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Grain reconstruction of porous media: Application to a low-porosity Fontainebleau sandstone
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The fundamental issue of reconstructing a porous medium is examined anew in this paper, thanks to a
sample of low-porosity Fontainebleau sandstone that has been analyzed by computed microtomography. Vari-
ous geometric properties are determined on the experimental sample. A statistical property, namely, the prob-
ability density of the covering radius, is determined. This is used in order to reconstruct a porous medium by
means of a Poissonian generation of polydisperse spheres. In a second part, the properties of the real experi-
mental sample and of the reconstructed one are compared. The most important success of the present recon-
struction technique is the fact that the numerical sample percolates despite its low porosity. Moreover, other
geometrical features and conductivity are found to be in good agreement.
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[. INTRODUCTION tion. The first step can be achieved, for monodisperse or
polydisperse grain size distributions, e.g., by using the nu-
Thresholded Gaussian field techniques have become raerical tools developed by Coelled al.[6]. The second step

standard tool for the reconstruction of the microstructure ofequires additional information, relative to the kinetics of the
consolidated porous media, and were applied over the pasbnsolidation process, which determines the final morphol-
decade to obtain good predictions of the transport propertiesgy of the pore space.rén et al. [7], Biswal et al. [8] and
of many types of materials. An historical account, a descrip®@ren and Bakkd9] describe such a model, which includes
tion of the implementation and a set of applications are provarious consolidation mechanisms, with several fitting pa-
vided by Adler and Thoverftl]. A major advantage of this rameters.
approach is the absence of any adjustable parameters. TheThe purpose of this paper is to present a reconstruction
reconstruction is based on statistical geometrical datgechnique, which introduces an underlying granular struc-
namely, the porosity and spatial correlation function, possiy,re  put only makes use of geometrical parameters that can

bly position dependent, which can be measured on regle measuyred on images of real samples. From this stand
samples by standard image analysis. The most usual implesins the methodological approach is the same as for the

mentations make use of moving average or Fourier transfor orrelation technique; all geometrical quantities are mea-

methods to generate the underlying continuous correlate ured and a medium is generated with the same statistical

field to be thresholded to obtain the binary phase funCtioncharacteristics This technique is based on a Poissonian pen-
with the desired statistical characteristics. ' q P

An alternative approach uses simulated annealing to digtrablg s_phe_re model, cond?tiongd py the experimel_’ntal solid
rectly generate the phase function, according to the samize d|str|but|on._'_rhu§, the size distribution of t.h(.e solid phgse
kind of geometrical conditioning parametef2—5|. This should bg quantified |n.the flrst placg, a.nd.a sizing technique
technique allows one to introduce additional constraintsthat provides the required information is introduced. These
such as higher order statistical moments, but is computatiorf€chniques are applied to the analysis of a low-porosity Fon-
ally much more demanding. tainebleau sandstone sample, based on a high-resolution

The former techniques are purely geometric, in the sensthree-dimensional digital image obtained by x-ray computed
that they do not attempt to simulate the actual genesis of th@icrotomography(CMT). First, the geometry and the trans-
porous material. If the microstructure results from knownport properties of the real sample were thoroughly character-
mechanisms, it is appealing to directly incorporate thisized. Then, the same analysis was repeated on a numerically
knowledge in the simulation procedure. For instance, sedireconstructed sample, which allows a direct assessment of
mentary rocks result from the deposition of grains followedthe merit of the reconstruction algorithm, with respect to a
by a consolidation, due to various diagenetic processes. Derariety of geometrical and transport-related criteria. Special
spite the consolidation, the underlying grain packing strucemphasis is put on the quantification of local variability in
ture may still be visible. Hence, another class of reconstructhe real material, and on its rendering in the reconstructed
tion procedures consists in the simulation of the generatingne.
processes, i.e., of the primary grain sedimentation followed This paper is organized as follows. The first three sections
by diagenetic processes such as compaction and cemente devoted to a general description of the methods. The

geometrical characterization tools used in this study are pre-

sented in Sec. Il. This includes the first two statistical mo-
*Deceased. ments of the phase function, i.e., porosity and autocorrelation
"Retired. function, and the solid size distribution, which is used for
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conditioning the reconstruction procedure. Other geometricain anisotropic media, the correlations forparallel to thex,
characteristics, such as the skeleton of the pore space ayeandz axes are denotel;,, Rz, andRz,, respectively.
used to compare the properties of the real and reconstructed In heterogeneous media, the statistical moments of the
samples. The reconstruction procedure is described in Sephase functions can be position dependent. In particular, re-
[ll. The methods of solution for the transport properties,gional variations of the first moment may exist. A position-

namely, percolation and conduction, are presented iependent porosity fielé(r) can be defined as the local

Sec. IV. _ o average(Z), of the phase functiorZ over domains) of
The rest of the paper describes an application of thesgpitrary sizel centered at. The statistical distribution of

chqrgctenzaﬂon and. reconstruction _too!s. A. thorough defhis field can be quantified, as well as the varianéeand

scription of the experimental sample is given in Sec. V. The " . . €

CMT data are described, and the rock geometrical and trang-pat'al correlatiorC (u)

port properties are examined. Spatial heterogeneity is inves- 2, 2

tigated by considering the various properties at different o={(e=€)%), (53

scales. The same analysis is conducted in Sec. VI on a nu- _ _

merically reconstructed sample. A systematic comparison is Cau)=([e(r)—el[e(r+u)—e]). (5b)

made with the data directly obtained from the CMT image.

Finally, the main results are summarized in Sec. VII. The bracketg ) denote here an averaging over the position

r, ande is the overall mean porosity=(Z)=(e(r)). These
quantities can possibly be used to condition subsequent re-

Il. GEOMETRICAL CHARACTERIZATION OF APOROUS  gonstructions of heterogeneous media,
MATERIAL In addition, they can be analyzed as functions of the av-
A. The phase function and its statistical moments eraging domain size. The local porosity theory makes use

, ) of local porosity and local percolation probability distribu-
The microstructure of a porous medium can be fully dejons either to predict macroscopic transport propeftlés;
scribed by the phase functiah or as a reference criterion for the assessment of pore-space

1 if x belongs to the pore space models[11,17], as done here in Secs. V and VI.

Z(X)=

0 otherwise, B. Solid size distribution

Sandstones are sedimentary rocks, which result from
deposition of quartz grains followed by consolidation. For
Ijnstance, an underlying grain-packing structure is still clearly
visible in Fig. 1, despite a strong consolidation. It is tempting
size a that constitute reconstructed numerical samples. Thip use this feature as thg start'ing. poi.nt for the reconstruction

procedure. Thus, the size distribution of the solid phase

phase function is then defined at discrete locationsorre- oL -
sponding to the positions of these elementary VOIumeszgomUI?ege guantified, in order to condition the reconstructed
which are assumed to be entirely filled with either phase; PIES. . - . .
void or solid. _ _Of course, the primary constitutive grains are not directly
In view of the random character of most real materials, itV'SrIble onhb:;a\r/y r'r?agi]gsnguetrtlo Cﬁrr?]err]tatlrori\r.] It 'ﬁ dnt%t our
is quite natural to describe the phase functioby its statis- purpose, however, 1o iden fy € primary grains a € ce-
ment, in order to successively simulate the grain deposition

tical moments. The porosity and the spatial correlation and the subsequent diagenetic processes. Instead, we look for
Ra(u) can be defined by the statistical averagesich are a description of the solid size distribution, which could be

denoted by brackets )) used in a purely geometrical simulation procedure to mimic
the microstructure of experimental granular samples, regard-

where x denotes the position with respect to an arbitrary
origin. In most practical caseg, is known from two- or

three-dimensional binary digital images, made of pixels o
voxels with sizep,, or given in the elementary cubes with

e=(Z(x)), 2 |ess of their genesis.
A sizing technique that provides such information is de-
(Z(x) = (Y[ Z(x+u)—(Z)]) scribed in this section. It is based on classical mathematical
Rz(u)= e(1—e€) : (3) morphology concepts. The theoretical background is given in

details by Matherofl13] and Serrd14]. A simple introduc-
tion to some of the basic concepts used here is also provided
by Horgan[15]. Thus, the novelty does not lie in the math-
ematical apparatus, but rather in its actual implementation
for two- or three-dimensional images of rocks, and in its
subsequent use in a reconstruction procedure, in order to
render specific features of the real material.

We will define here the covering radiug for each point
in the solid phase of a porous medium, which corresponds in
L= foz(u)du. (4) mat.hematical mqrphology toa ;izing by openings. The fpl-

0 lowing presentation is kept as simple as possible. In particu-

For homogeneous and isotropic materi&g,is a function of
the modulus of the lagi=||u only, R;(u)=R(u). Notice
that e(1—¢€) in Eq. (3) equals the variance% since Z%(x)
=Z(x). A characteristic length scale of the microstructure is
provided by the correlation length, which is defined as the
integral of the correlation function
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by a narrow gap. Finally, an opening filters out small con-
vexities from the contour, but keeps the concavities and re-
moves the small parts d&.

The main property oA, for our purposes is tha, is the
set of points inA that can be covered by a ball of radins
contained iPA. A sizer(r) can be associated with any point
in A, defined as the radius of the largest ball contained in
that covers. In other words

re(r)=sugh:reA,}, (99
A ={reAir,(r)=A}. (9b)

We denote ((r) as the covering radius of It corresponds to
the sizen o(r) in Ref.[14] (Chapter X. It is equal to zero out
of A, i.e., in the pore space.

Note thatr.(r) is not directly related to the distandg(r)
from r to the closest point on the boundary Afexcept for
the propertyd,<r.. For instance, all points in a sphere with
radiusA have a covering radius.= A.

A solid size distribution can be defined from the distribu-
tion function G of the pointwise size .,

v G(R)=(Volume fraction of the séfre A;r (r)<R}
(109
=1—(Volume fraction of A, ). (10b)

FIG. 1. Three-dimensional view of the CMT image of the ex- It is generally defined relative to the volume Af For con-
perimental sample. The dimensions are bigoxels, i.e., venience, we use here absolute volume fraction, relative to
(3.23 mm¥. the whole porous medium volume, with

lar, we always suppose that the structuring elenteig a G(0)=(porosity), G(+x»)=1. (11
ball (disk or spherg although all the following is also valid - ) )
for squares or cubes, which may be, sometimes, of interest.® probability density functiog(R) deduced fronG con-
The three references above provide the general formulas fd@ins at least one Dirac contributie(0), andpossibly oth-
other shapes oB. ers, if part of the solid consists of spherical grains.

The dilation of the domair (representing here the solid ~ Given a three-dimensional digital image of a porous me-
phase by a structuring elemerB, (here a ball with radius dium, the covering radif, and thus the family of domains

M) is the setA®B, covered by all the translations &, A\ and the functiong andG are easily obtained by elemen-
centered inA tary numerical analysis. Of course, the structuring element

B, is then the discrete version of a ball with radiu®n the
A® szurEA’SEBA(rJrs). (6) underlying lattice. Since squared distances between pixels
are integer numbers, in lattice unit%, is always integer.
The erosion is the dual operation, corresponding to the dila- The determination of the three-dimensional solid size dis-
tion of the complementanA® of A. It corresponds to all tribution from two-dimensional images is a more difficult

points inA not covered by a balB, centered out oA stereological problem that is not addressed at this stage.
. . The probability density functiog(R) can be viewed as a
ASB,=(A"®B,))". (7)  three-dimensional extension of the lineal-path functiga),

gefined by Lu and Torquafd 6] as the probability that a line

; . . . . i segment of lengtlz is fully in one of the phases, when ran-

lations of B, enurely contained ir. The o;')enmgABA (orin domly thrown into the sample. This function was evaluated

shortA,) by B, is the result of an erosion followed by a py Quintanilla and Torquat$17] for Poissonian disks and

dilation spheres, and actually used by Yeong and Torg[@itas the
P conditioning criterion for a simulated annealing reconstruc-

Ag, =A=(A OB,)®B,. (8) tion procedure.

The main effects of an erosion are to shrink the sizA,a&nd
to remove its components that are too small to conBin
Conversely, a dilation increases the sizeAofills small in- The connectivity of the pore space can be characterized
ner holes and possibly connects componenté separated by the cyclomatic numbefor genu$ B4, which is equal to

C. Topology, skeleton of the pore space
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the number of independent cycles in its associated graptvided, of course, that resolution is good enough to preserve
This graph, represented by the skeleton of the pore spadbe pores. In addition, the skeletons determined in the fol-
[14], can be viewed as a simplified image of the pore spacdpwing for the experimental and reconstructed samples are
analogous to a capillary network. It is determined by a pro-obtained for exactly identical resolutions, thereby allowing
gressive conditional thinning algorithfd8]. The cyclomatic meaningful comparisons.
number is equal to The statistics of the skeleton elements may prove useful
for other simulation purposes, for instance to provide capil-
Bi=m-n+1 (12 Jary network models of the porous material with statistical
wherem andn are the number of edges and vertices in theinformations'on pore diameters, coordination number_s_ and
graph, respectively. The volumetric number of cycles persq on. In this paper, th_ey are only used as an additional
o . ' ! criterion for the comparison of the real and reconstructed
unit volume is denoted by . edia
Various statistical quantities can be measured on the skep-1 '
eton. Letdg denote the distance of a point on the skeleton to
the closest solid. Its minimum, along the edgee is the 1. RECONSTRUCTION PROCEDURE
critical radius of this edge, i.e., the radius of the largest
sphere that can travel alorey The radiusr), of the largest We describe in this section a Poissonian penetrable sphere
cavity in the sampléradius of the largest sphere that can fit model, conditioned by the experimental solid size distribu-
into the pore spagds also readily available. tion. In the present implementation, the model belongs to the
More generally, statistics relative to the elements of thegeneral class of the so-called Boolean models. Recall that
skeleton can be evaluated; averages, standard deviations addolean models are stationary Poisson processes, where the
histograms of the radii, or of the end-points distanak, of  Size and shape of the inserted objects can be randomized, but
the edges €=1,2,...m), of the radiir, and coordination Wwith a probability law identical for all objects and indepen-
numberz, (number of incident edgésof the vertices ¢  dent of their positiorf20]. However, it is conceptually easy
=1,2,...n), volumetric numbeiN! of vertices, and mean 10 generalize the model by introducing regional variations of

coordination numbez, that is related to the mean number of the porosity or of the solid size distribution, thereby loosing

NT the Boolean character.
cycles per verteysi/N, by General descriptions of the properties of penetrable

z sphere models are provided by HEHO0] and Torquato and
—=Z-1-—~Z-1 (n>1). (13)  co-workers(see, e.g.[21] and references thergin
N, 2 n 2 Consider first the case of monodisperse grains. The poros-

. - - ity is directly related to the number densjty of grains with
The correlations of these quantities can also be quantified, b\YqumeVp per unit volume

the covarianceC, of the radii of adjacent edges, the cova-
rianceC,, of the radii of adjacent edge/vertex couples and
the covarianceC,, of the radius and end-points distance of
edges, which are defined as

:<(re’ _m(re”—a>

€=e ", up=ppV,. (15

The correlation function is given by

ee 2 : (143 el+3u'a-u'3e_ 2 u
r — = < .
e Rz(u) (1—e) u R, 21;
((re=re)(ry=r,))
ev O'reo'ru ) (14b) RZ(U)IO (uzsz) (16)
(r ~Tro)(d —d—)> where R, is the grain radius. Obviously, monodisperse
Coi= e e/ie Tel (140 spheres allow to match a single scalar parameter of the real
Or9de medium to simulate, e.g., the initial slope of the correlation

o ) ) function, which is proportional to the volumetric wetted area
The indicese’ and €’ in Eq. (149 refer to edges with a [22].

common vertex. The average in EQ4b) is taken over the Polydisperse penetrable spheres are required in order to

pairs of connected edgesand vertices). _incorporate more morphological information. Such an ap-
It should be kept in mind that the quantities introduced inproach was applied by Glasbest al. [23], but with ana

this paragraph are measured on the mathematical skeletQgyiori model for the grain size distribution, whereas this dis-

which may differ quite significantly from an intuitive pore/ iption is directly deduced here from measurements on the

throat vision of the pore space. Besides, some of these quapsg| sample.

tities such asN; and z, depend on the resolution of the  First note that the correlation function of a porous me-

discretization for the calculationtsee the discussion by dium resulting from the superposition of penetrable spheres,

Bekri et al. [19]). However, the cyclomatic numbefy and  with a radius probability densit§(R) (in number of grains

B; are unaffected by a change in spatial discretization, proean be evaluated analyticall24]. It is given by
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ea(u)_ E2
Rz(u)= wi=e) (17) ’ Q a
with q ‘
" 1+3(R2) u® . 1
a(u)=1+—-——u-—
COMETTONTGY “ ‘
u2 3R2u B & ‘ ‘p
Xf R3— + —|f(R)dR, (183
0 4 16 R} >R,
1 [+ 3R%u  u® a b
—2-— | |R-Z =+ _|{(R)dR
(R3 Jur 4 16 FIG. 2. Poissonian sphergsvo-dimensional illustration The
(18b) covering radius; in the whole dark sphere ifa) is equal to its

radius R;. Situations like(b) where a continuous shell of grains

Equations(17) and (18) can be inverted, to determine increases , to R,>R; are ignored.

f(R) from the correlation functiofRz, provided, of course,
that the medium actually corresponds to penetrable solidimylated material has a very low porosity, about 0.07,
spheres. The inversion formula and the necessary criteriogich is the worst situation in this respect. This artifact is
on R are given in the Appendix. Unfortunately, the inver- gimost totally eliminated with larger void fractions, as shown
sion is strongly affected even by small violations of this py yousefianet al. [25], who consider a sandstone of poros-
criterion. In addition it is very sensitive to statistical noise injty 0,17
the long-range part of the correlation function. Therefore, we = These remarks provide the key for the determination of
apply in practice the alternative technique described belowhe amount of grains of each size to be inserted. The largest
mimic the solid size distribution in the real medium, evengetermined from the volume fractig(R), corrected for the
though its solid phase is not likely to be made up of PeN-masking effect of the larger ones, i.g(R)/G(R). Denote
etrable spheres, and it is less sensitive to statistical fluctua}l(R) the volumetric density of spheres with radiBsee
tions. Eaq. (15

It has been shown in Sec. Il B how the covering radius 9-(19
re(r), i.e., the radius of the largest sphere entirely lying in
the solid and covering, can be determined for any pointn
the solid phase. The sphere size distributigiR) will be
determined from the probability densityand the distribu-
tion function G of the covering radius

u(R)=p(R)V(R), (209

p(R)dR=Number of spheres per unit volume
with radius in[R,R+dR] (20b)

g(r)dr=Volume fraction of points withr<r . <r +dr,

(19a

with V(R)=4/37R3. Then, the numbep(R) of spheres of
sizeR to be inserted per unit volume is directly obtained by

Thresholded Gaussian field

Poissonian penetrable spheres

r
G(r)drzf g(s)ds=Volume fraction of points withr .<r.
0
(19b

Generate X(r)

Gaussian, uncorrelated

Generate center locations

Poissonian

Obviously, many spheres will be partially or totally

v

Y

masked by larger ongdsee Fig. 2a)]. The radiusr. in the
overlaps is then equal to the largest radiRs {n the Figure.
Conversely, the radius; in the largest sphere in Fig(& is

Convolution with PSD

of correlation function

Insert spheres with

distributed radii

unaffected by the presence of the smaller ones. We maki

v

Y

here the approximation that situations like Fig. 2b are statis
tically negligible. In order to modify . in the large sphere to

Y( r) Gaussian, correlated

Y( r) = number of spheres covering r

Poissonian, correlated

R;>R;, it is required that it is totally surrounded by a con-
tinuous shell of smaller ones, which is unlikely for large

Y

Y

grains, especially in three dimensions. This is subjech to
posterioriverification, and indeed in the present application,

Z=1 ifY > threshold

Z=1 ifY=0

the covering radius spectrum in the reconstructed media dif-
fers only slightly from the prescribed spectrum, with a bias

FIG. 3. Main steps of the penetrable Poissonian spheres and

towards larger radii. It should be noted however that thehresholded Gaussian field reconstructed procedures.
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256
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Section .
0 _ _ 0 1 2
10240 256 512 768 1024 10240 256 512 768 1024 2 d Grey level

(@ (b) (c)

FIG. 4. Examples of gray levéh) and binarizedb) images of a section through the Fontainebleau sandstone sample. The histogram of
the gray levels in the whole 5%31023x 1023 voxels CMT imagéc). The gray levels irfc) are centered and normalized by the global mean
and standard deviation.

g(R) 1 g(R) Higher-order moments, such as three- and four-point corre-

m(R)= GR)’ p(R)= V(R) G(R)" (2)  lations, are determined by the reconstruction procedure, and

may differ in the Poissonian and Gaussian models. This
o ) point is not addressed in the present paper, but the three- and

It is interesting to note that although a counterpart of theoyr-point correlations in a real sandstone and in porous me-
covering radiusr, can be straightforwardly defined in the gia reconstructed by using both the penetrable spheres and

void phase, it probably cannot be used for the present pukhresholded Gaussian fields techniques are systematically
pose of determining(R). Hall [20] has shown that for poly- compared by Yousefiaet al. [25].
disperse Poissonian disks in the plane, the statistical distri-

bution of the first contact distance, i.e., the distadgérom IV. MACROSCOPIC PROPERTIES: METHODS

a point in the pore space to the closest solid, only depends on OF SOLUTION

the mean disk perimeter and area, whereas the distribution of o ) )
d,(r) is more complex. We show in this section how some of the macroscopic

A parallel can be made between the Poissonian penetrabRfoperties of porous media can be numerically determined
sphere model and the thresholded Gaussian field reconstru26]-
tion procedure, as illustrated in Fig. 3. Recall that the thresh-
olded field techniqud26] consists in the following steps.

First generate a random uncorrelated Gaussian fé(d). The first property to be determined is whether the pore

Convolve it with a kernel derived from the correlation func- space in the material percolates or not, i.e., whether a con-
tion Rz to obtain a correlated Gaussian fiefdr). Finally, tinuous path through the pore space exists between two op-
the phase functiorZ(r) is equal to 1 whereY exceeds a posite faces of the sample. In the absence of percolation, all
threshold that depends on the target porosity. the macroscopic coefficients for transport processes in the

The generation of the grain center locations correspondgore space are trivially zero.
to the generation of the initial random fieXd Then, spheres Unless otherwise stated, we considered only percolation
with a prescribed size distribution are inserted and a Poissalong a single direction, corresponding to thaxis. Hence,
nian correlated field¥(r) can be defined as the number of a sample is said to percolate when its two opposite faces
spheres covering; finally, the phase functiorZ is again  normal to this direction can be connected through the pore
obtained by thresholdiny. In both cases, the definition &f  space; this corresponds to the rilgas defined by Reynolds
incorporates the same type of geometrical information deet al. [28]. The percolation status of the samples was
rived from the experimental porosity and spatial correlationschecked by use of a pseudodiffusion algorithm, as described

The main difference is that only a certain class of corre-by Thovertet al.[18].
lation functions can be generated with the Poissonian model,
whereas no such limitation exists with the Gaussian field B. Conductivity
technique. . . . :

The penetrable sphere model can also be regarded as al the macroscopic scale, an ISotropic porous med|ur_n_can
variant of the generating technique of Di Federico and NeuP€ characterized by a macroscopic conductivity coefficient
man[27], who also superpose uncorrelated fields with iden-D, which only depends on its microstructure. When the pore
tical correlation functions within a change of scale. Only thespace is filled by a conducting fluid of conductivity, the
shape of this correlation is different, given here by Ed), porous medium has an effective conductivityD. The elec-
instead of a Gaussian or exponential function. trical terminology is used here but the following develop-

Both the thresholded Gaussian field and the Booleaments are also valid for thermal conduction and for diffusion
methods offer no control over the statistical moments of theof particles whose size is small with respect to a typical pore
phase function, beyond their mean and two-point correlationsize.

A. Percolation
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In order to determin®, one has to solve Laplace’s equa- (a)
tion 09y .

V2T=0, (22)

where T is the potential field, together with the no-flux
boundary condition at the surface of the sdlig, when the , , , _ Section _
solid phase is assumed to be insulating o 100 200 300 400 500

m-VT=0, on S, (23

wherem is the unit normal vector t&;. This hypothesis of
insulating solid phase is well verified for sandstones. The
Neumann probleni22) and(23) is solved via a second-order
finite-difference formulation, by use of a conjugate-gradient Secti
method[29]. 0.05 : : : - SER
_ 0 100 200 300 400 500
We determine the conductivity coefficieBt along thex
direction, by imposing constant potentials at the upstream
and downstream faces of the sample, and no-flux conditions

on the four other face® is obtained from

(24)

0 100 200 300 400 500
whereQ is the total flux,Sis the sample cross-section area

andAT is the potential jump. FIG. 5. Porosity profilese(x) (a), e(y) (b), and e(z) (¢) in

512x 512 voxels sections normal to the coordinate axes, in the ex-
perimental sample. The broken lines are the overall average over
the 512 volume. The dotted lines ifc) are separate averages over

This section is devoted to a thorough characterization of® 316 first or 196 last sections.
the geometrical and transport properties of the experimental )
sample. The rock under consideration is a low-porosity Fon[0sity seems to take place around section 316. The mean
tainebleau sandstone. The acquisition of a digital threePOrosities on either sides differ by about 0.01. The porosity
dimensional image by x-ray CMT and part of the subsequenf€asured in the whole retained sample volume eis

analysis have been presented by Thoeeral. [30]. =0.0692.
The correlation function®kz,, Rz,, and Rz, along the

three axes have also been measuredxyy) (x,z), and

(y,z) sections. No significant variations exist, as shown by
A piece of a cylindrical plug, 5.4 mm in diameter, was the example in Fig. 6, wher®,, measured in successive

imaged at ESREGrenOble by X-ray CMT. Gray level im- (X,y) sections is p|otted versus the |ag

ages of 513 serial slices were obtained, made up of 1023 The correlationsRz,, Rz,, andR;, averaged over the

%1023 pixels, of sizep,=6.3 um. These images were eas- whole volume are displayed in Fig. 7, in Cartesian and semi-
ily and unambiguously binarized, thanks to a clearly bimodal

distribution of the gray level¢see Fig. 4. .
A parallelepipedic subsample was cut from this image,
with dimensions 512voxels, i.e., (3.23 mni) it is entirely

V. ANALYSIS OF THE EXPERIMENTAL SAMPLE

A. CMT data

B. Geometrical characterization

L
contained in the core. A three-dimensional visualization of R \\\ \\& L
the investigated subsample is provided in Fig. 1. In the fol- 1 \\ \\\\\\\\\\\ \ &\\\\ >>>>>>>>>>>
lowing, thex andy axes are contained in the slice planes, w\\\\ \\\\\\\\\\\\\\\\\\\\&‘\i\\‘t“e
whereas the axis refers to the direction normal to the slices. il \\\3\\&\‘&_\‘9&;{3‘;@
W \\\\\s \\\\\s\\q oy
0.5+ RIS
W\
\\\

- /500
400

Porosity was measured in 5%¥512 sections through the 20(:300

sample, along the, y, andz directions. The corresponding 0 100 200 ) < 100 ggction
profiles are plotted in Fig. 5. No definite trend is observed Lag u (um) 300 400 O

along thex andy axes. The surface-averaged porosity varia-

tions around the global average are of the order of 1%. In the FIG. 6. Correlation functiorR,, measured in successive,{)
z direction, i.e., along the axis of the plug, a change in po-sections through the experimental sample.

1. Global geometrical measurements 04" :‘
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R (u R (u)
Y 10° £
0.8
10”
0.8; N FIG. 7. Correlation functions along the direc-
0.4 107 tonsx (—), y (----- )andz (—-—-—)in
the experimental sample, versus the lag in mi-
02 10 crons, in Cartesiarfa) and semilogarithmidb)
0 - coordinates.
n ~4|
0% 50 100 160, (,m)290 105 50 100 150y, (,m)200

(a) (b)

logarithmic scales. The material appears to be slightly anisocomparison in Fig. @) for N.=32, 64, and 128. The distri-

tropic. Rz, and Rz, are identical, buR,, decreases slightly pytion functionF(y) of y=In(e) is plotted as a function of
faster. The correlation lengths, and £, are larger tharC,  the Gaussian distribution functio®,y,

by about 4%(see Table)l 7y
The semilogarithmic plot in Fig. 7 shows that the corre-
lation functions are well described by a negative exponential G _ 1 f y—(y)
: oY) 1+er : (26)
up to a distance of about 10@m where R, becomes y 2 \/Egy

smaller than 102

where(y) and o, are the mean and standard deviatiory,of
for each block size. The three curves are close to the first
) i diagonal, which corresponds to a perfect fit by the lognormal
The decay lengtha, obtained by a least-square fit over the |5,

data for lags up to 12 pixel sizes (7om), are given in  The |ocal porosity standard deviatiery is given in Table
Table I. They are in good agreement with the correspondingy |t js plotted versus the measuring block size in Fig. 10.

lengths L. For longer lags, a slight anticorrelation exists in Note that the statistics are constrained by the finite size of the
the range 120-17Qum; this is a reminiscence of the impen-

etrability of the constitutive quartz grains, blurred by their

Ry(u)=e V" u<100 um. (25)

size polydispersity and by consolidation. Th&z, randomly 0.1 P(e) 2 ; 0.02 P(D) ° ‘
fluctuates beyond 20Qum, with a magnitude of the order of , ‘
10 2 or less. 0.05 0.01
2. Multiscale analysis 0b01 001 01 5 1 200001 001 p 1
Regional porosity variations were studied by considering P& c BI d
cubic subsample$) of varying size. The 512 complete 0.2 (€) 0.04 (©) ‘
sample was split intdN,, disjoint blocks containingxlg VOX-
els, with N, ranging from 16 to 256. Thus, the block size 0.1 0.02
L=N¢py ranges from 100xm to 1.6 mm. It is always sig-

. : - 0 — 0 o
nificantly larger than the correlation lengthd or \ in 0.001 001 01 1 0.0001 0.01 p 1
Table I. - e - f

The statistical distribution of the decimal logarithm of the 0.4 Ple) 0.1 P(B) ;
porosity e in individual blocks is displayed in Fig. 8, for i
various block sizes. As expected, all the distributions be- ~ 0-2 0.05 ‘
come narrower whefl, increases.

For the smallest blocka\.= 16), a significant proportion 09001 0.01 1 5 1 9 0.0001 0.01 p 1
of the blocks(4.9%) contains only solid. As soon as, P@ g PO) h

=32, the probability of zero porosity vanishes, and the po- 0.6
rosity distributions look fairly lognormal, as shown by the

0
0.2 ‘
0.3 0.1
TABLE I. Correlation lengthZ, , £, , andZ, in the experimen- I
1
0.

tal sample, and decay lengthsin Eqg. (25). 09001 0.01 S 00001 001 g 1
X y z . . . —
FIG. 8. Histograms of the decimal logarithms of the porosity
L (um) 24.8 24.6 23.7 (left) and conductivityD (right) in cubic blocks from the experi-
N (um) 24.9 24.4 23.6 mental sample, for block sized.=16, 32, 64, and 128top to

bottom). The vertical broken lines are the statistical averages.
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] Fllog,,€) . F(log,, D)

FIG. 9. Distribution functions of the loga-
rithm of porosity(a) and conductivity(b) in cubic
blocks with sizeN,=32 (—), 64 (—-—-—),
and 128 (- — —) from the experimental sample,
versus the Gaussian distribution function Eq.
(26). Only percolating blocks are considered in
(b), for N;=32.

0.75 e 0.75
05 e 05

0.25 P 0.25

0 0.25 0.5

0.75 i 0.75 1
G(log,, €} G(log,, D)

(a) (b)

samples. Whei, increases, the number of blocks decrease§ he double integral27) can be numerically evaluated @,
and the overall statistical contents remain identical. Henceis given. This was done for the isotropic exponential covari-
the average porosity of the blocks), is of course a con- ance in Eq.(25), and cubic domaing) (see Fig. 10 It

stant since it corresponds to the averags the phase func- appears that the asymptotic deeay:L ~%?is reached only
tion Z over the same overall volume for &, . for very large domains, with/£>20. For smaller sizes, the

The dispersion of the block porosities, quantified by thenumerical data are in excellent concordance with the predic-
standard deviation(N,), decreases with the block sikg.  tion of Eq. (27).
For blocks large enough to sample all the variations of the For N.=128, the decay rate af, should increase and
local porosities-(N,) should decay abl; 3?. However, a  reach the asymptotic regime;>L ~*2 However, the statis-
slower decay is observed for the data in Table Il and Fig. 10tical variability predicted by Eq(27) for a stationary me-
with an exponent-1.13 (correlation coefficient =0.9997, dium is dominated by the macroscopic variation of the po-
up to N.=128). This results from correlations between the"0Sity along thez direction shown in Fig. &). Hence, the

porosities in the blocks. If one assumes thét) is a station-  d€cay ofo with N actually becomes slower, and, for
ary random correlated field, with a variana%:e(l—e) N.=256 is 0.6%, i.e., roughly half the magnitude of the

. . _ 2 . 2. . porosity step variation in Fig.(b).
and a spatial covarian€@; = o;Rz , the variancer_is given It is also interesting to consider the spatial organization of

by the locally averaged porosities. To this end, we measured the
1 spatial covarianceC_ of the local porositiese in the Ng

ol=— dflf dr,Co(r1—r,) (27) ~ domains. This was done for various block sizes, ranging
< 0%)a Q from N.=16 to 96. The results are plotted in Fig.(&1 on

TABLE Il. Percolation and transport properties in cubic blocks of dizeN.p,, cut from the experi-
mental and reconstructed samples. Bracketdenote averages over the blocks;; is the standard deviation
of X.

Ne L (wm) N Py (&) oe (&) (D) o5 red

512° CMT image of the experimental sample

16 101 32768 0.216 0.0692 0.0837 0.1641 0.0136 0.0436 0.758
32 202 4096 0.355 0.0692 0.0385 0.0943 0.0062 0.0151 0.683
64 403 512 0.580 0.0692 0.0166 0.0752 0.0027 0.0037 0.568
85 506 216 0.727 0.0692 0.0136 0.0714 0.0024 0.0025 0.552
128 806 64 0.875 0.0692 0.0080 0.0702 0.0019 0.0016 0.677
170 1070 27 0.960 0.0692 0.0075 0.0695 0.0020 0.0011 0.753
256 1610 8 1.000 0.0692 0.0053 0.0692 0.0018 0.0006 0.852

512® Reconstructed sample

16 101 32768 0.211 0.0697 0.0926 0.1859 0.0154 0.0456 0.772
32 202 4096 0.339 0.0697 0.0452 0.1064 0.0071 0.0154 0.699
64 403 512 0.564 0.0697 0.0195 0.0779 0.0034 0.0047 0.653
96 605 125 0.736 0.0697 0.0114 0.0722 0.0024 0.0024 0.633
128 806 64 0.891 0.0697 0.0069 0.0704 0.0022 0.0016 0.679
170 1070 27 0.963 0.0697 0.0045 0.0699 0.0019 0.0011 0.361
256 1610 8 1.000 0.0697 0.0025 0.0697 0.0016 0.0008 0.443
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, <E>,o; a TABLE IIl. Geometrical and topological parameters measured
10 & — i i on the skeleton of the pore space M=8 blocks of size 128
voxels from the experimental and reconstructed samples. All dis-
10723 tanceas are in microns. The volumetric quantit/sand 3; are in
mm™°.
-3 ) ) ) —, J— , J— — — J—
%00 200 500 1000 12000 N, z Piore 1, de ty Cee Ca Co
Exp 140 3.15 80 7.01 10.3 62.6 54.4 0.26 0.65 0.003
10° Rec 294 3.24 159 7.15 9.68 44.4 43.0 0.35 0.69.008
3. Topology, skeleton and size distribution of the pore space
107" , , The skeleton of the pore space was extracted from eight

100 200 500 1000, m)2000 128 cubic blocks from the CMT image, as described in Sec.
Il C. Care was taken to avoid edge effects, by considering
only the elements of the skeleton that are undisturbed by the
boundaries. It was also checked that the block size is suffi-
cient to obtain reliable results, by comparison with the cor-
responding results for smaller blocks.
The statistics for the characteristics of the components of
: : : the graph are given in Table Ill. Their distributions are pre-
100 200 500 1000 L(um)2000 sented in Fig. 12. Note that most edges have a critical radius
_ r. of the order of the voxel sizp,. It will be seen in Sec.
FIG. 10. Porositye (a), probability of percolatiorP, (b) and v/ C 2 that the quasitotality of the pore space is connected in
conductivity D along thex direction(c), versus the block sizh. . a single cluster. Thus, the resolution of the CMT scan is
The symbols denote statistical averages) (and standard devia- sufficient to preserve all the connectivity, but could not be
tions (*). Data are for the real-(—) and reconstructed{——)  much downgraded without loosing connections.
samples. The dotted line is the prediction E2j7), for the isotropic Adjacent elements of the skeletons are weakly correlated,;
exponential covariance in E@S), and cubic domaing). the coefficientC,, for the radii of two edges with a common
vertex is only 0.26; the radius and length of the vertices are
average over the, y, and z directions.C; is remarkably statistically independentQ,~0). The larger value of the
insensitive to the block size, as soon as the lag exceeds 3®rrelation coefficienC,, of the radii of an edge and of its
voxel sizes andN,=16. Furthermore, in this range, the po- €nd vertices probably results from the constraint that
rosity covariance is less than 1) which denotes the ab- =Te-
sence of any notable spatial organization of the porosity fluc-
tuations. Even the variations along thexis in Fig. 5¢ do 4. Solid size distributions
not induce significant differences between the functi@ns

in this direction and in the orthogonal ones. , image, as described in Sec. Il B. The results are displayed in

In summary, this block of Fontainebleau sandstone is Ver¥ig 13, Figure 18) is a 256 voxels cross section through
homogeneous. Local porosity fluctuations are totally acyhg piock, and Fig. 1) is the corresponding, field. Note
counted for by the expected statistical variability for a sta-hat although this plot shows only a two-dimensional section,
tionary medium, up to a scale of 80am, i.e., about 5 typi-  r was really determined in three dimensions. The histogram
cal grain diameterésee Sec. V B A Fluctuations on a larger of r_ and its distribution functio in the three-dimensional
scale are small and without definite spatial organization. sample are plotted in Figs. &3 and 13d), respectively.

The solid size distribution was measured in the sC®IT

) 4 G
10 10
107 1073

o y FIG. 11. Spatial covarianc€_ of the porosi-
10 10 ties measured in cubic blocks in the experimental
107 AW 1074 - (a) or reconstructedb) samples, versus the lag in

f\o : § s microns. The averaging domain size Ng= 1

10° 10° ° ., T 1 (heavy ling, 16 (O), 32 (O), 48 (A), 64 (V)
10 10 o /‘ . and 96 ).

0 200 400 600 800 1000 0 200 400 600 800 1000

u (um) u (um)
(a) (b)
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Experimental Experimental pore space. The fractidh,= N, /Ny, of percolating blocks is
g et Y given in Table Il and it is plotted versus the block size in
Fig. 10.
0.4 0.4 P, depends on the block size. For very small blocks, the
o M D, percolating character is a random variable, since the block
e e size is comparable to the characteristic length scale of the
e g L microstructure £ or \), and the blocks are not statistically

representative. In the limiting casfd.=1, P, is exactly
03 II = equal to the porosity. For very largeN., the blocks are
0 representative of the macroscopic properties of the rock, and

0
Op(d1)0 e T Op(d1)° Rl T they should all h_ave the same percolation status, _Pg:,.
02 —=8 02 =0 or 1. A transition takes place between these two limiting
cases; assuming that the material is macroscopically homo-
01 . 01 i geneous, the value df; when P, reaches its macroscopic
05 g e 200 250 0% s ™50 150 200 250 limit is an estlmgte of the scale at which the macroscopic
e e transport properties can be safely evaluated.

P P : ; . :
06 LY () In the present cas®,, is a smoothly increasing function

0.6

5 i of N¢, andP,=1 for N;=256. The sample is percolating on

' ’ the large scale. Furthermore, the quasitotality of the pore
0 space is accessible from the boundaries, as was directly

0
0 10 20 30 404 50 0 10 20 30 404 50 . . . . .
d g checked by an invasion simulation on the $&Rbic sample.
P(z) P(z) . Lo
1% The volume fraction of closed porosity is less than 6

. - %103, and it may originate in part from an insufficient
' ’ spatial resolution of the CMT scan.
0 0 Percolation with a porosity smaller than 0.07 is a remark-

v v able feature, that many reconstruction procedures are unable
to simulate. Recall for comparison that the percolation
threshold in three dimensions i~0.31 for uncorrelated
coordination numbee, in the skeletons of the pore space.m S'Fe lattices andt.~0.11 for homogeneou_s correlated m_edlz_st
=8 blocks of size 12Bvoxels from the experimentaleft) and without long-range order. A strong spatial heterogeneity is

reconstructedright) samples. All distances are in microns. required to lowere; to 0.07, Ref[31].
Note also the large sample size required to ensure a per-

Even though this property is not used in the reconstruccolation probability_close to unity, despite the fact that nearly
tion algorithm, it is interesting to note that the distribution of @ll the pore space is connected.

FIG. 12. Histograms of the critical edge radi, vertex radii
r,, edge lengthd,, distance to the solid surfaat, and of the

r. in the solid phaséi.e., excluding .=0) is close to Gauss- The average porosit@Z)p measured only in the percolat-

ian. ing samples is significantly larger than the overall average
fg N.=16 (0.164 and N.=32 (0.094. The difference

C. Percolation and conductivity (€)p— € rapidly vanishes for larger block sizes, and it is

smaller than 0.002 as soon Es=85.
_ _ The averag€D) of the conductivity over all blocképer-
Since currently available computers do not allow yet forcolating or not is given in Table Il and Fig. 10, together
the resolution of transport equations in the full sample vol-with its standard deviationp . In all cases, it decreases with
ume (about 134 million voxelg the numerical investigations ine plock sizeN. . but it roughly stabilizes a(5>~0.002
were conducted on cubic subsamples of varying sizes fromynen N.>128 (GI'ock size=0.80 mm). The decay rate of
the experimental three-dimensional images. These SuUlpe standard deviatioms with the averaging block siz, is
samples are the same as for the multiscale analysis of porogyiy, constant and faster than for the porosity fluctuations

ity in Sec. VB 2. 5N %% r=0.995, forN.= 16 to 25
Percolation and conductivity were investigated, with SO ' ' ¢ 5

ranging from 16 to 256, which corresponds to cubes of di-

1. Numerical simulations

mensions 0.10-1.61 mm. The smallest dimendigp, is 3. Statistical distributions
still about four times larger than the correlation length The statistical distribution of the decimal logarithm of
given in Table I. The largest cubes correspond to 1/8 of theonductivity in individual blocks is displayed in Fig. 8, for
whole sample volume. various block sizes. Again, all the distributions become nar-
rower whenN. increases, and just like porosity, conductivity
2. Statistical averages is well described by a lognormal probability law, as shown

The first property to be determined for each block is itsby the plot of the distribution function of IB) in Fig. 9(b),
percolation status. Some of the blocks are not percolatinggrovided of course that the nonpercolating blocks are ex-
i.e., no continuous path exists across the blocks through theluded from the statistical sample.
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150

FIG. 13. Covering radius in
the experimental samplga) is a

0 400 800 1200 1 00 0 400 800 1200 1600

256 voxels section through the
@) (o) block and(b) the corresponding
alr) G(ry field. The global histogram and
0.2 ! distribution function of r, are
plotted in(c) and(d), respectively.
08 1 All distances are in microns.
0.6
0.4
0.2
% 50 100 150 % 50 100 150

rs (um)

() (d)

e (um)

4. Correlation between local porosity and conductivity

The conductivities of individual blocks are plotted versus
the corresponding porosity in Fig. 14, in Cartesi@or all
blocks and logarithmidfor percolating blockscoordinates.

Of courseD is globally an increasing function of, but
the data are very scattered. For small blodds=€ 16, block
size=100um), the data cover quasievenly the whole region

between the two lineB =0 andD = ¢, which correspond to

the general Wiener'$32] bounds. WherN,, increases, the
range of observed porosities decreases. Simultaneously, the
upper limit of the domain containing the data points lowers.
Finally, for N,= 128 (sample size= 800 um), the data are

distributed between the two lind3=0 andD = €.

The correlation coefficient,p of the conductivity with
the porosity of the blocks was evaluatéske Table Il It
never reaches 0.9, which confirms the poor correlation of the
local porosity and conductivity visible in Fig. 14.

0.01,2 S 1072
VI. ANALYSIS OF THE RECONSTRUCTED SAMPLE 0.005 ,/.-/S 1072
' LAl 4
A. Reconstructed samples 0 e 107 -.“
0 005 ¢ 0.1 10‘2 10’1 Py 100

The reconstruction procedure described in Sec. lll has
been applied, based on the geometrical characteristics mea-
sured on the real sample, namely, the global porosity and the o o
solid size spectrum in Fig. 13. A numerical sample made up FIG. 14. ConductivityD versus porosity in cubic blocks cut in
of 512 elementary cubes was produced. The elementarthe experimental sample, for block sizZis=16, 32, 64, and 128
cube size corresponds to the voxel sigg=6.3 um in the  (top to bottom, in Cartesian(right) and logarithmic(left) coordi-
experimental CMT image. A three-dimensional view of thenates. Broken lines correspondddn (a) and toe? in (g).
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FIG. 15. Three-dimensional view of the reconstructed sample
The dimensions are 5i%oxels, i.e., (3.23 mn?)

PHYSICAL REVIEW &3 061307

reconstructed sample is provided in Fig. 15, which is in strik-
ing visual agreement with Fig. 1.

The geometrical and transport properties of the recon-
structed sample were then investigated in the same way as in
Sec. V for the real one.

B. Geometrical characterization

1. Solid size distribution

The solid size distribution is the conditioning parameter
for the reconstruction procedure, and thus, the covering ra-
dius spectra in the real and simulated materials are expected
to be in good agreement. Figure 16 is the counterpart for the
reconstructed sample of Fig. 13 for the experimental one.
Figure 16a) is a 256-voxels cross section through the
block, Fig. 1&b) is the corresponding. field, and Figs.
16(c) and 1&d) show the histogram and distribution function
of r., respectively.

The general features of the histogramsrgfare indeed
very similar, with the same balance of small and large radii.
However, the histogram in Fig. 1@ is slightly shifted to-
wards larger radii. The curve for the distribution function in
Fig. 16d) is quasi-identical to the corresponding one in Fig.
13(d) within a translation of about one voxel size. This is
probably due to discretization effects, and to the approxima-
tion mentioned in Sec. lll, by which the possibility that a
sphere surface is totally covered by smaller grains is ignored
when deriving the sphere size distributid(R) from the
covering radius spectrum via E1).

1600

1200

) o

150

125

100

FIG. 16. Covering radius in
the reconstructed sampl@) is a

-
0 400 800 1200 1600 800 1200 1600 4 2567 voxels section through the
(a) (b) block and(b) the corresponding,
) field. The global histogram and
distribution function of r. are
plotted in(c) and(d), respectively.
orie 0.8 All distances are in microns.
0.6
0.4
0.2
0
50 100 ¢ (um) 150 0 50 100 (um) 150

(d)
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] R, (u) 1o° R, ()

. FIG. 17. Comparison of the correlation func-
10 tions R, in the real (—) and reconstructed
) (— ——) samples. Lineafa) and semilogarithmic
(b) coordinates. The lag is given in microns.

50 100 150 200 0 50 100 150 200
u (um) u (um)

(@) (b)

2. Global geometrical measurements construction, and therefore, is absent in the numerical

The porosity of the reconstructed sample is equal to>@mPle.
0.0697, i.e., it exceeds the prescribed value byl® *. This
small difference is only due to statistical fluctuations. 4. Topology, skeleton of the pore space

_ The spatial correlations of the original and simulated me-  the pore-space skeleton was studied in the reconstructed
dia are compared in Fig. 17. They differ in two respects.gamp|e and the results are compared with the data in the real
First, the small anticorrelation observed in the real mediuny« in Table 11l for the mean properties and in Fig. 12 for
in the range 100-20Q+m does not exist in the reconstructed iqir statistical distributions.
one, in agreement with E@17), since there is no steric ex-  gyamples of skeletons in 12®locks from the real and
clusion between the Poissonian spheres. Second, the decgyyjated media are compared in Fig. 19. They look similar
of Rz is slightly slower in the reconstructed sample. Theg the |arge scale, in the sense that the skeletons do not
semilogarithmic plot shows that t.he correlation is Sti”_eXpo'penetrate in large regions of comparable extent. However,
nential for lags up to 10pm, as given by Eq(25), but with the skeleton in the reconstructed sample is more intricate on
a decay length =27.9 um, i.e., 12% longer than in the real {he small scale. Accordingly, the cyclomatic number in the

material, or about half a voxel size. This is a consequence afimylated material is about twice that in the real sample. This
the shift of the covering radius spectrum mentioned in Sec.

VI B 1. No long-range correlation exists in the reconstructed
sample, sinc®; in Eq. (17) vanishes when the lagexceeds
twice the largest sphere radius.

-2
I

S

0.02

0.05 0.01 ‘
3. Multiscale analysis, heterogeneity
. . : 0 0 -
Just like the experimental image, the reconstructed sample 0.001 . 0.0001 001 p 1
was split into cubic blocks, with sizh3. The standard de- 02 0.04 P(D) d

viations of the block porosities are given in Table Il and : ‘
plotted versus the block size in Fig. 10, in comparison with

. . 0.1 0.02
the measurements in the CMT image.

%

The comparison of the porosity standard deviatignis 0 - 0 L.
very good for block sizes up to 50@m, with an overesti- 0001 DOl G g 1 00001 601 T |
mate by about 15% in the reconstructed sample. This actu- P(e) e P(D) f
ally corresponds to the prediction of E&7), with C, given = | o
by Eg. (25 and the larger valua =27.9 um. For larger 0.2 0.05 !
sizes,o, in the reconstructlegs sample reaches the expected
asymptotic regime ((-;oc_L ,r =0.9999, _for N.=128), oBo1 G0 04 = A O S5ei 001 5 1
since it does not contain any macroscopic features such as B € -
the porosity step in Fig.(6). P(e) J 0.2.P() ‘h

The spatial covarianc€_ of the local porosities is plotted 0.6 ' !
in Fig. 11(b). It follows the same trends as the data for the 01 |||
experimental sample in Fig. (d. 0.3

The statistical distribution of the local porosities is very
similar to that in the real sample, as shown by Fig. 18, to be

compared to Fig. 8 for the real sample. FIG. 18. Histograms of the decimal logarithms of the porosities

As a whole, the statistical geometrical properties of the(eft) and conductivities(right) in cubic blocks from the recon-
real sample on a scale up to 8Qom are well reproduced in  structed experimental sample, for block siaés=16, 32, 64, and
the reconstructed one. The slight heterogeneity that could bg28 (top to bottom. The vertical broken lines are the statistical
detected on a larger scale was not accounted for in the rewerages.

09001 001 01 ¢ 1 0 0.0001 0.01 p

—_
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FIG. 19. Skeleton of the pore
space in 128blocks from the real
(a) and reconstructetb) samples.

results from a larger densityl; of vertices, since the mean correlation in the real sample originated in the large scale

coordination numberg are nearly identical. The difference Variation in porosity, which is absent in the simulated me-
in the distributions of the edge lengttls confirms the visual
observations. Many edges longer than 1pfh exist in the

i , I
real sample, which are totally absent in the reconstructe‘j:
one. Conversely, the latter contains more very short edge§\7i
with dg~20 um ~3p,.

The mean_edge and vertex r_a_dig, z_indrU are in perfect _ VIl. CONCLUDING REMARKS

agreement with the same quantities in the real sample. Their
histograms in both samples are also very similar. The differ- We have presented in this paper a statistical characteriza-
ence in the radius, of the largest cavity is about 1@m,  tion of grainlike consolidated porous media, and a recon-
but it corresponds to a single event and has little statistica$truction procedure conditioned by the size distribution spec-
meaning. Finally, the correlatior®,e, Co, andC,, between frum, without any adjustable parameter. These methods have

the characteristics of the elements of the skeleton are quite€en illustrated by an application to a low-porosity sand-
similar to those in the real sample. stone, and yielded good agreements for various geometrical

and transport-related features.
Perhaps the most outstanding result is the ability of the
model to produce percolating media for porosities as low as
The percolation status and conductivity coefficients of the.07 (and 0.04, with the present size distributiomand to
blocks of various sizes in the reconstructed sample wera@ccurately render the size dependence of local percolation
computed as was done in the real sample in Sec. V C. Therobability.
results are summarized in Table I, and they are plotted In addition, the geometrical parameters measured on the
against the sizeN, of the measuring volumes in Fig. 10. pore-space skeleton are also obtained, and the conduction
They are in striking concordance with the corresponding dat@roperties agree with those in the real sample in all respects.
for the real material. For all measuring block sizebl.=16-256, the average con-
Again, the sample is percolating on the large scale, aguctivities, their fluctuations and statistical distributions are
well as all the blocks witiN.=256. The difference in per- in excellent concordance with their counterparts in the real
colation probability between the real and simulated medianaterial.
never exceeds 0.02, over the whole range of measuring do- Other geometrical and transport properties, such as three-
main size N,=16 to 512, i.e., 0.1 to 3 mm. and four-point correlations and permeability, have not been
The averaggD) and the standard deviatiomg of the tested here, but are systematically investigated in another
block conductivities are also in excellent agreement withStudy[25], where several reconstruction procedures, includ-

those in the real sample within a few percents over the whold'd the present one, are applied starting from CMT images of
range ofN . more porous and heterogeneous sandstones.

The correlation coefficient between local porosity and
conductivity in the reconstructed sample is also given in
Table Il. The only difference with the real medium is a  Most computations were performed at CINESIbsidized
smaller correlation for the largest blockdl{(=256). This by the MENESR whose support is gratefully acknowledged.

The statistical distribution of the local conductivity and its
lation to local porosity are also very similar to those in the
al sample, as shown by Figs. 18 and 20, to be compared
th Figs. 8 and 14 for the real sample.

C. Percolation and conductivity
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FIG. 20. Conductivit)Eversus porosit;in cubic blocks from
the reconstructed sample, for block si2és=16, 32, 64, and 128
(top to bottom), in Cartesian(right) and logarithmic(left) coordi-

nates. Broken lines correspond?dn (a) and toe? in (9).

APPENDIX: DERIVATION OF THE SIZE DISTRIBUTION
OF POISSONIAN SPHERES FROM THE
TWO-POINT CORRELATIONS

The second derivative ofe can be obtained from Eg.

(18b) as
da___3u f+xf(R)dR—— 3 [1—F(“)
du?  8(RJue ~ 8(RY) 2] ]

This directly yields the probability distributiofR and density
f of the sphere radii

(A1)

F(u =1+ 8(R’) d'a A2
IR (A2
(U] _ 16, s d 1 o
2/~ 3 ®au|u g) (AZD

Alternatively, the size distribution can be quantified by the

volume-weighted density and distribution functiong and
Ms. The densityu, is defined by

R3

us(R)=-——f(R).

R (A3)

Note thatu, differs from n in Egs.(20) and(21) since the
latter is the volume of spheres with radiRsnserted per unit
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FIG. 21. The functiorw measured on the experimental sample
versus the lag), and the sphere size distributidhg derived from
Eq. (A5b) versus the radiuR. The broken line isV¢ obtained from
the measured distribution of covering radiysin Fig. 13.

total volume, whereag.¢(R) is measured per unit volume of
inserted solid. They are related by

m(R)=—Ine uy(R).

Equations(A2b) and (A3) yield

5)-
#s\ 51 =3% qu

u) u? d’a
Md2) 73

,d

du?

1 P

u du?

o\ 1
Udu (6% .

(A4)

(A5a)

(A5b)

Equation(A5) gives the sphere size distribution that cor-
responds to a given two-point correlation function. In addi-
tion, Eqgs.(A2b) and (A5a) provide the necessary and suffi-
cient condition under which the functiorr actually
corresponds to Poissonian spheres, namely,ftbatu are
positive, i.e.,

061307-16

1 dPa

U du?

d
du

=0,

for any lagu.

(A6)
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Finally, the probability functiongg and G of the covering

PHYSICAL REVIEW &3 061307

function @ deduced from the correlation measurements on

radius can also be deduced from the correlations. In view ofhe experimental sample is shown in Fig. 21. It compares

Egs.(11) and(A4),

1 (R
Ms(R)=—mf0 w(r)dr

InG(R)
Ine

(A7)

1 R_
- —[InG(NI§=1-

Therefore,
G(R)=e€'"Ms(R), (A8)

The distributionM ¢ obtained by applying EqA5b) to the

fairly well with the distributionMg derived from the mea-
sured distributionG(r;) of the covering radius up to radii
r~60 um=~10 voxel size, even tough the criteri¢A6) is
not satisfied foru=~15 wm. Beyond this range, the slight
anticorrelation that peaks atu=140 um with «
=2.0089 R,=—0.0017) strongly affectd1,. Other tests
without any anticorrelatiorfe.g., with the function mea-
sured on the reconstructed sampf@ve shown thaMg is
also very sensitive to small statistical fluctuations of the
long-range correlations. The erratic behavioibf for large
radii is strongly amplified irG(r.), due to the small value of
€ in Eq. (A8).
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