21/2 wheret5h/vg . Since we
showed thatA(vs) exhausts the depth dependence of
amplitude of displacementc(h,t), $tuv9(ks)u%1/2 must be
depth independent. This condition gives information ab
the wave numberk. Differentiating Eq.~12! once more, we
get information onk,

tuv9~ks!u}
ht82

t2
k23}h0. ~20!

This relation provides one piece of key information

k}h21/3 ~21!

in obtaining the power-law behavior of the signal.
We already obtained the power-law behaviors in depth

the amplitude of displacement~18! and the wave numbe
~21!. With this information and the signal velocityvp
}h(121/p)/2 from Eq. ~11!, we obtain the depth-depende
behavior of the grain velocity and its oscillation frequen
using the relation for a linear wavev(h)5k(h)vp(h), and
the relation for an oscillating signal 1/v(h)}A(h)/v(h).
They are given by

v~h!}h2(1/311/p)/4, ~22!

v~h!}h1/621/2p. ~23!
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The characteristic time of oscillation which is express
by the period is given by the inverse of the frequency or
ratio of displacement to grain velocity, i.e.,

T~h!5
A~h!

v~h!
}v~h!21}h21/611/2p. ~24!

The characteristic length of oscillation, on the other ha
which is expressed by the wavelength is given by multip
ing T(h) by the phase velocity, i.e.,

l~h!5T~h!vp~h!}h1/3. ~25!

The depth-dependent power-law behaviors obtained
merically for the weakly nonlinear regime in the last secti
agree quite well with Eqs.~22!–~25! obtained analytically.
This analysis explains the damping and dispersive beha
due to gravity for the weakly nonlinear regime in a vertic
granular chain. To check the theoretical prediction giv
above, we obtain peak values of the displacement and g
velocity signal for other values ofp and compare them with
theory in Fig. 4. One can see very nice fits to the theoret
curves. For large values ofp, a deviation from theory occurs
especially in grain velocity. This is understandable beca
the nonlinearity becomes stronger asp increases and the
grain velocity contains more derivatives than the displa
ment. Interestingly enough, however, the characteri
length of the signal does not depend onp.

IV. STRONGLY NONLINEAR REGIME

In Sec. III, we explained the power-law behavior of sign
propagation under gravity only for the weakly nonlinear r
gime shown by simulation in Sec. II. Figure 3 shows pow
law exponents of grain velocity and signal speed versus
initial impulse v i which is a measure of nonlinearity of th

FIG. 4. Dependence of power-law exponents of grain veloc
and displacement on the exponent of the contact forcep. Numerical
data are compared with theoretical prediction. Solid lines are th
retical results. Circles and squares denote simulation data for
placement and grain velocity, respectively. Data are obtained
the leading peaks of each signal.
0-5
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JONGBAE HONG AND AIGUO XU PHYSICAL REVIEW E63 061310
system. The flat region of Fig. 3 named the weakly nonlin
regime was discussed in Sec. III. We will discuss t
v i-dependent region, named the strongly nonlinear regime
this section.

In strongly nonlinear regime it is rather difficult to an
lyze the simulation result analytically. But one may und
stand the effect of gravity, which causes a power-law
crease of signal speed and width and decrease of si
height, through a rather simple analysis. For this purpose
perform a similar transformation to the one above for
analysis of the weakly nonlinear regime.

For the strongly nonlinear regime, the condition

~cn212cn!@S mgn

h D 1/p

~26!

is valid and expansion under this condition leads Eq.~6! to

mc̈n5h@~cn212cn!p1pgn~cn212cn!p21#

2h@~cn2cn11!p1pgn11~cn2cn11!p21#

~27!

wheregn5(mgn/h)1/p denotes grain overlap at thenth con-
tact. The gravity term can be neglected in the highly non
ear regime, since the gravity effect appears in the coeffic
gn . The different orders ofcn in the left and right sides o
Eq. ~27! imply that v i dependence must appear in the sig
characteristics.

If we setAn115(cn2cn11)p andAn5(cn212cn)p and
use the relations

]An11

]cn11
52p~cn2cn11!p21,

]An

]cn
52p~cn212cn!p21,

Eq. ~27! is written as

mc̈n52h~An112An!1hFgn11

]An11

]cn11
2gn

]An

]cn
G .

~28!

This equation is rewritten in a continuum form,

rc̈~h!52h
]A

]h
1h

]

]h Fg~h!
]A

]cG
52hF12

]

]h S g~h!
]h

]c D G ]A

]h
~29!

1hFg~h!
]h

]cG]2A

]h2
. ~30!

The first term on the right-hand side of Eq.~29! is just the
one describing a perfect soliton in the horizontal chain@3#
and the second term is responsible for the changing sp
height, and width of signal due to gravity as signal go
06131
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down. We separate dispersion part out in the expression
~30!, in which damping and dispersion of a soliton are dom
nated by the gravity factorg(h) and the nonlinearity factor
]h/]c. The latter is rewritten as (]h/]t)(]t/]c) which is
equivalent tovp /v i or vp /vgrain by dimensional analysis
Therefore, the signal characteristics approach the soliton
ated in the horizontal chain as nonlinearity, i.e.,v i , increases
in the strongly nonlinear regime. One can see this beha
in Fig. 3.

The role of each term of Eq.~30! cannot be superpose
independently, since the equation is nonlinear. Therefor
fully analytical treatment of Eq.~30! is not simple. The non-
linear regime, therefore, requires more work to underst
the phenomenon fully. We just showed that the force exer
in the equation of motion for the strongly nonlinear regim
can be divided into a nongravity part and a gravity part
shown in Eq.~29!, and also divided into a damping part an
a dispersion part as shown in Eq.~30!. Therefore, one may
understand that a soliton created by the nongravity fo
2h]A/]h of Eq. ~29! changes its speed, height, and wid
under gravity coupled with nonlinearity. Figures 1~a!, 1~b!,
and 1~c! show the change of signal asv i increases explicitly.

All characteristics of the signal follow power laws i
depth and the absolute values of the power-law expon
decrease asv i increases. This was shown in Fig. 3.

V. CONCLUSION

We saw in Sec. II that the depth-dependent power-l
behavior of the propagating signal in a gravitationally co
pacted granular chain is generic for the whole range
strength of impulse or nonlinearity. For a rather weak i
pulse regime, which we call the weakly nonlinear regime,
power-law exponent of the grain velocity approaches a s
rated value, i.e., it does not depend on the strength of
nonlinearity for a given contact force. The signal in this r
gion is oscillatory. Comprehensive study of this region is o
of the main subjects of this work. The equation of motion
the displacement of a grain in the limit of weak nonlinear
can be transformed into a linear differential equation wh
Fourier analysis is applicable. The asymptotic behavior
the linear differential equation is given by the saddle-po
method. This provides independent information for the wa
number of the signal. Normal mode analysis combined w
this information gives rise to all other information for sign
propagation depending on depth in the asymptotic regi
Characteristics of the linear dispersive signal are applica
for understanding the signal behavior yielded in the wea
nonlinear regime. The exponents given by analytic stu
agree well with simulation data.

For the strongly nonlinear regime in which impulse
strong, simulation shows that the power-law exponents
pend on the strength of impulsev i , in other words, the
strength of nonlinearity of the system. The signal becom
more solitary as the impulse increases. But this quasisoli
signal changes its speed, damps, and disperses due to g
as it goes down the chain. The behaviors of the signal, s
as grain velocity and amplitude, signal speed, and width, a
follow power laws in depth. The absolute value of the exp
0-6



i
vi
d

r,

c
r t
on

o
f
al
y
he

ua-
nd
e.
e
nd
sis

der
the

tion
21

EFFECTS OF GRAVITY AND NONLINEARITY ON THE . . . PHYSICAL REVIEW E 63 061310
nents of the power-law behaviors approaches zero as the
pulse becomes stronger. This implies that the role of gra
becomes negligible as the impulse increases. One can un
stand this phenomenon from Eq.~30!, showing that the grav-
ity factor is always coupled with the nonlinearity facto
which is inversely proportional to the impulsev i . This tells
us that increasing nonlinearity diminishes the gravity effe
Therefore, the signal under very strong impulse is simila
that of the horizontal chain in which a nondispersing solit
is the propagating mode@3,12#.

We separated the force exerted on a grain under str
impulse into three in Eq.~30!. One may guess the role o
each term from its form and may understand conceptu
the power-law behaviors andv i dependence in the strongl
nonlinear regime as shown numerically in Sec. II. But t
,
-

06131
m-
ty
er-

t.
o

ng

ly

three forces cannot be combined linearly in describing a q
sisolitary signal. Further work is needed to fully understa
the signal behaviors in the rather strongly nonlinear regim

The equation of motion for the weakly nonlinear regim
is equivalent to those of a nonuniform transmission line a
a nonuniform string. Therefore, one may apply the analy
of this work to other areas. The behavior of the soliton un
gravity or other constant force field may be applicable in
applied sciences.
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