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Effect of helicity on the effective diffusivity for incompressible random flows
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The advection of a passive scalar by a quendffiezen incompressible velocity field is studied by exten-
sive high precision numerical simulation and various approximation schemes. We show that second-order
self-consistent perturbation theory, in the absence of helicity, perfectly predicts the effective diffusivity of a
tracer particle in such a field. In the presence of helicity in the flow, simulations reveal an unexpectedly strong
enhancement of the effective diffusivity which is highly nonperturbative and most visible when the bare
molecular diffusivity of the particle is small. We develop and analyze a series of approximation schemes which
indicate that this enhancement of the diffusivity is due to a second order effect, whereby the helical component
of the field, which does not directly renormalize the effective diffusivity, enhances the strength of the nonhe-
lical part of the flow, which in turn renormalizes the molecular diffusivity. We show that this renormalization
is most important at a low bare molecular diffusivity, in agreement with numerical simulations.
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[. INTRODUCTION ful theoretical approach will involve infinite resummations of
contributions, and it is in this sense that the enhancement is

The advection of passive fields, subject to molecular dif'nonperturbative.

fusion and convection by turbulent fluid, has been exten- | this paper we discuss a possible resolution of the con-
sively studied by both theoretical and computational techflict between theory and simulation by using various meth-
niques[1-6]. By comparing the results of simulation with ods to identify the low-wave-number effective theory gov-

the theoretical prediction for various long-range quantitiesgrning the diffusive dispersal of particles advected in the
the efficacy of the theoretical methods can be tested, albeit iturbulent flow when helicity is present. The derivation of the

somewhat artificial models. The applications to the physicgffective theory is guided by the renormalization gréR6)

of complex systems and engineering are manyfold. In pracidea that the Green function at low wave number is, in some
tical problems we need to calculate the bulk properties o pproximation, the solution to an effective second-order dif-

random media given statistical models for the disorde erenpal equation whose parameters ‘:a\re ‘?',etefm'.”ed self-
. consistently in terms of the original or “bare” defining the
present. In general, the complexity of these real world prOb'model. The effect of helicity in the flow causes the turbulent
_ . §Rlocity field u(x,t) to be additively renormalized by a term
to calculate these large-scale bulk properties. It is therefor roportional to the vorticity,w=V xu. The coefficient of
essential to verify various methods of analysis on mOCIeEroportionality is a pseudoscalar which is generated by the
problems before one can be confident that these or similaixial-vector nature of the helical flow and so depends on the
methods can be applied to more realistic systems. The sugelicity h, defined in terms ofi by
cess of an approach depends on whether the approximation

preserves the essence of the physical mechanism responsible h=(u-Vxu), 1D

for determining the long-range parameters of the advectiogyhere(.) denotes the ensemble average over the random
in terms of the parameters describing the local characteristiGge|ocity field. In our model the magnitude bfis measured

of the flow. In this paper we consider advection in a helicalpy 3 parametex, 0<\ =<1, and the results are given in terms
Gaussian turbulent flow, which was originally studied in Ref.of \. The usual perturbative result for the dependenceof
[4]. The surprising result, observed on the basis of simulaon \ is thatk, is a series in\? for all values ofx,. This is
tion, is that the long-range effective diffusivity, is greatly  self-evident since the magnitude f is independent of the
enhanced by the presence of the helicity by more than gign of \. The simulation is seemingly consistent with this
factor of 2, the effect being strongest for a small molecularfact for A <0.2 atky=0 but is not well fitted by any simple
diffusivity . In the absence of helicity the calculation of approach, and for larger the curve lies far higher than the
K to two loops in self-consistent perturbation theory agreegiaive calculation. We discuss an improved self-consistent
accurately with the simulation for akt,. However, such an scheme which expresses the Green function and vertex func-
approach predicts that even maximal helicity will have onlytions as solutions to integr_al equation_s which are solved in a
a small effect of the order of 10%. This is in stark contrast tolOW-wave-number approximation. This method leads to a
the results of simulation. The puzzle is to explain these reStrong enhancement af, for increasing\ and, as such, is a

sults for what is a relatively simply posed system. A success300d indication that we are on the right track. However, for
small \ the effect is paradoxically too strong, leading to a
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nonanalytic dependence af on A which is predicted to be The ensemble of velocity fields was taken to be homoge-
ke~N?2in the one-loop case. This is possibly due to theneous and isotropic, and so for incompressible flurg$k)
approximation made in obtaining the solution, but it is acan be written as

complex matter to ascertain whether this is so. An alternative ) _

approach is to use the functional Hartree-Fock method, Fij (k)= (k) (k*6;; —kikj) + ¥ (K)i €imiKm, (2.2

which leads to an integral equation for the Green functlonwhereq, represents the presence of helicity in the flow. In

self-energy as a function of wave number. The result of thi . .
method forko(\) is better behaved at small but the pre- E?:ﬁg'] it was assumed tha and ¥ took the factorized

dicted enhancement is not large enough and does not fit the

simulation data. In general, the effect is most pronounced for (2m)3

small kg, and empirically from our simulation we find that d(k)= TAZE(k),

the results distinguish the regiong<0.2 and xo>0.2.

There is a pronounced dip iR, VS kg at kg~0.2 for A =1. (2m)3 23
This dip is not predicted by either of the methods mentioned V(k)= 3 AZKE(K)sin 2y,

so far.

We also present a renormalization group approac_h .WhicvvhereA is chosen so that
shows a mechanism for the enhancing effect of helicity on
Ke. The renormalization group is normally most useful for
computing anomalous exponents, since they are generally J dkE(k)=1, (u-uy=ug, (2.4
independent of much of the details defining the model: the
idea of universality. It is much more difficult to control a and whereu, is the rms velocity. Choosing the angleo be
standard RG analysis if it is used to calculate the coefficient& independent means that the helicity is of equal strength at
of scaling behavior, i.e., observables likg. However, in  all wave vectors. The helicity parameteis been defined in
Ref. [7] we reported on a successful use of the RG in pre£q. (1.1), and with the definitions in Eq2.3), we find
dicting «. for gradient flows, and we believe that an RG
analysis can generally give a strong indication of the kind of
mechanism which influences the size of parameters control-
ling the large-scale characteristics of advection. In this paper
we show that the flow at large wave vector can strong|where<k3) is the expectation value with respect to the dis-
enhancex, when «, is small. In particular, this approach tribution E(k). The passive scalar field(xt) is advected
does provide a mechanism for the dip observeddns ko at ~ according to the equation
Kkp~0.2 forn=1.

In Sec. Il the mod_el and the _form_alism are _reviewed. In @=KOV2®—V-(U®), (2.6)
Sec. lll the perturbation theory is briefly described. In Sec. dt
IV the self-consistent integral equations for the Green func- , L )
tion and vertex functions are derived to one-loop, and thénd the effective, or long-range, diffusivii, is defined by
small wave vector approximation fat, is derived. In Sec. V
the functional Hartree-Fock method is examined. In Sec. VI (x~x>(t)=< f d3xx-x®(x,t)>,
the renormalization group approach is explained. In Sec. VI
the conclusions are presented.

2
h= §A2< k3)sin 244, (2.5

=6ket+0O(t% ast—ox, 2.7

where® is normalized to unity:
Il. MODEL AND FORMALISM

In Ref.[4] the problem of a passive scalar advected by an j d*x0O(x,t)=1. (2.9
incompressible turbulent flow with a molecular diffusivity
was studied. The turbulent fluid velocity fiela(x,t) was For the purposes of numerical simulation a particular

described by its statistical properties which were assumed tyember of the velocity-field ensemble is then realized by
be Gaussian, and so fully determined by the velocity autotl 2,4
correlation function. In the original study the flow was time =
dependent, but since the enhancementdby helicity in the N R
flow is also present for time-independent flows, we assume u(x)ZAE {(&, cosyr— xnXkp sinyg) Xk, cogk,- x)
here, for simplicity, a time-independent flolive., quenched n=1
or frozen turbulencefor which the autocorrelation function no .
can be expressed in the following form: (Xn COSY+ £ Kn SinY) XKy sin(kn-X)}, (2.9
where the vectorg,, and y,, are distributed uniformly and
&K independently over the unit sphere and the wave végtis
_ I ik-(x=x") e distributed according to the distributida(k). For N suffi-
(UiG9u;(x')) j (2m)3 € Fijk). @1 ciently large the central limit theorem guarantees tha) is
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Gaussian up t@(1/N) corrections. We have used=64, i i
for which these effects are sufficiently small for our pur- ‘1{ ‘lf
poses. ! !

To simulate the evolution of the scalar fiehi(x,t), we —— e
numerically integrate the stochastic equation for the evolu-
tion of a particle with path(t) given by v w

X(1) =u(x(t))+ (1), (2.10 ® ®

where #(t) is a Gaussian random variable wify(t))=0 : ; :
and (n(t)- p(t'))=2kS8(t—1"). The resulting probability ai ai a4
distribution for particle positiox(t) is then® (x,t) with the : |
initial condition © (x,0)= 5(x). O e —
The discrete form of Eq(2.10, suitable for numerical
integration, is U’

Xt 1— Xn=U(Xp) At+ (2k,At) %€, (2.11 ©

where €, is a Gaussian random 3 vector of zero mean and
unit variance for each component. This equation models Eq i i
(2.10 correctly to O(At), but the details of a third-order ai “f a

U

Runge-Kutta scheme correct @(At®) were given in Ref.

[4]. We use this third-order scheme in our numerical simu- " ®- K X ¥ m

lation. ®
The effective diffusivity k. is then computed from the uU*

ensemble of paths by

——e -

@

M FIG. 1. The vertices occurring in the perturbation schen@s:

1
(X() - X(1)) paths= lim M > X () -x?(), The primitive velocity field vertex(b) The primitive vorticity ver-
Mo T =t tex. (c) The bare complete vertex of the effective diffusion equa-
tion. (d) The renormalized complete vertex approximated as a sum
=6kt +0O(1) ast—ce. (2.12 of renormalized vertices associated with the velocity field and the
vorticity.
HereM is the total number of paths averaged over, é&ud
labels the member of the ensemble of paths. In pradtices, The Green function averaged over the velocity ensemble,
finite but large enough to give an estimaterqfwith small  (G(k)), can then be written as
error. In addition,t must be large enough so that the path
evolution is in the asymptotic regime where the evolution -
can be suitably described in terms of long-range effective, or (G(k))= okP=S(K)’ (3.3
“renormalized” quantities. That is large enough is tested 0

by ensuring that the estimate for, is independent of  \here the averaging over the velocity ensemble is done us-

within statistical errors. ing Wicks theorem to give a diagrammatic expansion, and
> (k) is given by one-particle irreducible diagrams. The
ll. PERTURBATION THEORY asymptotic behavior in Eq2.12) implies that the smalk

The perturbative approach to solving E@.6) is well ~ behavior of(G) is given by
known[8,9,6], and we only summarize the necessary results
here. Since we are interested in the effective parameters gov- K= K —iz(k) (3.4)
erning the evolution of the distributio® (x,t), we study the ¢ 70 dK? ko '
related Green functioG(x), which satisfies
The Feynman rules for the diagrammatic perturbation expan-
koV?G—u-VG=—§(x), (3.D)  sion are as follows
) . (i) The wave vector is conserved at each vertex.
where the incompressibility af has been used. A perturba- (i) Each full line carries a factor of &7.
tion series iru/k, for G(k) can be generated by iterating the (iii) The wave vector is integrated around closed loops
formal solution to Eq(3.1) in Fourier space: with a factordag/(27)3.
L L g (iv) The primitive vertexV;(k’,k), whose diagrammatic
B(k)= K0k2+ KOkZJ’ (2:)3i(k—q)-ﬁ(q)G(k—q). r:eﬂz?.sentatlon is shown in Fig(d, is given byV;(k’,k)

(3.2 (v) Each internal dotted line carries a factor
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FIG. 2. The graphs that contribute to two-loop simple perturba-  FIG. 3. The perturbation expansion to two loops of the self-
tion theory forG(k). consistent relation fok, .

Fij(k)zdb(k)(kzaij —kikj) + W (K)i €jmijkn. (3.5 A. Self-consistency inx
To generate the self-consistent perturbation series,in

In what follows we use the explicit spectra Eq. (3.1) for G(x) is formally rearranged to become

(2m)* o - V2G—AkV2G—U-VG=—5 4.1
CD(k)ZBTuoe 0, Ke K u (X): ( . )
0
(3.6)  where Ak=«k.—ky. The second term is a counterterm

W(k)=rk®(k), which is included as a part of the perturbation. It is formally
of first order in the expansion parameter, which allows the
expansion for, to be constructed to a consistent order. The
self-consistent perturbation series is generated by iterating

where\ = sin 2.
The simple two-loop calculation fat, gives the result

=Kol 1+ L Y +(0.0059.%—0.00884 o 1 1 dq
R R A T ke Bk= "zt zf li(k—q)-Ti(q)
3.7) Kkeke kK ) (2m)
The diagrams contributing to this order are shown in Fig. 2. —Ax8(q)(k—=a)*]G(k—aq). (4.2

The two-loop integrals were done numerically. , . . ) )
The effect of helicity is not seen until second order. This1hiS quation can be rewritten as an equationXfer and its

is evident from the explicit expressions for the diagrams, buflidgrammatic representation up to two loops is shown in Fig.
is also easily understood because the effect of helicitgon 3(@: Sincexe is not renormalized from the tree-level value,
cannot depend on the sign af Hence the graphs with a We have the self-consistency condition

nonvanishing contribution from the helicity must contain an

even number of internal velocity correlatofotted lines. 12 (k)
Clearly, this approach is not applicable to the limj— 0 in dk?
which we are interested, but a self-consistent method will

allow the model to be perturbatively analyzed in this limit; To Nth order inu3/«2k3, it is always possible to write this
this is described in Sec. IV. condition in the forms

=0. 4.3
k=0

IV. SELF-CONSISTENT METHODS Ke= Ko+ KeFN(Ke,N),

A self-consistent treatment performs a resummation of an (4.4

N
infinite subset of diagrams which gives a continuation of the Fr(ka \)= E 9\ “_fz) "
perturbation theory beyond its normal radius of convergence. NVRer I I k2K

The approach is not unique, but depends on how the effec-

tive low energy theory is parametrized, and which quantities From now on we setiy)=1 andky,=1 and, using the

are treated self-consistently. A successful result will dependgelocity-field spectrum given in Sec. II, we find the two-loop
on how well the method captures the dominant effects in thigelf-consistent expression fat, :

way.
We first discuss the simplest approach which treats only 1 1 1 5
K. self-consistently. At two loops this gives an excellent fit (ke~ ko)| 1= g5 | = K¢ 5-2 + ~7[0.005%.7~0.00884 .
e e e

for ko when\ =0, but fails for\ # 0. We then generalize the
method, and show that we can qualitatively explain the large (4.5
enhancement i, due to helicity although the approach is

still quantitatively deficient. Further generalizations are dis-This result can be re-expressed in the form of EQ9) to
cussed but have not yet been carried out. become
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1 0.0035+0.0059° keV2G—AKV2G— apgu-VG— Brw-VG+ABw- VG
Ke= Kot kel =3+ 7 . (4.6)
9xe Ke =-8(x), (4.9

where, as before\ k= k.— kg andA 8= Br— Bo. The rules

We show the two-loop self-consistent prediction krcom-  for perturbation theory are the same as given in Sec. lll, with
pared with data in Figs. 7-11. In Figs. 7, 8, and«Q,is  the following additional rules
plotted againsk, for fixed |=0.0, 0.4, and 1.0 and in Figs.  (vi) The primitive vertexW;(k’,k) associated with the
10 and 11« is plotted againsk for fixed xo=0.0 and 0.2.  vorticity and whose diagrammatic representation is shown in
As should be expected, we see from Figs. 8 and 9 that thgig. 1(b), is given byw;(k’ k)= (k' xk); .
agreement between theory and simulation is acceptable for a (vii) For each vertex of typ®; there is a factor ofrg,
value of ko that is large enough. This is simply because theand for each vertex of type/; a factor of Bg.
large molecular diffusivity swamps all other effects. How-  The self-consistent equations are given by setting the next
ever, there is a large disagreement for smglihich is most  renormalizations ok, and 8 to zero in perturbation theory.
marked for xo=0. The prediction forx. behaves like This gives two equations which simultaneously determine
O(N?), and for ko changes fromc,=0.3697 ah =0 to ke x,, ag, andBg in terms of the bare parameters, @, and
=0.4090 at\ = 1: an increase of 10%. In contrast, the simu- g, . It is convenient to define a general vertexk’,k) of
lation gives x,=0.3705(1) andx.=0.801§7), respec- the form
tively, at these two values of: an increase of more than a
factor of 2. From the simulation for, small enough we find Ui(k" k)=iV(k',k)ki +W(k" k) (k" xXk);, (4.9
thatk, as a function oh is strongly in disagreement with the
slow polynomial behavior in\ predicted by self-consistent where the form factor¥ andW are scalar functions df and
perturbation theory. This effect was first observed in R&f.  k’. The bare vertex)? is defined byV°= ay and W= g,.
and has remained unexplained. There is no independent form-factor coefficient proportional

In addition, in Fig. 9 we observe a marked dip in the datato k; in this expansion, since the velocity field is incompress-
at fixed\ =1 for . versusk, at aboutko=0.2. The major ible. The diagrammatic representation 0f is shown in
feature is that, rises rapidly with\ at xo=0, whereas the  Figs. 1(c) and Xd), where the bare vertex is represented by
effect for x,=0.2 is much less strong: the dip is not a low- an open circle while the renormalized vertex additionally
ering of the curve a3\ increases ako=0.2, but rather a carries an inset lettéR. Likewise, the general expression for
rapid rise withA at k;=0. The self-consistent prediction of ((~3(k)> can be defined as
this section does not predict a dip of any kind.

(G = 12—z (4.10
B. A more general approach kT xo+ (k9]
In this section we propose an explanation of the enhanceFo two loops the self-consistent relationships that hold be-
ment ofk, by helicity in the flow. The technique is presented tween diagrams are shown in Fig. 5.

in detail at the one-loop level and the extension to the two- We are interested in the low-wave-number properties of

loop level is then given. the theory, and we use the approximations
The philosophy is to suggest an effective, low-wave-

vector diffusion equation obeyed by the smoothed distribu- Q(K?) = (K= Ko)+O(K?),

tion function. Because the wave vector is small it is assumed

that the equation can be limited to at most two spatial de- VR=ag+0(k? k'? k-k"),

rivatives. The shortcomings of this assertion are discussed

later. We propose the equation WR=Br+0(k?k'? k-k'). (4.11)
de 2 These approximations are consistent with the form consid-
Gt " KeVTO T agu-VO - fre- VO, 4.9 ered for the effective equation governing the dispef&aj.

(4.7)], since the renormalized couplingag and B, are

given respectively by the coefficients bf and k’xk); in
where w is the vorticity andag and Bg are coupling con- the expansion obJ;. To include higher powers df andk’
stants which must be determined self-consistently. The bar@ould, for consistency, require terms involvingand w in
values of these couplingsyg and By, define the original Eq. (4.7) with higher powers oW. In principle, a functional
diffusion equation. From Eq2.6) we see that in our case self-consistent formalism could then be set up k) and
ap=1 andBy=0, but the analysis may be applied for gen- U;(k’,k) treating them respectively as a vector and matrices
eral values ofag and By. Equation(4.7) is equivalent to in wave-number space. However, this is a further generali-
renormalizing the velocity field taig= agu+ Brw. It will zation that we have not yet pursued, because the amount of
turn out that @ is not renormalized, and so the self- computing effort required to determine them numerically is
consistency conditions are applied only to determigeand  prohibitive. In the present case we are interested only in the
Br- To this end the equation fdB(x) is taken to be low-wave-vector behavior of these functions, and then the

061205-5



D. S. DEAN, I. T. DRUMMOND, AND R. R. HORGAN PHYSICAL REVIEW B3 061205

itly and consider the contribution #/(k,k’) by calculating
the coefficient of k' Xk) in T a0 :

qA
| 3
dg (k—q)- (k' =@)aFin(q)
kB 1 oo K Taea= i g K
Q— . e k) @m® (k=) k - o)
o ! (4.14
\ /
Yo7 The contribution proportional tok( Xk) comes only from
q the helical part of,(q) and so the relevant term is
FIG. 4. An example of the kind of vertex graph that must be ag)\ dq €|npk|'kr'1Qp'quq)(Q)
evaluated in the solution of equations shown in Fig. 5, once the Towa™ > 3 77 >
ou on O 2 2 B kg J (2m)°  (k=q)“(k'—q)
approximation forUR given in Eq.(4.11) and shown in Fig. 1 is e
used. This graph is labelél,,,, . (4.19
self-consistent equations are determined by asserting tHdence we find the contributiof8r, to the renormalization of
self-consistency in the limik’,k— 0 and using Eq(4.12). B from Ty, to be
The calculation is now straightforward but tedious. All 5
loop integrals are approximated by their lowest nonzero 5B= — a’\ dqq®(q) 4.16
power in ,k’), and their contribution to the renormaliza- R 6773,(5 ag9-(q). )

tion of the relevant coupling constant is read off. It suffices

to give some examples which indicate how the full result isT

obtained, and to this end we first analyze the one-loop a

proximation to the self-consistent equations in detail. Th

first observation is thad is not renormalized, i.eqg= ag.

We give one example indicating how this comes about. The zif n _
¢ - I = | dgqq"®(q), n=1,2,3. (4.17

graphs are labeled by couplings corresponding to the types of 6w

vertex they contain, and the label is ordered in the same

order that they occur in the graph. We consider the contribuAfter evaluating all the relevant graphs the self-consistent

tion shown in Fig. 4 to the vertex renormalization, and will equations are

concentrate on the part proportionalkb. The value of this

graph is

he renormalization of3y is expressed in terms of three
ré’ntegrals:

ar— ap=0,

T 2 dq Elmnkmqn(k,_q)p'kill:lp(q)
pea = WROR ) 27 T welk— PRk )
(4.12

Bo— Br+ (Nl 1+ 2a3Bgl 2+ arBiNl3)=0. (4.18

The approximate equation f@(k) is given by the equa-

The approximations of Eq4.11) have been implemented. f[ion for % (k) in terms of the one-particle irreducible graphs

Only the helical part of ;;(q) contributes, and we find the N Fig. 5 at one-loop order. Because we are using a low-
result wave-number approximation, this reduces to substituting the

expression for the renormalized verték(k',k) given in

a2 B\ dq Egs. (4.9 and(4.18 into the one-loop diagram fa¥ (k) in
Tgaa= R 2R ik/ p Fig. 5. We analyze the one-loop self-energy graph and keep
Ke (2m) only the term proportional t&?. In obvious notation this

€imnKm* An(K" = Q) p- q€1pqdqP(Q) gives the results

K — 2 k' — 2
(k=a)(k’—q) 202 2Bk
, TW~—K—I2, Tﬁa~K—I3. (4.19
_epBrh  ( dq (k-k'g?—k-gk’-@)qP(q) e ¢
- 2 i 3 N2l —A\2 .
Ke (2m) (k=a)*(k’=q) 4.13 Using the spectra in Eq3.6), Eqgs.(4.18 and(4.19 for the

one-loop self-consistent conditions become

Clearly the contribution tov is O(k-k’) and soa is not

renormalized. All contributions t& are similarly of higher Aa=ag—ay=0, —AB+ izo, Ak+ o1 =0.
order and the result is thaiz= ay. Ke Ke
The couplingg is renormalized when # 0. The calcula- (4.20

tion follows a similar path to that used in the analysis of the
renormalization ofx. Again we show one calculation explic- where
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FIG. 5. The perturbation expansion to two loops of the general
self-consistent condition relating the self-ene«) and vertex
UR(k,k’) functions. The vertex function is represented by the circle

with inset andR, the full Green function by (k) by the filled box;

AU=UR-UO.

B :i 2a2,3 +2\E0[ ﬂz)\—i- \ona)\
1718 RPR 7 GRPR o GRM

(4.21
1 2 2 2
aR+4 ;aRBR)\J{_sBR .

C]_:_§

From these equations it is clear that no renormalization oc-
curs if there is no pseudoscalar or axial-vector quantity in the
N=0, then the problem reduces to the one-

loop self-consistent analysis presented in Sec. IV A. How-
ever, if eitherB, or A are nonzero theg is renormalized and
the effect onk, is encoded in Eq4.20. In our case we set

problem: if Bo=

ar=ap=1, Bo=0, and\ #0. Equations(4.20 and (4.21)

then give

A
\/\B +3ER)\+9\/\KGKOER EZO
2 2
aR+4 ;aR,BR)\+3ﬂR .

0, we deduce that

(4.22

1
9k,

Ke K0+

For small\ and ko=

1/6 1 1 1/3
AP ke~ 5+ —) AR (4.23

A~ 3 2(1877

@)
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The data fork, versus\ for x,=0 is shown in Fig. 10,
and we see that for small the simulation results are not
compatible withh?® behavior. We shall see below that this
is not rectified in the two-loop self-consistent calculation.
However, in this one-loop calculation there is a considerable
enhancement in the dependencexgfon \, whereas in the
self-consistent calculation of Sec. IV A, in which the genera-
tion of the new vertex coupled to the vorticiey was not
included, there is no effect at all at one-loop order and only
a mild effect at two-loop order. Equatio®.22 can be
solved numerically. For example, fara=0 and\=1, we
find Br=0.3456, and the effective velocity field is predicted
to be

Ug=U+ Bro, (4.29
which clearly leads to an enhanced effective diffusivity
=0.5207, compared witk,=0.4090 from the two-loop cal-
culation of Sec. Ill. We believe that we have qualitatively
captured the mechanism responsible for the enhancement of
the effective diffusivity by helicity.

The one-loop calculation is limited because it is not accu-
rate at\ =0, unlike the two-loop calculation. We have inves-
tigated the two-loop extension of the self-consistent ap-
proach when the new vertex with couplir§yis included.
This is more involved, and the integrals were done numeri-
cally. We present the final results below.

The two-loop self-consistent equations are

C, 1 4C,

Akt =M~ (w+—g(c:2 c=o,
(4.29

Apt BLiolig apgt B B2,

B Ka P 'Bxé B ke

whereB; andC; are given in Eq(4.21), andB, andC, are
evaluated numerically to bexg=ay=1)

B,=—(0.004A +0.00953+ 0.018(QBA %+ 0.06443%\

+0.042333+0.02583\2+0.0287B*\ ),

(4.26
C,=0.0088-0.00342—0.01653\ —0.031532

—0.01108°A2—0.051433\ + 0.009(8*— 0.03378*\ 2.

Equations(4.25 can be rearranged to give

c, 1 , _ 9Cy
AK+ -2 + -3 Cz_C Bl O,
e Ke

B
(4.27
—AB+ B 1 B—ZBC—B—1)=O
g Kzel 2 1v1 1(9[3 .
We shall setB,=0 from now on. These equations contain

the accurate two-loop self-consistent result which fits the
data for allky at A=0. For\ #0 these equations are solved
numerically and the results are compared with simulation
data in Figs. 7-11 As in the one-loop case, the behavior for
small \ is clearly incorrect, and there is no quantitative
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2
FIG. 6. The integral Hartree-Fock equations fbtk) andUR in 8050 -~ / 1
terms of the general verticds® andUR. The full Green function % = 7
G(k) is denoted by the filled box. The equation k) is correct 0.40 -~ J/ ]
to all loop orders, but the equation faif is correct to one-loop /
order only 030 1 i
_ _ 0.20 : ‘ :
agreement with the data. However, there is a clear enhance- 0.0 0.2 X d_f‘f’-“, , 06 08
ment of k., due to the inclusion of the vorticity vertex and are diffusivity
associated coupling, and forA=1.0 we findxe=0.5959. FIG. 7. ke Vs 0 for fixed helicityA =0.0. The simulation data

This mechanism for enhancing turbulent diffusion cannot beyre shown(O) to be compared with the predictions of two-loop
obviously deduced from perturbative considerations. It arisegelf-consistent perturbation theofgolid line), the Hartree-Fock
from a resummation of diagrams which give an expressioialculation (long-dashed ling the renormalization grougdashed
that analytically continues between the regions whefe line) and ordinary perturbation theoftgot-dashed ling

<ud/kikd and\?>ud/ k3. The effective diffusivity in the

former region is well predicted by perturbation theory, butcounting of diagrams when the equations are iterated. The
not so for parameters in the latter region. Although quantitaself-consistent case is different because the augmented ver-
tive agreement is not good, the important point is that aex is already present in the perturbation theory, and correc-
mechanism has been discovered which gives a strong etions are implemented by counter terms. The approximation
hancement to the value of, for nonzeroA even in the for the vertices in Eq(4.11) is used andB is determined
one-loop approximation, whereas in the self-consistentsing Eq.(4.20:

theory fork, alone, discussed in Sec. lll, there is no effect of

helicity at all on the value ofk, at one-loop order. The _ 1

obvious reason for the discrepancy in this approach is that B=Bot ;g 5.3

the approximations made are much too crude. A more re-

fined calculation would use a functional self-consistentwhereB; is given in Eq.(4.21) and usingk.= o+ Q(0).
method forU;(k’,k) [Eq. (4.9] andQ(k?) [Eq.(4.10]. Al-  The Hartree-Fock equation to be satisfied®gk?) is then
though a computationally formidable task, this is likely to [after some reduction, and usirfgin Eq. (3.6)],

encode the correct behavior much more accurately than does

our low-wavenumber approximation. The origin of the dip in 1 2
Fig. 9 in the curvex, versusk, for A=1 is unexplained by ~ Q(k%)= Zlap=¢
the theory presented so far. 3V2m

—K22

f [ pk cosh pk) — sinh( pk) Je~P*2
X | dp

V. FUNCTIONAL HARTREE-FOCK METHOD pk Ko+ Q(p?)]

This approach goes some way toward including effects d®p |p+k|o(|p+k)[k?p?—(k-p)?]
omitted in the low-wave-number approximation. The version + B\ 27 2 kot O(02)
presented here is deficient in that the predictionor when & (Ko P
ko=A=0, is not as accurate as the two-loop self-consistent (5.2

approach, but the advantage is tatk?), Eq. (4.10), is
treated as a function to be determined self-consistently by th€hese equations are solved by discretizing the wave vector,
Hartree-Fock equations. The vertices are still treated in theerforming the integrals numerically, and iterating the equa-
low-wave-number approximation, and, as in Sec. IV, theytions to converge to a solution fé(k?). The effective dif-
are parametrized by and 8. fusivity is thenk.= kg+€(0).

The integral equation to be satisfied By(k?) and the The results are shown in Figs. 7-11, where it is clear that
one-loop equation satisfied by the vertex function, which iswhile the numerical value predicted ayj=\=0 is not ac-
the same as the one-loop self-consistent equation, are showanrate, the behavior for small is more in keeping with the
in Fig. 6. Note that, unlike the self-consistent calculation ofsimulation results. This strengthens our belief that an analy-
Sec. IV, only one of the vertices in the one-loop self-energysis which treats the propagator and vertex as functions to be
is replaced by the full vertex, since this gives the correctdetermined self-consistently is likely to reproduce the de-
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FIG. 8. x vs «0 for fixed helicityA=0.4. The simulation data  F|G. 10. «, vs \ for fixed diffusivity x,=0.0. The simulation
are shown(O) to be compared with the predictions of two-loop gata are showfO) to be compared with the predictions of two-loop
self-consistent perturbation theory iq (solid line), andxe, 8 (dot-  self-consistent perturbation theory &g (solid line) and x,, 8 (dot-
ted ling, the Hartree-Fock calculatidiong-dashed ling the renor-  teq |ing, the Hartree-Fock calculatiofiong-dashed ling and the
malization group(dashed ling and ordinary perturbation theory renormalization grougdashed ling
(dot-dashed ling
clude that higher loop corrections might be important. We
have not pursued this approach. We note that in this ap-
=1 the value predicted ig,=0.5070, still much less than proach, as with those of the previous sections, the marked
the simulation value of 0.801®). dip in k. as a function ofk, for the larger values of is not
In principle, the vertex may be treated as a function in the'eproduced.
same manner aQ(k?). This is prohibitively expensive in
memory and computer time, but might be possible if some VI. RENORMALIZATION GROUP
Smpifcalon of e tunclinel oM were IMBIEMENEd iy Sec. v we presented an anaiysis bse on he assump
one-ioop level, that for the vertex is not, and we cannot pre:[!on that the Iarge-sc_:ale advgctlon Is controlled by an e]‘f(_ec-
' ' tive transport equation dominated by the terms containing
only one and two derivatives. This method is related to

sired properties more accurately. HoweverxgtE0 andA

A=1.0
0.90 . ‘ | -
0.80 |
0.65 |
¥ 0.70 |
: o
: ¥ 060
[72]
: o =
£ 060 [0 7 :
i £ o055
: Q
: 2
£ 050 :
£ 050
0.40 [ / |
045 | 7
0.30 . ‘ |
0.0 0.2 0.4 0.6 0.8 a0 |
e Ay 0.0 05 1.0

helicity A
FIG. 9. k¢ vs kO for fixed helicity A =1.0. The simulation data
are shown(O) to be compared with the predictions of two-loop FIG. 11. k. vs \ for fixed diffusivity x,=0.2. The simulation
self-consistent perturbation theory i (solid line) and k., 8 (dot- data are showfO) to be compared with the predictions of two-loop
ted line, the Hartree-Fock calculatidiong-dashed ling the renor-  self-consistent perturbation theory iq (solid line) and «., 8 (dot-
malization group(dashed ling and ordinary perturbation theory ted line, the Hartree-Fock calculatiofiong-dashed ling and the
(dot-dashed ling renormalization grougdashed ling
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renormalization group methods which have proved very sucOne finds that the renormalized field is still incompressible.

cessful in predicting exponents in critical phenomenon. InWe shall compute the flow equations fe(\), ® (k,A), and

the RG approach a large wave-number cutaffis intro-  W(k,A) asA varies.

duced, and advection on scales larger tham2#7/A is as- The change in«(A) on integrating out wave vectors in the

sumed to be described by an effective transport equation, ishell (A,A — SA) is

principle containing terms with an arbitrarily high number of

derivatives. The parameters in this equation are functions of

A in order to account for the effect of advection at scales

smaller tharL which has been excised. In the limkt— 0 the

effective equation, by dimensional analysis, takes a simple If one calculates the vertex renormalization, and treats it

form dominated by terms with few derivatives and with as-as an addition to the random field one finds

sociated effective or “renormalized” parameters. In thisway =~ .

the effective equation takes a form similar to that used ik u(g,A)+O0(k?)

Sec. V. There is a difference, however, because any practical . , tau

application of these schemes requires a drastic truncation of — _ ' b Rl Akigiaba A) dq’, (6.5

the operator space: this is especially true in the RG method, (2m)° Ja-sn &3 (M)Q'%(q+Qq")? '

where it is impossible to compute the flow with changitg _
where we have only kept the vertex term to lowest ordéy; in

for very many parameters in the effective transport equation™*""*"* - ) _
Unlike the situation in critical phenomena, there are no in-2S It is only this term that contributes to the one-loop diffu-

frared divergences in the theory, and the notion of a relevarVity renormalization. In addition, if one assumes that it is
operator is not applicable. It is then a matter of trial and errot"€ low-wave-numbefiong distancgrenormalization of the
to determine whether the approach used captures the vityelocity field which is important for the effective diffusivity,

features controlling the flow. The simplest renormalization®"€ finds, to lowest order iq,
scheme is to calculate the renormalization to the diffusivity

S (A)= A2D(A,A)SN. (6.4

- 3m2k(A)

. ) . 1
k(A) and to the vertex associated with the coupling of the SUi(0,A)~ — =3 0;T(d,A)
random field or externally applied drift. In the case of gradi- (2m)°k(A)
ent flows, we demonstrated in Rdf7] that this scheme A Fi(q'A)L
yields exact results in one and two dimensions and an ex- xf ”q—,4kdq’. (6.6)
A=A

tremely accurate, although not exact, result in three dimen-
sions. It is, in general, much harder to calculate the renorl— th h helicity | ¢ that th ;
malized parameters such agthan the associated exponents, [nhe case where no helicily 1S present we See that e vertex

and so the success in RET] suggests that some insight may IS not rgnormahzed. Howe\_/eéas pointed out Sec. Wwhile
be gained using RG methods in other similar problems. the helicity does not contribute to the diffusivity renormal-

In this section we present a RG calculation f. The ization at a one-loop level it renormalizes the velocity field.

vertex renormalization is done but multiple vertex renormaI-The renormalization is zero at order Odrbut has an order 1

ization is neglected, which means that the renormalized vlefeCt

locity field remains Gaussian. Consequently, after integrating 1
out the random field down to a wave numberwe postulate OUi (0, A)~— 27— €U (A, A) W (A,A) A,

2.2
that the equation for the effective Green function can be 6m°k(A) 6.7
approximated, for al\, by an equation of the same form as :
the original ongEq. (3.1)], In real space therefore, the renormalization is of the form
k(A)V2G(x,A)—u(x,A)-VG(x,A)=—8(x), (6.1) u—u+3SAB(A)V Xu. (6.8

Using the renormalization &f, one may compute the flow of
where k(A) is the running renormalized diffusion constant Fij, and thusb and, to obtain the one-loop functional RG
andu, is the renormalized velocity field. Since we renormal- equations:
ize the vertex functionally, the field correlation function will
flow under the RG as dk

1
gN ~ 37%k(M) AZD(AA),

(2m)38(k+K")Fji(k,A),  |[K|<A (6.9

(Ti(k, AT (k" A))= 0 K[> A IP(q,A) T AVF(AA

! ! (9A - 3’772K2(A) (qv ) ( ’ )1

(6.2
W@A)_ ! 20 (q,A)V(A,A
(9/\ - 3772K2(A)q (q, ) ( ’ )

where

The integration of Eqs(6.9) is from A= to 0, with the
Fij(k,A)=<I>(k,A)(k25ij—kikj)+\If(k,A)ieimjkm. (6.3 initial conditions
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k(%)= kg, tion for flows with properties described in Eq2.1)—(2.4),
(6.10 and compared the long-range effective parameters describing
®(g,°)=D(q), the time evolution of the scalar field with various schemes of
calculation. In particular, we have concentrated on how the
¥(q,°)="(q). effective diffusivity «x, depends orxy andA. In earlier work

. o i . we found a strong anomalous enhancementoés a func-
When there is no helicity there is no vertex renormaliza-tjon of ) for xo=0.0 [4], which was unexplained theoreti-

tion at the order we are considering, and therefore we maya)ly, and this is the motivation for the present study. In that
integrate the equations directly to obtain earlier work the turbulent velocity field was time dependent,
_ 2 20\ 1/2 whereas here it is not. This allows for easier calculation
k= (Kkg+2U5/9) M~ (6.1 while still reproducing the effect.
This agrees with the one-loop perturbation result, as it . The important region for discussion can be seen from the
should, and in the casa,=0 we find that xo=v2/3 simulation data(Figs. 7—11 to bex<0.2; for largerx, the
—0.47140, which is quantitatively not very close to the nu-molecular diffusivity begins to dominate, and not only is the
merically measured resulk,=0.3697. However, the dis- effect of helicity suppressed but also the many schemes of
crepancy is sensitive to the form assumed for the effectiv&alculation give good approximations feg. ForA =0.0 we
diffusion equation. In our case this is given by H.1), find that the_ two-I(_Jop self-consistent calculatl(-)n;«gfrepro-.
which is clearly inadequate sinesis not renormalized when duces the simulation data for &l very closely indeed, as is
\=0. An improvement can only be made by including termsS€€n in Fig. 7 and described in Sec. IV. The other schemes
with higher derivatives ofi. This is similar to parametrizing @ISO plotted are much less accurate in the region of interest.
the nonhelical form factov® of Eq. (4.9) with a function of Ordinary perturbation theory is not convergent in this region

external momenta rather than approximating it by a constarfnd Will_be discussed no further. The reason why the
ag which is not renormalized. This is a possible avenue of 1artree-Fock and RG methods are less accurate is that the

research but we have not yet followed it. vertex functionV(k' k) [Eq. (4.9)], is not renormalized for
In contrast. fol, #0. u is renormalized and the effect on 0W wave number, which means that the associated coupling
«, is significant because the helical form factdiR, Eq. @ 1S not renormalized. The Hartree-Fock methodiat 0

(4.9 is renormalized at low wave number, as parametrizecUMs rainbow diagrams, but does not include any diagrams
by B(A) above. The RG equations may be integrated numerigorre_spondmg to a vertex corr_ectlon, unlike the self-
cally, and are compared with simulation in Figs. 7-11. Al- cons.lst'ent theory. In Fhe self-consistent theory the one-loop
though the results are not quantitatively accurate, they cag2rediction for k=0 is ke=1/3 and the two-loop terms
ture the qualitative behavior seen in the simulations. InModify this by 5k.~0.04, of Wh'ct)‘ the two-loop cross dia-
particular, the RG predicts the large enhancement as a fun&ram in Fig. 3 contributes only 10%, @t~ 0.004. In omit-
tion of A seen in the data, and also predicts the dip observelnd t€rms similar to this latter one, the Hartree-Fock ap-
in the graph ofx, versusk, for sufficiently largex. proximation shoul_d yherefore not be expected to be too
Indeed, the qualitative success of the method suggests th@iscrepant, and this is seen to be the case. The RG calcula-
the difficulty in obtaining predictions that are more accuratelon gives & form which must yield the simple one-loop per-
might lie with the inadequacy of the simple ansatz whenfurbation theory expression at largg, but allows continu-
applied to the case wher=0. The effect of helicity is nev- tion to xo=0; this is given in Eq.(6.11. In the case of

ertheless well captured in this approach, because this effect @adient flows the RG approach is remarkably succes8ful
dominated by the renormalization BfA). and this is attributed to the fact that in that case the primitive

A technical point in the numerical integration is thag vertex i_s renormalized at Iovy wave number._ The reason fo_r
= 0= x() =0, and the evolution equations are ill defined in €xa@mining schemes alternative to ;elf—cqn3|stent methods is
the limit A—. This problem is easily rectified by making that forA>0 agreement between simulation data and theory
xo very small but nonzero. The integration procedure is thertS POOT. and itis necessary to investigate different approaches
well defined, and the results are insensitive to the exact valulfl Order to test different hypotheses for a simple description
of x in this case. of the observed anomalous effect. ' '

We therefore believe that although the renormalization FOr x0=>0.2 all schemes except ordinary perturbation
procedure is not quantitatively accura@s should be ex- theory begin to show reasonable agreement with the data,
pected as it does not give very accurate results in the abseng@d for <o>0.5 all schemes clearly reproduce the results.
of helicity), it successfully incorporates the underlying W& concentrate on results fap<0.2, and the anomalous

mechanism for the enhancement of the diffusivity by helicity€nhancement ok, by helicity in this region is seen in Fig.

at small bare molecular diffusivity. 10, wherex, is plotted againsh for xo=0, and is charac-
terized by a rapid rise im, for A\>0.2. An alternative aspect
VII. DISCUSSION AND CONCLUSIONS is seen in Fig. 9, where, is plotted againsk, for A=1.0.

The significant dip atko=0.2 is due to the large effect of
In this paper we have studied the problem of turbulenthelicity on x, compared with the much reduced effect at
advection of a scalar field by an incompressible flow withx,~0.2. It has proved very difficult to convincingly explain
helicity A, 0=\ =1.0, and background molecular diffusivity these features. However, we have been able to suggest
xo. We have performed computer simulations of the advecmechanisms which show the presence of helicity in the flow
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can produce a large change#g from the nonhelical value, Bgr=—B1(Bg)/ k2 whereB;(8g) is given in Eq.(4.21) and
and even though these have not yet yielded quantitative pree,= xy,+(0). Arise in k., with \ is predicted, but not one
dictions they do point toward a reasonable explanation.  large enough to agree with the data. However, the behavior
The basic idea is to recognize that the effective equatiomt small\ is a much slower rise, which is more in keeping
governing the advection should contain terms not present iwith the data than the self-consistent prediction in this re-
the original equation. The terms can be thought of as beingion.
induced in the low-wave-number effective theory by inte- The renormalization group method is a different approach
grating out higher wave numbers. This may also be viewedn that it considers a running diffusivitg(A) and velocity
as the renormalization of the related vertex functions of theield u(x,A) which satisfy x(*)=xq, «(0)=k., and
theory corresponding to a selective resummation of diau(x,A)=u(x). There are three coupled RG flow equations,
grams. In our approach we have assumed that a low-wavgsee Eq.6.9)], for x(A) and the two running spectral func-
number approximation will be valid, and so that such termsions ®(q,A),¥(q,A) which correspond to the definitions
will contain a minimum number of derivatives. These ideasin Eq. (6.3). The important feature of the RG flow equations
can be implemented in different ways and we tried self-is that«(A) appears in the denominators. The numerators are
consistent, Hartree-Fock, and renormalization group apsuppressed at largé by the spectral functions, and so the
proaches. The self-consistent and Hartree-Fock methods angajor contribution is from intermediate values &f A
based on the effective evolution equati@n?) which corre-  ~k,. This contribution is strongly enhanced for sma},
sponds to a low-wave-number enhancement of the flow veand results in the prediction of the dip structure observed in
locity ug=u+ Brw, Wherew is the vorticity. We performed the data but not predicted by the other methods.
a two-loop calculation self-consistent in bath and Bg, as From our investigation we must expect that a proper ex-
described in Eq(4.295 and Fig. 5. The results show that a planation of the observed effects will require the correct ef-
strong enhancement iR, is predicted, but that the magni- fective equation and the consequent generation of new ver-
tude forh=1.0 andxy=0.0 is too small and the form of the tices, but that unlike the.=0 case the low-wave-number
dependence ok, on \ disagrees with the data. This is par- approximation will be insufficient since, although an en-
ticularly true at smalk for xo=0.0, where, from Fig. 10 we hancement is predicted far#0 the rapid rise is not repro-
see thatx, is only weakly dependent ok, A <0.3, whereas duced and no dip is observed. The RG method suggests that
we predictk,~a+bAP for fractionalp: the one-loop result the main contribution is from wave numbeks-k, support-
is p=2/3. ing this latter conclusion. A successful approach should
The Hartree-Fock method, shown diagramatically in Fig.therefore include more terms in the effective flow equation in
6, computes the complete propagator in term&¢k?) [Eq.  combination with an RG approach. The challenge is to ob-
(4.10] as a sum of the rainbow diagrams generated from théain accurate results for all including\ =0 by such a tech-
effective equatiori4.7) with B given by the one-loop result nique. Work in this direction is currently underway.
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