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Effects of gravity and nonlinearity on the waves in the granular chain
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The solitary signal observed in a horizontal granular chain changes its speed and form due to gravity in a
vertical chain. We find that all the propagating signals in a vertical chain follow power laws in depth for
propagating speed, grain velocity, amplitude, and width. This stems from the power-law type changing of
elastic properties in a medium under gravity. The propagation may be separated into two types according to the
behavior of the power-law exponents, depending on the strength of the nonlinearity. We show that the power-
law exponents are constants in the strength of the impulse in the weakly nonlinear regime, while they depend
on the strength of the impulse in the strongly nonlinear regime. We derive power-law exponents for the weakly
nonlinear regime analytically and try to understand the behaviors of the strongly nonlinear regime through
analytical treatment.
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[. INTRODUCTION case of arbitrary power-law exponent. A numerical study of
the arbitrary power-law exponent has been done by Manciu
Granular media are ubiquitous around us. Therefore, unet al. [15] Experimental verification of the soliton in the
derstanding their properties will be very useful in many areasorizontal Hertzian chain has been provided using a series of
of industrial applicationg1,2]. One useful property is the steel ball{16,17. The effect of loading on the solitary wave
nature of propagation, reflection, and transmittion of wave$18] and interesting properties of soliton crossifg8] have
in a granular mediuri3—7]. From this one may get informa- been studied recently.
tion about the interior of the granular medium. A granular Sometimes a granular medium is placed under a constant
medium is a unique state of matter, because it is neither thiorce field, e.g., gravity. A constant electimagnetig field
usual liquid nor the usual solifB]. The solid state of the may exert a constant force on chargesagnetizedl grains.
granular medium has very complicated force chains inside iThe discrete medium becomes denser as we go along the
[8], along which elastic signals propagate easily. The contadlirection of the applied field, and the propagating properties
force between grains is nonlinear and usually of the poweref elastic waves, such as speed, width, etc., may change
law type[4]. along the direction of the applied force, since the elastic
Even though force chains in a granular medium are noproperties of the medium change due to the applied force.
simple, we study in this work a simplified one-dimensionalThe propagation and backscattering behavior of solitary
model composed of equal masses coupled by a nonlineavaves in the Hertzian chain has been studied intensively and
power-law type contact force. Spherical and -ellipsoidalextensively{20]. These works, including Ref7], suggested
grains give rise to a Hertz type contact force represented by possible way to detect a buried material inside a granular
Fo %2, whereF is the squeezing force antlis the squeezed medium using elastic impulse. But more work is needed for
distance between grains. The Hertzian contact force fopractical purposes.
spherical or ellipsoidal linear media can be obtained analyti- The objective of this work is to study the effect of gravity
cally [9]. The geometrical nature of the contacting area isand the effect of nonlinearity on signal propagation in the
solely responsible for the exponent 3/2. Sands, soils, andertical nonlinear granular chain. Molecular dynamics simu-
other irregular particulate media have a power-law contaclation clearly shows that gravity causes decreasing ampli-
force of exponent 44]. Bead or sphere assemblages alsatude, slowing down of grain oscillation, and dispersion of
have a exponent 2 for a certain pressure rddgeSince the signal width as the signal goes down the chain. All these
contact force determines the dynamics of the granular sysehaviors follow certain power laws, which originate from
tem, it is probably meaningful to study the granular chainthe power-law type contact force and gravity. Our previous
with arbitrary power-law exponent of the contact force forwork[21] presented a mathematical analysis for those behav-
application to real irregular grains. A different situation of iors due to gravity in the weakly nonlinear regime. But the
the granular chain has been studied receft(]. analysis was incomplete. This work presents a corrected
The horizontal granular chain with Hertzian contact hasderivation for the power-law exponents when the impulse is
been studied by Nesterenk8] who showed that the propa- weak. Molecular dynamics simulation also shows that the
gating mode in a highly nonlinear regime is a soliton of apower-law exponents depend on the strength of nonlinearity
different kind from the one given by the Korteweg—de Vrieswhen the impulse is strong, while they are independent of the
equation[11]. Nesterenko obtained a particlelike equation ofstrength of nonlinearity when the impulse is weak. This will
motion in the highly nonlinear regime, i.e., under strong im-be discussed analytically.
pulse. Recently, MacKal12] has proved the existence of a  This paper is composed as follows. We first present in
solitary wave in the horizontal Hertzian chain using a ratherSec. Il molecular dynamics simulation results ranging from
general mathematical theorem given by Friesecke and Wattiseak to strong impulse. A weak impulse gives rise to a
[13]. Ji and Hond 14] have extended MacKay'’s proof to the weakly nonlinear oscillatory signal and a strong impulse
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gives rise to a rather solitary signal. Characteristics of botthas been used for threh contact of the vertical chain. Using
oscillatory and solitary signals show power-law behaviors inthe third-order Gear predictor-corrector algorithig2] as a
depth as they propagate down. Various power-law exponentsalculational tool, we perform numerical simulations for ar-
obtained by simulation are given. In Sec. Ill, we analyze thebitrary p including p=3/2. We choose various strengths of
propagation nature of the wave in the weakly nonlinear reimpulse for our study. For this purpose we neglect plastic
gime. The power-law behaviors in this region can be ex-deformation [17,23 and viscoelastic dissipation in our
plained by a linear dispersive wave equation obtained as model system.
limit of the weak impulse, which maps the vertical granular  Figure 1 shows snapshots of three typical types of grain
chain onto a horizontal granular chain with varying forcevelocity signal propagating down the vertical chain of Hert-
constant. Section IV attempts an analytical understanding afian contact. Figure (&), which is obtained for the initial
the signal behaviors in the strongly nonlinear regime. Weampulse velocityv;=0.001 in our program units, shows typi-
explain the role of nonlinearity in this regime. We presentcal grain velocity signals appearing in the weakly nonlinear
conclusions in Sec. V. regime, Fig. 1b) obtained forv;=1 is the signal of the in-
termediate regime, and Fig(d for v;=1000 shows the

[l. SIMULATION characteristics of the strongly nonlinear regime in which the
tail disappears. The common features of the propagation
ye : " characteristics shown in Fig. 1 are increasing signal speed,
chain with a power-law type nonlinear contact force of arbi-gecreasing grain velocity, and increasing signal width as the
trary exponent. _Slnce it is usually hard to treat nonlmearsigna| goes down. The straight lines drawn on a log-log scale
problems gnalytlcally, we first present_the result.s of mole.cum Fig. 2 certify that the depth-dependent behaviors of the
lar dynam|c_s S|mt_JIat|_ons for the equation of motion of grainSigading and second-leading peaks of grain velocity and dis-
under_ conS|derat_|on in thl_s work. '_I'he_ equathn of motion Ofplacement are all of power-law type. According to our nu-
a grain at a vertical positiog;, which is the distance from merica fits shown in Fig. 2, the explicit expressions for the
the top of the vertical chain to the center idh grain, is  gepth-dependent behaviors of the leading amplitudes of grain

We focus on the motion of grains in a vertical granular

written as displacement and velocity are given by, . (h)
. Och—0.0835t0.0003 and Umax(h)oc h—0.2500t0.0001 for V= 0.001
mz,= 7][{A0_(Zn_anl)}p_{AO_(Zn+1_zn)}p]+mg(’l) and p=3/2. We obtain other depth-dependent power laws

showing the dispersiveness of the signal. One of them is the

wheremis the mass of the grair, is the distance between Number of particles participating in the leading part of veloc-
centers of the adjacent graimsis the exponent of the power- ity signal,N(h), which describes the length scale of the sig-
law contact force, and; is the elastic constant of the grain Nal- The other is the elapsed time to reach maximum ampli-
under consideration. Therefore, the overlap between adjace%?e Tmax(h)l- Whltc)hhdescr|besf tthhe time Scaﬁ_ of th?t h5|9na|-
rains at thenth contact iss,,=Ag— (2,1~ 2,). We do not e power-law Dbenhaviors of these quantues with error
gonsider plastic deformation in torea(ti;glli’q)?)lzor the Hert-  bounds arexo«cNoch%3382090 and T, och®170=0.9% These
zian chain, i.e.p=3/2, the equation of motion comes from Numerical data well satisfy the relations of an oscillating sig-

the Hertzian interaction energy between neighboring graind)@l, such asT=A/v and\=Tu,, wherev, is the phase
which is given by[9] velocity of the signal, even though the oscillation is not per-

fectly periodic. The phase velocity,=h'® is the well-

2 [ RyRyp |2 1 " known phase velocity of the signal propagating down a me-
V=55 g TR an’=bay?, @ dium with Hertzian contad4,5].
n n+1 . . .
We also obtain power-law exponents of the leading grain
whereR,, is the radius of the spherical grain and velocity and signal speed,, for a wide range of impulse
, , strength fromy; =103 to v;=10° for p=1.2,1.5, and 2.0 in
3 R Fig. 3. The logarithmic scale has been used only for the
D= 4| E, + Ens1 |’ 3 abscissa of the graph in Fig. 3. Both FigaBand Fig. 3b)

have similar structures. One can see a trend that; ate-
where o,,0,+;, and E, ,E,;; are Poisson’s ratios and creases to less than 0.1 the exponents approach saturated
Young's moduli of the bodies at neighboring positions, re-values for a giverp, and the exponents vanish whenis
spectively[9]. Therefore,p=3b for the Hertzian chain. larger than 18. A transition region exists betwean=0.1
To perform numerical simulations for E¢l), we choose andv;=10°. These features are common to any valug of
a vertical chain ofN grains, whereN ranges between 1000 >1.
and 5000 according to our need. We choose®1@n, 2.36 A remarkable feature shown in Fig. 3 is that there is a
x10°° kg, and 1.010%10° % s as the units of distance, region in which the characteristics of signal propagation are
mass, and time, respectively. These units give the gravitandependent of the strength of impulsgfor any p>1. We
tional acceleratiorg=1 [7]. We set the grain diameter to called this region the weakly nonlinear regime where the
100, mass to 1, and the constaptof Eq. (1) to 5657 for  signal is oscillatory. A typical form of the signal in this re-
molecular dynamics simulation. The equilibrium condition gime was shown in Fig. (&). The power-law behaviors of
the signal in the flat region of Fig. 3 are explained analyti-
mgn= 74y (49 cally in the next section using the linear dispersive wave
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equation as a limiting case of weak nonlinearity. Another Ty P
region in which the exponent changes rather rapidly may be 107 10 10 100 10" 100 10° 10
called the strongly nonlinear regime where the signal is 1V

rather solitary as shown in Fig(d. There is an intermediate

regime where a weak oscillatory part remains in the tail of FIG. 3. Plots of power-law exponents of leading grain velocity
the signal as shown in Fig.(ld). The signal in the interme- (a) and signal speetb) versusy; for severalp’s. Logarithmic-scale
diate regime is a combination of a nonlinear solitary and eas been applied only to abscissa.
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of moderately strong impulse, however, the gravity effect is To analyze this linear difference equation analytically, we
not negligible, and it causes a change in the elastic propertiegexpress Eq8) in the continuum limit, i.e.,

of the medium as depth increases. Thus the height, the width,
and the speed of the soliton change, because the medium
changes. Therefore, the system under strong impulse is a_tz¢(h't): oh
mostly dominated by the nonlinearity of the system. We dis-

cuss this matter in Sec. IV. when the intergrain distanceA,—0, where 7(h)
=7,(h/Ao)* ™ denotes the depth-dependent tension, and
ll. WEAKLY NONLINEAR REGIME p=m/Ay and 7;=u,A, are the density and the tension of

An interesting phenomenon we discovered above is thatﬂe chain at the first contact, respectively. We st

the absolute value of the power-law exponent of grain veloc-_ " milp, Wh'_Ch is the WeII—_known speed of a wave in a
5ing of tensionr; and densityp.

ity and signal speed increases and approaches a satural% : . . X . .
y g P bp Since Eq.(9) is a linear differential equation, we can ap-

value for a given contact force as the strength of the initial v Fouri Vsis 1o thi tion. Th h the fol
impulse decreases. This was shown in Fig. 3. The propag ly Fourier analysis to this equation. Then we have the fol-
wing dispersion relation for the complex wave number

ing mode in this saturated region, which corresponds to th ik
weakly nonlinear regime, is oscillatory. The oscillation am- (@) =k +iki:

(92

]
T(h)é—hw(h,t)} 9

plitude, frequency, and wavelength follow power laws. D ,2 112
These interesting behaviors of the signal in this regime may w(k) =k, RS I (10)
be described by a linear dispersive wave equation if we go to 472kr2

the limit of the weakly nonlinear region.

We rederive various power-law exponents, since some e@nd k= —7'/27. From Eq.(10), we obtain the phase and
rors were involved in the process of derivation in our previ-group velocity as follows:
ous work[21]. For this purpose, we introduce a new variable

¥, denoting the displacement of théh grain from equilib- ® 7(h) 72
ium, defined b Vp= + 11
rium, defined by P~k p 82K (11
n
mal 1/p
¢n:Zn_nAO+2 _g) ) 5 and
=1\ 7
where the last term is the sum of grain overlaps up tanthe :d_w% (h) 1— 72 (12)
contact and we sety= yy=0. Equation(1) is transformed Yo" dk p 872k?|
into
10p b Here and in what followk meansk,. The difference be-
g mgn + _ tweenv , andv, denotes that the wave is dispersive, &nd
my,=7n (n—1— ) p 9 . .
#0 normally means the wave is diffusiy24].
mg(n+1)] ¥ p Treating dispersive and diffusive waves is not simple.
N LS R )| +mg (6) However, sincer’/r=h~" and therefore™ " is constant in
(n=n+1 g . . .
n h, the envelope function of the wave is not exponentially
ina Ea.(5 damping, so it is not diffusive for this special case. There-
using Eq.(5). . . . fore, the general solution of the linear equati®his written
For the weakly nonlinear regime, the condition as
mgn) P
|‘//nfl_‘/’n|< (7) l//(h,t)=2 A(w)ei(khfwt) (13)

is valid and the expansion of E@6) under this condition

reads and theh dependence of the envelope of the functi(n,t)

is solely given by the coefficiemd(w). Now we solve Eq.
o (9) again usingy,(h,t)=u,(h)e'' as a normal mode solu-
— _ + — 14 s

Myn==pn(n=¥n-0) T tnca(nsa=d) - @) o whereu,(h)=A(w)e*" andw=¢. Thenu,(h) satisfies
whereu,=mpg 7/mg)*Pnt~ P is the force constant of the ) )
nth contact of the linear horizontal chain. We drop weak d—u (h)+ 1-1p iu (h)+ ¢ u,(h)=0, (14)
nonlinear terms of the expansion in E§) to make the sys- dn? ¢ h dh¢ hi-lp ¢ '
tem linear. Thus the vertical granular chain becomes a hori-
zontal chain with varying force constants in which the grav-which is a type of Bessel differential equatif2b]. A solu-
ity effect is contained. Both the left and right sides of E).  tion of this equation propagating to the positiveirection is
are linear ing, . Therefore, the scaling analysis tells us thatgiven by the Hankel functiofi25]

the equation of motiort8) has nothing to do with the initial W
impulsev; . u,(h)=heH{V(6h?), (19
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where é=1/2p,y=3%+¢=3(1+1/p),0={,y, andv=_¢&ly o~ = Z - 'I ||If I'I '
=1/(1+p). 0054 . o <imtion for dspiacement i
The asymptotic form of Eq.15) at largeh for a fixed v is ] °---._“o o oacament
o -0.10
u (h)m _h§— ylzei[ﬂhy—(ﬂ'/Z)V—ﬂTM] (16) ]
¢ 0 =
q:) -0.154
and the displacement is written as = 1
o
& -0.20-
%(h't)%h§—y/2ei[(é/y)h“/—§t]_ (17) > ]
-0.25
Therefore, the depth dependence of the coeffichgb) of ]
the displacement signal is -0.30 -
A(w(h))= h§7 V2= hi(lillp)/4 (18) L T T T T v T T T T 1
1.0 1.5 2.0 25 3.0 3.5
for all w. P

To obtain other depth-dependent properties of the signal,
we need more information about the signal. This is given by FIG. 4. Dependence of power-law exponents of grain velocity
an asymptotic analysis for the linear wave equation. Theand displacement on the exponent of the contact fprééumerical
asymptotic form of the solution of the general linear equationdata are compared with theoretical prediction. Solid lines are theo-

is given by the saddle-point method or the steepest descefgtical results. Circles and squares denote simulation data for dis-
method. The result is written 485] placement and grain velocity, respectively. Data are obtained for

the leading peaks of each signal.
V2mTA exfd i{ksh— w(kg)t}—
P(h,t)= mAlwg)exli ks 12( JU~al (19 The characteristic time of oscillation which is expressed
{tlo"(ke)[} by the period is given by the inverse of the frequency or the

ratio of displacement to grain velocity, i.e.,
when " (k) #0, whereks means the wave number at the

saddle point, anda=(i7/4)sgnw”(ks). When there are A(h) e
many saddle points, the asymptotic solution must be the sum T(h)= m“w(h) «h », (24
over all saddle points. This work concerns the case of a

single saddle point; therefore the amplitude of the generafhe characteristic length of oscillation, on the other hand,
solution of the linear wave equation in the asymptotic regimeyhich is expressed by the wavelength is given by multiply-
is given byA(wg){t|@”(ks)[} ~* wheret=h/v . Since we ing T(h) by the phase velocity, i.e.,

showed thatA(ws) exhausts the depth dependence of the

amplitude of displacemeng(h,t), {t|w”(ks)|}*2 must be N(h)=T(h)v,(h)<h? (25)
depth independent. This condition gives information about
the wave numbek. Differentiating Eq.(12) once more, we The depth-dependent power-law behaviors obtained nu-
get information ork, merically for the weakly nonlinear regime in the last section
agree quite well with Eqs(22)—(25) obtained analytically.
hr'2 This analysis explains the damping and dispersive behavior
t|w”(ks)| o —5-k~3=hC. (200 due to gravity for the weakly nonlinear regime in a vertical

T granular chain. To check the theoretical prediction given

above, we obtain peak values of the displacement and grain

This relation provides one piece of key information o .
P P y velocity signal for other values gf and compare them with

Koch— 13 (21)  theory in Fig. 4. One can see very nice fits to the theoretical
curves. For large values of a deviation from theory occurs,
in obtaining the power-law behavior of the signal. especially in grain velocity. This is understandable because

We already obtained the power-law behaviors in depth fothe nonlinearity becomes stronger psincreases and the
the amplitude of displacemerii8) and the wave number grain velocity contains more derivatives than the displace-
(21). With this information and the signal velocity, ment. Interestingly enough, however, the characteristic
«h(1=)/2 from Eq. (11), we obtain the depth-dependent length of the signal does not depend @mn
behavior of the grain velocity and its oscillation frequency

using the relation for a linear wawe(h)=k(h)v,(h), and IV. STRONGLY NONLINEAR REGIME
the relation for an oscillating signal &(h)«<A(h)/v(h). ) ) )
They are given by In Sec. lll, we explained the power-law behavior of signal
propagation under gravity only for the weakly nonlinear re-
v(h)ysch™ (3 1p)V4 (220 gime shown by simulation in Sec. Il. Figure 3 shows power-
law exponents of grain velocity and signal speed versus the
w(h)och/6~ 120, (23) initial impulsev; which is a measure of nonlinearity of the
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system. The flat region of Fig. 3 named the weakly nonlineadown. We separate dispersion part out in the expression Eq.

regime was discussed in Sec. lll. We will discuss the(30), in which damping and dispersion of a soliton are domi-
v;-dependent region, named the strongly nonlinear regime, inated by the gravity factog(h) and the nonlinearity factor
this section. ohldy. The latter is rewritten asdp/at)(dt/dy) which is

In strongly nonlinear regime it is rather difficult to ana- equivalent tov,/v; or vy/vgmin by dimensional analysis.
lyze the simulation result analytically. But one may under-Therefore, the signal characteristics approach the soliton cre-
stand the effect of gravity, which causes a power-law in-ated in the horizontal chain as nonlinearity, i., increases
crease of signal speed and width and decrease of signal the strongly nonlinear regime. One can see this behavior
height, through a rather simple analysis. For this purpose, wis Fig. 3.
perform a similar transformation to the one above for the The role of each term of Eq30) cannot be superposed

analysis of the weakly nonlinear regime. independently, since the equation is nonlinear. Therefore, a
For the strongly nonlinear regime, the condition fully analytical treatment of Eq(30) is not simple. The non-
10 linear regime, therefore, requires more work to understand
mgn the phenomenon fully. We just showed that the force exerted
(lﬂn—l_‘ﬂn)> - (26) : ; ; ; R
7 in the equation of motion for the strongly nonlinear regime

can be divided into a nongravity part and a gravity part as
is valid and expansion under this condition leads &{.to shown in Eq.(29), and also divided into a damping part and
. a dispersion part as shown in E@0). Therefore, one may
Mn= 7 (Yn-1~ )P+ PGn(Pn—1— ¢n)° 1] understand that a soliton created by the nongravity force
1 — ndAldh of Eq. (29) changes its speed, height, and width
= (U= ¥ )P PO 2 (V= Un )] under gravity coupled with nonlinearity. Figure&)l 1(b),
(27 and Xc) show the change of signal agincreases explicitly.
_ p . All characteristics of the signal follow power laws in
whereg,=(mgn/ 7)"* denotes grain overlap at th con-  genh and the absolute values of the power-law exponents

tact. The gravity term can be neglected in the highly nonlin-ygcrease as: increases. This was shown in Fig. 3.
ear regime, since the gravity effect appears in the coefficient '

On. The different orders of, in the left and right sides of
Eq. (27) imply thatv; dependence must appear in the signal V. CONCLUSION
characteristics.

If we setA, 1= (¥n— ¥n+1)P andA,= (-1~ ¢,)P and
use the relations

We saw in Sec. Il that the depth-dependent power-law
behavior of the propagating signal in a gravitationally com-
pacted granular chain is generic for the whole range of

A1 strength of impulse or nonlinearity. For a rather weak im-
W =—p(n— ns)P L, pulse regime, which we call the_ Weakly_nonlinear regime, the
n+1 power-law exponent of the grain velocity approaches a satu-
JA rated value, i.e., it does not depend on the strength of the
n__ P(n_1—thy)P L nonlinearity for a given contact force. The signal in this re-
aw n—1 n ’ . . . . ; . .
n gion is oscillatory. Comprehensive study of this region is one

of the main subjects of this work. The equation of motion of
the displacement of a grain in the limit of weak nonlinearity
} can be transformed into a linear differential equation where

Eq. (27) is written as

Pnir 0P,

Oni1————0p ) Fourier analysis is applicable. The asymptotic behavior of
IPn+1 Iy

the linear differential equation is given by the saddle-point
(28) method. This provides independent information for the wave

number of the signal. Normal mode analysis combined with

this information gives rise to all other information for signal

mi.pn: — (A1~ A)+ 7

This equation is rewritten in a continuum form,

) IA P A propagation depending on depth in the asymptotic regime.
pi(h)=— ’7(9_h+ U g(h)&—lA Characteristics of the linear dispersive signal are applicable
for understanding the signal behavior yielded in the weakly
9 oh\19A nonlinear regime. The exponents given by analytic study
=— 77{1— %(g(h)ﬁ) } “h (29 agree well with simulation data.
For the strongly nonlinear regime in which impulse is
) strong, simulation shows that the power-law exponents de-
+7 g(h)ﬂ E (30) pend on the strength of impulse, in other words, the
P ph? strength of nonlinearity of the system. The signal becomes

more solitary as the impulse increases. But this quasisolitary
The first term on the right-hand side of EQ9) is just the  signal changes its speed, damps, and disperses due to gravity
one describing a perfect soliton in the horizontal chi@h  as it goes down the chain. The behaviors of the signal, such
and the second term is responsible for the changing speeds grain velocity and amplitude, signal speed, and width, also
height, and width of signal due to gravity as signal goesfollow power laws in depth. The absolute value of the expo-
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nents of the power-law behaviors approaches zero as the inthree forces cannot be combined linearly in describing a qua-
pulse becomes stronger. This implies that the role of gravityisolitary signal. Further work is needed to fully understand
becomes negligible as the impulse increases. One can undehe signal behaviors in the rather strongly nonlinear regime.
stand this phenomenon from E&Q), showing that the grav- The equation of motion for the weakly nonlinear regime

ity factor is always coupled with the nonlinearity factor, is equivalent to those of a nonuniform transmission line and
which is inversely proportional to the impulsg. This tells  a nonuniform string. Therefore, one may apply the analysis
us that increasing nonlinearity diminishes the gravity effect.of this work to other areas. The behavior of the soliton under
Therefore, the signal under very strong impulse is similar tagravity or other constant force field may be applicable in the
that of the horizontal chain in which a nondispersing solitonapplied sciences.

is the propagating modes,12].

We separated the force exerted on a grain under strong
impulse into three in Eq(30). One may guess the role of
each term from its form and may understand conceptually This work was supported by Korea Research Foundation
the power-law behaviors ang dependence in the strongly Grant No. KRF-2000-DP0106 and the Brain Korea 21
nonlinear regime as shown numerically in Sec. Il. But theProject.
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